141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of thermally and non-conductive cement mortar prepared from waste iron scraps and magnetite sand

, , , , , & show all
Article: 2286455 | Received 07 Apr 2023, Accepted 17 Nov 2023, Published online: 18 Jan 2024

References

  • Aggarwal, P., et al., 2015. Use of nano-silica in cement based materials—A review. Cogent Engineering, 2 (1). doi:10.1080/23311916.2015.1078018
  • Beng, Wei., et al., 2021a. Properties of mortar with waste tyre rubber as partial sand replacement. Key Engineering Materials, 879, 49–61. doi:10.4028/www.scientific.net/KEM.879.49
  • Beng, Wei., et al., 2021b. Image analysis of surface porosity mortar containing processed spent bleaching earth. Materials, 14, 1658. doi:10.3390/ma14071658
  • Bentz, D. P., Jones, S. Z., and Snyder, K. A., 2015. Design and performance of ternary blend high-volume fly ash concretes of moderate slump. Construction and Building Materials, 84, 409–415. doi:10.1016/j.conbuildmat.2015.03.082
  • Cavalline, T.L., et al., 2017. Impact of lightweight aggregate on concrete thermal properties. ACI Materials Journal, 114 (6), 945–956.
  • Coverdale, R. T., et al., 1995. Interpretation of impedance spectroscopy of cement paste via computer modelling. Journal of Materials Science, 30, 712–719. doi:10.1007/BF00356331
  • Dharmaraj, R., 2021. Experimental study on strength and durability properties of iron scrap with flyash based concrete. Materials Today: Proceedings, 37, 1041–1045. doi:10.1016/j.matpr.2020.06.290
  • Gandage, A. S., et al., 2013. Effect of perlite on thermal conductivity of self compacting concrete. Procedia - Social and Behavioral Sciences, 104, 188–197. doi:10.1016/j.sbspro.2013.11.111
  • Giergiczny, Z., et al., 2009. Air void system and frost-salt scaling of concrete containing slag-blended cement. Construction and Building Materials, 23 (6), 2451–2456. doi:10.1016/j.conbuildmat.2008.10.001
  • Guo, H., et al., 2021. Collaborative design of cement-based composites incorporated with cooper slag in considerations of engineering properties and microwave-absorbing characters. Journal of Cleaner Production, 283. doi:10.1016/j.jclepro.2020.124614
  • He, Y., et al., 2016. Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar. Energy and Buildings, 133, 547–558. doi:10.1016/j.enbuild.2016.10.016
  • He, R., et al., 2018. Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: experiment and theory. Materials & Design, 156, 82–92. doi:10.1016/j.matdes.2018.06.045
  • Jensen, O. M., and Hansen, P. F., 1999. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29, 567–575. doi:10.1016/S0008-8846(99)00021-6
  • Kai, L., Fang, W., and Xuancang, W., 2012. Influence factor of thermal conductivity of cement concrete and its prediction model. Journal of Building Materials, 15 (06), 771–777.
  • Kelly, W. R., et al., 2010. Using chloride and other ions to trace sewage and road salt in the Illinois Waterway. Applied Geochemistry, 25 (5), 661–673. doi:10.1016/j.apgeochem.2010.01.020
  • Kim, G. M., et al., 2016. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction. Composite Structures, 158, 20–29. doi:10.1016/j.compstruct.2016.09.014
  • Lai, J., et al., 2016. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing. Tunnelling and Underground Space Technology, 60, 56–65. doi:10.1016/j.tust.2016.08.002
  • Laila, A., Nanko, M., and Takeda, M., 2014. Upgrade recycling of cast iron scrap chips towards β-FeSi2 thermoelectric materials. Materials, 7 (9), 6304–6316. doi:10.3390/ma7096304
  • Laila, A., Nanko, M., and Takeda, M., 2020. Preparation of eco-friendly Fe2 VAl-based thermoelectric materials using cast iron scrap chips as a source material. Materials Transactions, 61, 2216–2221. doi:10.2320/matertrans.MT-M2020197
  • Li, X., et al., 2018. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cement and Concrete Composites, 92, 145–154. doi:10.1016/j.cemconcomp.2018.06.008
  • Li, Y., et al., 2020. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron. Separation and Purification Technology, 246, 116756. doi:10.1016/j.seppur.2020.116756
  • Li, H., Zhang, Q., and Xiao, H., 2013. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Regions Science and Technology, 86, 22–35. doi:10.1016/j.coldregions.2012.10.007
  • Liao, G., Yao, W., and Zuo, J., 2018. Preparation and characterization of zeolite/TiO(2) cement-based composites with excellent photocatalytic performance. Materials (Basel), 11 (12). doi:10.3390/ma11122485
  • Liu, K., et al., 2015. An experimental study on thermal conductivity of iron ore sand cement mortar. Construction and Building Materials, 101, 932–941. doi:10.1016/j.conbuildmat.2015.10.108
  • Liu, K., et al., 2017. The equivalent plasticity strain analysis of snow-melting heated pavement concrete exposed to inner elevated temperatures. Construction and Building Materials, 137, 66–75. doi:10.1016/j.conbuildmat.2017.01.072
  • Mydin, M.A.O., and Wang, Y.C., 2011. Elevated-temperature thermal properties of lightweight foamed concrete. Construction and Building Materials, 25, 705–716. doi:10.1016/j.conbuildmat.2010.07.016
  • Norambuena-Contreras, J., et al., 2016. Influence of recycled carbon powder waste addition on the physical and mechanical properties of cement pastes. Materials and Structures, 49 (12), 5147–5159. doi:10.1617/s11527-016-0850-4
  • Norambuena-Contreras, J., et al., 2018. Electrical and thermal characterisation of cement-based mortars containing recycled metallic waste. Journal of Cleaner Production, 190, 737–751. doi:10.1016/j.jclepro.2018.04.176
  • Pacheco-Torgal, F., and Jalali, S., 2011. Cementitious building materials reinforced with vegetable fibres: a review. Construction and Building Materials, 25 (2), 575–581. doi:10.1016/j.conbuildmat.2010.07.024
  • Pan, P., et al., 2015. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, 48, 624–634. doi:10.1016/j.rser.2015.04.029
  • Rhee, I., et al., 2017. Thermal performance, freeze-and-thaw resistance, and bond strength of cement mortar using rice husk-derived graphene. Construction and Building Materials, 146, 350–359. doi:10.1016/j.conbuildmat.2017.04.109
  • Sang, Y., and Yang, Y., 2020. Assessing the freezing process of early age concrete by resistivity method. Construction and Building Materials, 238. doi:10.1016/j.conbuildmat.2019.117689
  • Sassani, A., et al., 2018. Determining the electrical resistivity of hardened concrete using different specimen geometry factors, electrode configurations, and electric currents. 9th International DUT-workshop on research and innovations for design of sustainable and durable concrete pavements.
  • Tomlinson, D., et al., 2017. Early age electrical resistivity behaviour of various concrete mixtures subject to low temperature cycling. Cement and Concrete Composites, 83, 323–334. doi:10.1016/j.cemconcomp.2017.07.028
  • Wang, Z., et al., 2017. Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system. Ceramics International, 43 (12), 8685–8693. doi:10.1016/j.ceramint.2017.03.202
  • Wang, H., Liu, L., and Chen, Z., 2010. Experimental investigation of hydronic snow melting process on the inclined pavement. Cold Regions Science and Technology, 63 (1-2), 44–49. doi:10.1016/j.coldregions.2010.04.007
  • Wang, K., Nelsen, D. E., and Nixon, W. A., 2006. Damaging effects of deicing chemicals on concrete materials. Cement and Concrete Composites, 28 (2), 173–188. doi:10.1016/j.cemconcomp.2005.07.006
  • Xiaonan, W., et al., 2020. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis. Construction and Building Materials, 264. doi:10.1016/j.conbuildmat.2020.120194
  • Yoo, D.-Y., Lee, J.-H., and Yoon, Y.-S., 2013. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures, 106, 742–753. doi:10.1016/j.compstruct.2013.07.033
  • Zhang, P., et al., 2018. Low dosage nano-silica modification on lightweight aggregate concrete. Nanomaterials and Nanotechnology, 8. doi:10.1177/1847980418761283
  • Zhang, J., et al., 2022. Strengthening mechanism for the mechanical properties of cement-based materials after internal nano-SiO(2) production. Nanomaterials (Basel), 12 (22). doi:10.3390/nano12224047
  • Zhao, H., et al., 2011. Concrete pavement deicing with carbon fiber heating wires. Cold Regions Science and Technology, 65 (3), 413–420. doi:10.1016/j.coldregions.2010.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.