326
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesostructural evolution of fine-aggregate bitumen emulsion–cement composites by X-ray tomography

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2283610 | Received 04 Jul 2023, Accepted 09 Nov 2023, Published online: 28 Dec 2023

References

  • Bentz, D.P., 2007. Cement hydration: building bridges and dams at the microstructure level. Materials and Structures, 40, 397–404. doi:10.1617/s11527-006-9147-3.
  • Boucard, L., et al., 2015. Bitumen emulsions formulation and destabilisation process relationship: influence of salts addition. Road Materials and Pavement Design, 16 (S1), 330–348. doi:10.1080/14680629.2015.1030910.
  • Boucard, L., et al., 2017. Bitumen emulsion destabilization kinetics: importance of the crystallized Wax content. Langmuir, 33 (38), 9740–9749. doi:10.1021/acs.langmuir.7b01578.
  • Brouwers, H.J.H., 2004. The work of Powers and Brownyard revisited: Part 1. Cement and Concrete Research, 34, 1697–1716. doi:10.1016/j.cemconres.2004.05.031.
  • Burger, W., and Burge, M.J., 2016. Digital image processing: An algorithmic introduction using java. London: Springer. doi:10.1007/978-1-4471-6684-9.
  • Castillo, D., Caro, S., and Darabib, M., 2018. Influence of aggregate morphology on the mechanical performance of asphalt mixtures. Road Materials and Pavement Design, 19 (4), 972–991. doi:10.1080/14680629.2017.1283357.
  • Chen, L., and Wang, Y., 2017. Improved image unevenness reduction and thresholding methods for effective asphalt X-Ray CT image segmentation. Journal of Computing in Civil Engineering, 31 (4), 04017002. doi:10.1061/(ASCE)CP.1943-5487.0000631.
  • Coussy, O., 2004. Poromechanics. Chichester: John Wiley & Sons. doi:10.1002/0470092718.
  • Distante, A., and Distante, C., 2020a. Handbook of image processing and computer vision. In: Volume 1: From energy to image. Cham: Springer. doi:10.1007/978-3-030-38148-6.
  • Distante, A., and Distante, C., 2020b. Handbook of image processing and computer vision. In: Volume 2: From image to pattern. Cham: Springer. doi:10.1007/978-3-030-42374-2.
  • Fadil, H., Jelagin, D., and Partl, M.N., 2020. A new viscoelastic micromechanical model for bitumen-filler mastic. Construction and Building Materials, 253, 119062. doi:10.1016/j.conbuildmat.2020.119062.
  • Feldkamp, L.A., Davis, L.C., and Kress, J.W., 1984. Practical cone-beam algorithm. Journal of the Optical Society of America A, 1 (6), 612–619. doi:10.1364/JOSAA.1.000612.
  • Goavec, M., et al., 2018. Strengthening and drying rate of a drying emulsion layer. Soft Matter, 42, 8612–8626. doi:10.1039/C8SM01490F.
  • Gong, F., et al., 2021. Characterization and evaluation of morphological features for aggregate in asphalt mixture: A review. Construction and Building Materials, 273, 121989. doi:10.1016/j.conbuildmat.2020.121989.
  • Graziani, A., et al., 2020. Use of fine aggregate matrix to analyze the rheological behavior of cold recycled materials. Materials and Structures, 53, 72. doi:10.1617/s11527-020-01515-7.
  • Hampel, F.R., 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69 (346), 383–393. doi:10.1080/01621459.1974.10482962.
  • Herman, G.T., 1979. Correction for beam hardening in computed tomography. Physics in Medicine and Biology, 24 (1), 81–106. doi:10.1088/0031-9155/24/1/008.
  • Hesami, E., Birgisson, B., and Kringos, N., 2015. Effect of mixing sequence on the workability and performance of asphalt mixtures. Road Materials and Pavement Design, 16 (S2), 197–213. doi:10.1080/14680629.2015.1077008.
  • Holzer, L., et al., 2010. 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Applied Clay Science, 47 (3–4), 330–342. doi:10.1016/j.clay.2009.11.045.
  • Holzer, L., et al., 2011a. Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells. Journal of Power Sources, 196 (17), 7076–7089. doi:10.1016/j.jpowsour.2010.08.006.
  • Holzer, L., et al., 2011b. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres. Journal of Power Sources, 196 (3), 1279–1294. doi:10.1016/j.jpowsour.2010.08.017.
  • Hu, J., et al., 2016. Investigation on fatigue damage of asphalt mixture with different air-voids using microstructural analysis. Construction and Building Materials, 125, 936–945. doi:10.1016/j.conbuildmat.2016.08.138.
  • Hu, J., et al., 2019. Investigation on interface stripping damage at high-temperature using microstructural analysis. International Journal of Pavement Engineering, 20 (5), 544–556. doi:10.1080/10298436.2017.1316643.
  • Hung, C.-C., and Enmin Lan, S.Y., 2019. Image texture analysis: foundations, models and algorithms. Cham: Springer. doi:10.1007/978-3-030-13773-1.
  • Jena, S., Pathi, B.R., and Panda, M., 2019. Air void characterization in sand-sulfur-bitumen mixes. Journal of Materials in Civil Engineering, 31 (9), 04019199. doi:10.1061/(ASCE)MT.1943-5533.0002848.
  • Jiang, J., et al., 2019. Evaluation of aggregate packing based on thickness distribution of asphalt binder, mastic and mortar within asphalt mixtures using multiscale methods. Construction and Building Materials, 222, 717–730. doi:10.1016/j.conbuildmat.2019.06.083.
  • Jiang, J., et al., 2022. Penetration mechanism of the emulsion-based rejuvenator in damaged porous asphalt mixture: Microstructure characterization and 3D reconstruction. Materials & Design, 221, 111014. doi:10.1016/j.matdes.2022.111014.
  • Jin, C., et al., 2020a. Aggregate representation approach in 3D discrete-element modeling supporting adaptive shape and mass property fitting of realistic aggregates. Journal of Engineering Mechanics, 146 (6), 04020042. doi:10.1061/(ASCE)EM.1943-7889.0001745.
  • Jin, C., et al., 2020b. Region-based adaptive asphalt mixture microstructural modelling for efficient numerical simulation. Construction and Building Materials, 257, 119431. doi:10.1016/j.conbuildmat.2020.119431.
  • Jin, C., et al., 2020c. Three-dimensional quantification and classification approach for angularity and surface texture based on surface triangulation of reconstructed aggregates. Construction and Building Materials, 246, 118120. doi:10.1016/j.conbuildmat.2020.118120.
  • Kanungo, T., et al., 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7), 881–892. doi:10.1109/TPAMI.2002.1017616.
  • Ketcham, R.A., and Carlson, W.D., 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27 (4), 381–400. doi:10.1016/S0098-3004(00)00116-3.
  • Ketcham, R.A., and Hanna, R.D., 2014. Beam hardening correction for X-ray computed tomography of heterogeneous natural materials. Computers & Geosciences, 67, 49–61. doi:10.1016/j.cageo.2014.03.003.
  • King, P., and Masihi, M., 2009. Percolation in porous media. In: Robert A. Meyers, ed. Encyclopedia of complexity and systems science. New York, NY: Springer. doi:10.1007/978-0-387-30440-3_389.
  • Lakes, R., 1993. Materials with structural hierarchy. Nature, 361, 511–515. doi:10.1038/361511a0.
  • Lesueur, D., and Potti, J.J, 2004. Cold mix design: A rational approach based on the current understanding of the breaking of bituminous emulsions. Road Materials and Pavement Design, 5 (1), 65–87. doi:10.1080/14680629.2004.9689988.
  • Mahmud, M.Z.H., et al., 2017. Microstructural investigation on air void properties of porous asphalt using virtual cut section. Construction and Building Materials, 155, 485–494. doi:10.1016/j.conbuildmat.2017.08.103.
  • Meknaci, L., et al., 2022. Influence of bitumen emulsion on the curing behaviour of standardised cold bitumen emulsion mortars. Road Materials and Pavement Design, 23 (sup1), 99–115. doi:10.1080/14680629.2021.2017329.
  • Mignini, C., Cardone, F., and Graziani, A., 2018. Experimental study of bitumen emulsion–cement mortars: mechanical behaviour and relation to mixtures. Materials and Structures, 51 (6), 149. doi:10.1617/s11527-018-1276-y.
  • Mignini, C., Cardone, F., and Graziani, A., 2021. Using fine aggregate matrix mortars to predict the curing behaviour of cement bitumen treated materials produced with different cements. Construction and Building Materials, 268, 121201. doi:10.1016/j.conbuildmat.2020.121201.
  • Miljković, M., et al., 2017. Influence of emulsifier content on cement hydration and mechanical performance of bitumen emulsion mortar. Materials and Structures, 50 (3), 185. doi:10.1617/s11527-017-1052-4.
  • Miljković, M., et al., 2019. Mechanical behaviour of bitumen emulsion–cement composites across the structural transition of the co-binder system. Construction and Building Materials, 215, 217–232. doi:10.1016/j.conbuildmat.2019.04.169.
  • Miljković, M., and Radenberg, M., 2015. Characterising the influence of bitumen emulsion on asphalt mixture performance. Materials and Structures, 48 (7), 2195–2210. doi:10.1617/s11527-014-0302-y.
  • Miljković, M., and Radenberg, M., 2016. Effect of compaction energy on physical and mechanical performance of bitumen emulsion mortar. Materials and Structures, 49 (1–2), 193–205. doi:10.1617/s11527-014-0488-z.
  • Miljković, M., and Randenberg, M., 2014. Fracture behaviour of bitumen emulsion mortar mixtures. Construction and Building Materials, 62, 126–134. doi:10.1016/j.conbuildmat.2014.03.034.
  • Münch, B., Gasser, P., and Holzer, L., 2006. FIB-nanotomography of particulate systems—Part II: particle recognition and effect of boundary truncation. Journal of the American Ceramic Society, 89 (8), 2586–2595. doi:10.1111/j.1551-2916.2006.01121.x.
  • Münch, B., and Holzer, L., 2008. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. Journal of the American Ceramic Society, 91 (12), 4059–4067. doi:10.1111/j.1551-2916.2008.02736.x.
  • Ouyang, J., et al., 2021a. Investigation on the drying and demulsification process of filler–bitumen emulsion paste. Materials and Structures, 54, 29. doi:10.1617/s11527-020-01600-x.
  • Ouyang, J., et al., 2021b. Characterization of the drying behaviour of asphalt emulsion. Construction and Building Materials, 274, 122090. doi:10.1016/j.conbuildmat.2020.122090.
  • Pham-Gia, T., and Hung, T.L., 2001. The mean and median absolute deviations. Mathematical and Computer Modelling, 34 (7–8), 921–936. doi:10.1016/S0895-7177(01)00109-1.
  • Pichler, C., Lackner, R., and Aigner, E., 2012. Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites – Application in the context of multiscale modeling of bituminous mixtures. Composites Part B: Engineering, 43 (2), 457–464. doi:10.1016/j.compositesb.2011.05.034.
  • Presti, D.L., et al., 2015. Reclaimed asphalt test specimen preparation assisted by image analysis. Journal of Materials in Civil Engineering, 27 (8), C4014005. doi:10.1061/(ASCE)MT.1943-5533.0001012.
  • Riding, K.A., et al., 2012. Modeling hydration of cementitious systems. ACI Materials Journal, 109 (2), 225–234. doi:10.14359/51683709.
  • Schindler, A.K., and Folliard, K.J., 2005. Heat of hydration models for cementitious materials. ACI Materials Journal, 102 (1), 24–33. doi:10.14359/14246. (including errata).
  • Schuck, B., et al., 2021. Study of air void topology of asphalt with focus on air void constrictions – a review and research approach. Road Materials and Pavement Design, 22 (sup1), S425–S443. doi:10.1080/14680629.2021.1907215.
  • Schüler, T., Jänicke, R., and Steeb, H., 2016. Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Construction and Building Materials, 109, 96–108. doi:10.1016/j.conbuildmat.2016.02.012.
  • Soille, P., 2004. Morphological image analysis: principles and applications (2nd ed). Berlin Hamburg: Springer-Verlag. doi:10.1007/978-3-662-05088-0.
  • Sundararajan, D., 2017. Digital image processing: A signal processing and algorithmic approach. Singapore: Springer. doi:10.1007/978-981-10-6113-4.
  • Thyagarajana, S., et al., 2010. The heterogeneity and mechanical response of hot mix asphalt laboratory specimens. International Journal of Pavement Engineering, 11 (2), 107–121. doi:10.1080/10298430902730521.
  • Torquato, S., 2002. Random heterogeneous materials — microstructure and macroscopic properties. New York: Springer Science & Business Media. doi:10.1007/978-1-4757-6355-3.
  • Tschumperlé, D., and Deriche, R., 2002. Diffusion PDEs on vector-valued images. IEEE Signal Processing Magazine, 19 (5), 16–25. doi:10.1109/MSP.2002.1028349.
  • Tschumperle, D., and Deriche, R., 2005. Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (4), 506–517. doi:10.1109/TPAMI.2005.87.
  • Underwood, B.S., and Kim, Y.R., 2013. Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties. Construction and Building Materials, 49, 672–681. doi:10.1016/j.conbuildmat.2013.08.045.
  • Xu, H., et al., 2018. A micro-scale investigation on the behaviors of asphalt mixtures under freeze-thaw cycles using entropy theory and a computerized tomography scanning technique. Entropy, 20 (2), 68. doi:10.3390/e20020068.
  • Yang, X., et al., 2016. Aggregate representation for mesostructure of stone based materials using a sphere growth model based on realistic aggregate shapes. Materials and Structures, 49 (6), 2493–2508. doi:10.1617/s11527-015-0662-y.
  • Yang, B., et al., 2019. Laboratorial investigation on effects of microscopic void characteristics on properties of porous asphalt mixture. Construction and Building Materials, 213, 434–446. doi:10.1016/j.conbuildmat.2019.04.039.
  • Yu, B., et al., 2018. Microstructure characterization of cold in-place recycled asphalt mixtures by X-ray computed tomography. Construction and Building Materials, 171, 969–976. doi:10.1016/j.conbuildmat.2018.03.203.
  • Zhang, C., et al., 2016. Compaction characteristics of asphalt mixture with different gradation type through Superpave Gyratory Compaction and X-Ray CT Scanning. Construction and Building Materials, 129, 243–255. doi:10.1016/j.conbuildmat.2016.10.098.
  • Zhang, H., et al., 2020. Continuum-based micromechanical models for asphalt materials: Current practices & beyond. Construction and Building Materials, 260, 119675. doi:10.1016/j.conbuildmat.2020.119675.
  • Zhao, Z., et al., 2021. 3D-Reconstruction and characterization of the pore microstructure within the asphalt FAM using the X-ray micro-computed tomography. Construction and Building Materials, 272, 121764. doi:10.1016/j.conbuildmat.2020.121764.
  • Zhu, J., Ma, T., and Dong, Z., 2020. Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement. Construction and Building Materials, 234, 117426. doi:10.1016/j.conbuildmat.2019.117426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.