131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

From the material behaviour to the thermo-mechanical long-term response of asphalt pavements and the alteration of surface drainage due to rutting: a sensitivity study

, , , , , , , , & show all
Article: 2247132 | Received 05 Oct 2021, Accepted 20 Jun 2023, Published online: 19 Aug 2023

References

  • Abu Al-Rub, R.K., et al., 2012. Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. International Journal of Pavement Engineering, 13, 322–338.
  • Alber, S., et al., 2020. Modeling of surface drainage during the service life of asphalt pavements showing long-term rutting: A modular hydro-mechanical approach. Advances in Materials Science and Engineering, 2020, 8793652.
  • Anderson, E.D., and Daniel, J.S., 2013. Long-term performance of pavement with high recycled asphalt content: Case studies. Transportation Research Record, 2371, 1–12.
  • Augter, G., and Kayser, S., 2019. KiST-Zonen-Karte RDO und RSO Asphalt. Berichte der Bundesanstalt für Straßenwesen, Reihe Straßenbau, Heft S 136.
  • Behnke, R., et al., 2019. Thermo-mechanical finite element prediction of the structural long-term response of asphalt pavements subjected to periodic traffic load: Tire-pavement interaction and rutting. Computers and Structures, 218, 9–31.
  • Behnke, R., et al., 2021a. A continuum mechanical model for asphalt based on the particle size distribution: Numerical formulation for large deformations and experimental validation. Mechanics of Materials, 153, 103703.
  • Behnke, R., et al., 2021b. Simulation chain: From the material behavior to the thermo-mechanical long-term response of asphalt pavements and the alteration of functional properties (surface drainage). In: M. Kaliske, M. Oeser, L. Eckstein, S. Leischner, W. Ressel and F. Wellner, eds. Coupled system pavement – tire – vehicle: A holistic computational approach. Lecture Notes in Applied and Computational Mechanics, Vol. 96, Cham: Springer, 267–289.
  • Behnke, R., and Kaliske, M., 2022. Multiphysical modeling and simulation of thermal damage of elastomers: State of the art and developments towards cyber-physical systems. In: G. Heinrich, R. Kipscholl and R. Stoček, eds. Degradation of elastomers in practice, experiments and modeling. Advances in Polymer Science. Vol. 289, Cham: Springer, 103–120.
  • Biancardo, S.A., et al., 2020. BIM-based design for road infrastructure: A critical focus on modeling guardrails and retaining walls. Infrastructures, 5, 59.
  • Blundell, M., and Harty, D., eds. 2015. The multibody systems approach to vehicle dynamics. Oxford: Butterworth-Heinemann.
  • Buhari, R., Rohani, M.M., and Abdullah, M.E., 2013. Dynamic load coefficient of tyre forces from truck axles. Applied Mechanics and Materials, 405–408, 1900–1911.
  • Chen, E., Li, K., and Wang, Y., 2013. Influence of material characteristics of asphalt pavement to thermal stress. Applied Mechanics and Materials, 256-259, 1769–1775.
  • Das, A., 2015. Structural design of asphalt pavements: Principles and practices in various design guidelines. Transportation in Developing Economies, 1, 25–32.
  • Ekblad, J., et al., 2021. Impact on rutting from introduction of increased axle loads in Finland. International Journal of Pavement Engineering, 22, 1731–1743.
  • Faruk, A.N.M., et al., 2016. Traffic volume and load data measurement using a portable weigh in motion system: A case study. International Journal of Pavement Research and Technology, 9, 202–213.
  • Ferreira, A., and Santos, J., 2013. Life-cycle cost analysis system for pavement management at project level: Sensitivity analysis to the discount rate. International Journal of Pavement Engineering, 14, 655–673.
  • FGSV, ed., 2008. Richtlinien für die Anlage von Autobahnen (RAA). Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).
  • FGSV, ed., 2009. Richtlinien für die rechnerische Dimensionierung des Oberbaus von Verkehrsflächen mit Asphaltdeckschicht – RDO Asphalt 09. Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).
  • FGSV, ed., 2012. Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen, RStO. Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).
  • FGSV, ed., 2022. Richtlinien für die Entwässerung von Straßen (REwS). Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).
  • Flemisch, B., et al., 2011. DuMuX: DUNE for multi-{phase, component, scale, physics,…} flow and transport in porous media. Advances in Water Resources, 34, 1102–1112.
  • Giustozzi, F., et al., 2019. Sensitivity analysis of a deflection-induced pavement-vehicle interaction model. Road Materials and Pavement Design, 20, 1880–1898.
  • Guclu, A., et al., 2009. Sensitivity analysis of rigid pavement systems using the mechanistic-empirical design guide software. Journal of Transportation Engineering, 135, 555–562.
  • Guo, R., Nian, T., and Zhou, F., 2020. Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 254, 119237.
  • Guo, M., and Zhou, X., 2019. Tire-pavement contact stress characteristics and critical slip ratio at multiple working conditions. Advances in Materials Science and Engineering, 2019, 5178516.
  • Hartung, F., et al., 2018. Numerical determination of hysteresis friction on different length scales and comparison to experiments. Tribology International, 127, 165–176.
  • Hu, X., et al., 2017. Effects of tire inclination (turning traffic) and dynamic loading on the pavement stress-strain responses using 3-D finite element modeling. International Journal of Pavement Research and Technology, 10, 304–314.
  • Ioannides, A.M., and Tallapragada, P.K., 2013. An overview and a case study of pavement performance prediction. International Journal of Pavement Engineering, 14, 629–644.
  • Jannat, G., and Tighe, S.L., 2016. An experimental design-based evaluation of sensitivities of MEPDG prediction: Investigating main and interaction effects. International Journal of Pavement Engineering, 17, 615–625.
  • Kaliske, M., et al., 2015. Holistic analysis of the coupled vehicle-tire-pavement system for the design of durable pavements. Tire Science and Technology, 43, 86–116.
  • Kaliske, M., et al., eds., 2021b. Coupled system pavement – tire – vehicle: A holistic computational approach. Lecture Notes in Applied and Computational Mechanics, Vol. 96, Cham: Springer.
  • Kaliske, M., et al., 2022. Welchen Weg nimmt die ‘Straße der Zukunft’? – Digitalisierung der Straße im Sonderforschungsbereich/Transregio 339 ‘Digitaler Zwilling Straße’ / Which route takes the ‘Road of the Future’? – Digitalization of the road within the Collaborative Research Center/Transregio 339 ‘Digital Twin of the Road System’. Bauingenieur, 97, 29–37.
  • Kaliske, M., Behnke, R., and Wollny, I., 2021a. Vision on a digital twin of the road-tire-vehicle system for future mobility. Tire Science and Technology, 49, 2–18.
  • Kulakowski, B.T., et al., 1995. A study of dynamic wheel loads conducted using a four-post road simulator. Road Transport Technology, 4, 301–307.
  • Lak, M.A., 2013. Numerical prediction of ground vibrations generated by road traffic and pavement breaking. Thesis (PhD). KU Leuven, Leuven.
  • Lee, J.H., et al., 2019. Long-term performance of fiber-grid-reinforced asphalt overlay pavements: A case study of Korean national highways. Journal of Traffic and Transportation Engineering, 6, 366–382.
  • Li, X., et al., 2014. Sensitivity analysis of flexible pavement parameters by mechanistic-empirical design guide. Applied Mechanics and Materials, 590, 539–545.
  • Lippold, C., et al., 2019. Vermeidung von abflussschwachen Zonen in Verwindungsbereichen – Vergleich und Bewertung von baulichen Lösungen. Berichte der Bundesanstalt für Straßenwesen, Reihe Verkehrstechnik, Heft V 319.
  • Liu, P., et al., 2017. Application of dynamic analysis in semi-analytical finite element method. Materials, 10, 1010.
  • Liu, P., et al., 2018. Study of the influence of pavement unevenness on the mechanical response of asphalt pavement by means of the finite element method. Journal of Traffic and Transportation Engineering, 5, 169–180.
  • Lu, Y., et al., 2010. Numerical and experimental investigation on stochastic dynamic load of a heavy duty vehicle. Applied Mathematical Modelling, 34, 2698–2710.
  • Lu, W., et al., 2023. High-temperature properties and aging resistance of rock asphalt ash modified asphalt based on rutting index. Construction and Building Materials, 363, 129774.
  • Luo, W., and Li, L., 2021. Estimation of water film depth for rutting pavement using IMU and 3D laser imaging data. International Journal of Pavement Engineering, 22, 1334–1349.
  • McDonald, M., and Madanat, S., 2012. Life-cycle cost minimization and sensitivity analysis for mechanistic-empirical pavement design. Journal of Transportation Engineering, 138, 706–713.
  • Miner, M.A., 1945. Cumulative damage in fatigue. Journal of Applied Mechanics, 12, A159–A164.
  • Mirboland, M., and Smarsly, K., 2021. BIM-based description of intelligent transportation systems for roads. Infrastructures, 6, 51.
  • Mwanza, A.D., Muya, M., and Hao, P., 2016. Towards modeling rutting for asphalt pavements in hot climates. Journal of Civil Engineering and Architecture, 10, 1075–1084.
  • Nackenhorst, U., 2014. Finite element analysis of tires in rolling contact. GAMM-Mitteilungen, 37, 27–65.
  • Nazzal, M.D., et al., 2016. Evaluation of the long-term performance and life cycle costs of GTR asphalt pavements. Construction and Building Materials, 114, 261–268.
  • Norouzi, A., Kim, D., and Kim, Y.R., 2016. Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Materials and Structures, 49, 3619–3634.
  • Ong, G.P., and Fwa, T.F., 2005. Analysis and design of vertical-drainage geosynthetic-reinforced porous pavement for roads and car parks. Journal of the Eastern Asia Society for Transportation Studies, 6, 1286–1301.
  • Park, D.W., Papagiannakis, A.T., and Kim, T., 2014. Analysis of dynamic vehicle loads using vehicle pavement interaction model. KSCE Journal of Civil Engineering, 18, 2085–2092.
  • Pflug, H.C., 1986. Lateral dynamic behaviour of truck-trailer combinations due to the influence of the load. Vehicle System Dynamics, 15, 155–175.
  • Radhakrishnan, V., Sri, M.R., and Reddy, K.S., 2020. Sensitivity of rutting and moisture resistance of asphalt mixes to gradation and design air void content. International Journal of Pavement Engineering, 21, 1035–1043.
  • Radziszewski, P., 2007. Modified asphalt mixtures resistance to permanent deformations. Journal of Civil Engineering and Management, 13, 307–315.
  • Ranadive, M.S., and Tapase, A.B., 2016. Parameter sensitive analysis of flexible pavement. International Journal of Pavement Research and Technology, 9, 466–472.
  • Ressel, W., et al., 2019. Modelling and simulation of pavement drainage. International Journal of Pavement Engineering, 20, 801–810.
  • Scheifele, U., 1989. DQM-2: Ein Gerät zur dynamischen Querprofilmessung auf Strassen. ETH Zürich: IVT Schriftenreihe.
  • Schwartz, C.W., et al., 2013. Global sensitivity analysis of mechanistic-empirical performance predictions for flexible pavements. Transportation Research Record, 2368, 12–23.
  • Shakiba, M., et al., 2017. Introducing realistic tire-pavement contact stresses into pavement analysis using nonlinear damage approach (PANDA). International Journal of Pavement Engineering, 18, 1027–1038.
  • Smith, H.A., 1991. Truck tire characteristics and asphalt concrete pavement rutting. Transportation Research Record, 1307, 1–7.
  • Srirangam, S.K., 2015. Numerical simulation of tire-pavement interaction. Thesis (PhD). TU Delft.
  • Sudarsanan, N., and Richard Kim, Y., 2022. A critical review of the fatigue life prediction of asphalt mixtures and pavements. Journal of Traffic and Transportation Engineering, 9, 808–835.
  • Sun, L., 2001. Computer simulation and field measurement of dynamic pavement loading. Mathematics and Computers in Simulation, 58, 297–313.
  • Titi, H.H., et al., 2018. Long term performance of gravel base course layers in asphalt pavements. Case Studies in Construction Materials, 9, e00208.
  • Tutka, P., et al., 2021. Sensitivity analysis of determining the material parameters of an asphalt pavement to measurement errors in backcalculations. Materials, 14, 873.
  • Valašková, V., Melcer, J., and Lajčáková, G., 2015. Moving load effect on pavements at random excitation. Procedia Engineering, 111, 815–820.
  • Wang, H., 2011. Analysis of tire-pavement interaction and pavement responses using a decoupled modeling approach. Thesis (PhD). University of Illinois, Urbana-Champaign.
  • Wang, L., et al., 2022. Technical development and long-term performance observations of long-life asphalt pavement: A case study of Shandong Province. Journal of Road Engineering, 2, 369–389.
  • Wolff, A., 2013. Simulation of pavement surface runoff using the depth-averaged shallow water equations. Thesis (PhD). Universität Stuttgart.
  • Wollny, I., et al., 2016b. Numerical modelling of tire-pavement interaction phenomena: Coupled structural investigations. Road Materials and Pavement Design, 17, 563–578.
  • Wollny, I., et al., 2020. Coupling of microstructural and macrostructural computational approaches for asphalt pavements under rolling tire load. Computer-Aided Civil and Infrastructure Engineering, 35, 1178–1193.
  • Wollny, I., Hartung, F., and Kaliske, M., 2016a. Numerical modeling of inelastic structures at loading of steady state rolling – thermo-mechanical asphalt pavement computation. Computational Mechanics, 57, 867–886.
  • Wollny, I., and Kaliske, M., 2013. Numerical simulation of pavement structures with inelastic material behaviour under rolling tyres based on an arbitrary Lagrangian Eulerian (ALE) formulation. Road Materials and Pavement Design, 14, 71–89.
  • Wollny, I., Sun, W., and Kaliske, M., 2018. A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads. International Journal for Numerical Methods in Engineering, 112, 909–938.
  • Xiong, H., et al., 2022. Application of high viscosity-high modulus modified asphalt concrete in bus rapid transit station pavement – A case study in Chengdu, China. Case Studies in Construction Materials, 17, e01337.
  • Yang, X., et al., 2017. Sensitivity of flexible pavement design to Michigan's climatic inputs using pavement ME design. International Journal of Pavement Engineering, 18, 622–632.
  • Yin, P., and Pan, B., 2022. Evaluation of temperature sensitivity of recycled asphalt based on numerical analysis model and thermal analysis kinetics. Construction and Building Materials, 344, 128153.
  • Zhang, C., et al., 2015. Sensitivity analysis of longitudinal cracking on asphalt pavement using MEPDG in permafrost region. Journal of Traffic and Transportation Engineering, 2, 40–47.
  • Zhao, Z., et al., 2022. Influence of base course types on axial load diffusion performance for asphalt pavement based on measured data. Case Studies in Construction Materials, 17, e01644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.