140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toughness modification of SBS/CRMA on epoxy asphalt: curing behaviour and low-temperature cracking characteristic analysis

, , , , , , , ORCID Icon & show all
Article: 2320171 | Received 19 Oct 2023, Accepted 12 Feb 2024, Published online: 23 Feb 2024

References

  • Aflaki, S. and Hajikarimi, P., 2012. Implementing viscoelastic rheological methods to evaluate low temperature performance of modified asphalt binders. Construction and Building Materials, 36, 110–118. doi:10.1016/j.conbuildmat.2012.04.076.
  • Al-Qadi, I. L., et al., 2015. Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS [Tech Report]. https://rosap.ntl.bts.gov/view/dot/29648
  • Al-Qadi, I. L., et al., 2022. Cracking prediction of asphalt concrete using fracture and strength tests. International Journal of Pavement Engineering, 23 (10), 3333–3345. doi:10.1080/10298436.2021.1892108.
  • Ali, U. M., Al-Qadi, I. L., and Ozer, H., 2020. Flexibility index threshold optimization for various asphalt concrete mixes and climatic conditions. Transportation Research Record: Journal of the Transportation Research Board, 2674 (1), 104–112. doi:10.1177/0361198119899611.
  • Apostolidis, P., et al., 2019a. Evaluation of epoxy modification in bitumen. Construction and Building Materials, 208, 361–368. doi:10.1016/j.conbuildmat.2019.03.013.
  • Apostolidis, P., et al., 2019b. Kinetic viscoelasticity of crosslinking epoxy asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2673 (3), 551–560. doi:10.1177/0361198119835530.
  • Apostolidis, P., et al., 2020. Characterization of epoxy-asphalt binders by differential scanning calorimetry. Construction and Building Materials, 249, 118800. doi:10.1016/j.conbuildmat.2020.118800.
  • Bai, M., 2017. Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Construction and Building Materials, 150, 766–773. doi:10.1016/j.conbuildmat.2017.05.206.
  • Behnia, B., et al., 2018. Nondestructive acoustic emission test to evaluate thermal damage in asphalt concrete materials. Journal of Testing and Evaluation, 46 (1), 20160378. doi:10.1520/JTE20160378
  • Cheng, L., et al., 2022. Evaluation of the fatigue properties for the long-term service asphalt pavement using the semi-circular bending tests and stereo digital image correlation technique. Construction and Building Materials, 317, 126119. doi:10.1016/j.conbuildmat.2021.126119.
  • Cong, P., et al., 2019. Chemical and physical properties of hot mixing epoxy asphalt binders. Construction and Building Materials, 198, 1–9. doi:10.1016/j.conbuildmat.2018.11.275.
  • Fan, Y., et al., 2023. Cracking resistance evaluation of epoxy asphalt mixtures with 100% reclaimed asphalt pavement (RAP). Construction and Building Materials, 395, 132320. doi:10.1016/j.conbuildmat.2023.132320.
  • Fu, L., Jiao, Y., and Chen, X., 2022. Reinforcement evaluation of different fibers on fracture resistance of asphalt mixture based on acoustic emission technique. Construction and Building Materials, 314, 125606. doi:10.1016/j.conbuildmat.2021.125606.
  • Guo, R., Nian, T., and zhou, F., 2020. Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 254, 119237. doi:10.1016/j.conbuildmat.2020.119237.
  • Han, L., et al., 2023. Experiment and representation of stress relaxation behavior of crumb rubber modified asphalt. International Journal of Pavement Research and Technology. doi:10.1007/s42947-023-00344-5.
  • Hou, X., et al., 2018. Identification of asphalt aging characterization by spectrophotometry technique. Fuel, 226, 230–239. doi:10.1016/j.fuel.2018.04.030.
  • Hu, G., et al., 2022. Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP. Construction and Building Materials, 344, 128278. doi:10.1016/j.conbuildmat.2022.128278.
  • Jamshidi, A., White, G., and Kurumisawa, K., 2022. Rheological characteristics of epoxy asphalt binders and engineering properties of epoxy asphalt mixtures – state-of-the-art. Road Materials and Pavement Design, 23 (9), 1957–1980. doi:10.1080/14680629.2021.1963814.
  • Jiang, Y., et al., 2018. Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Materials and Structures, 51 (4), Article 86. doi:10.1617/s11527-018-1217-9
  • Jiao, Y., et al., 2020. Acoustic emission-based reinforcement evaluation of basalt and steel fibers on Low-temperature fracture resistance of asphalt concrete. Journal of Materials in Civil Engineering, 32 (5), 4020104. doi:10.1061/(ASCE)MT.1943-5533.0003118
  • Kang, Y., et al., 2015. Rheological behaviors of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Construction and Building Materials, 76, 343–350. doi:10.1016/j.conbuildmat.2014.12.020.
  • Kaseer, F., et al., 2018. Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Construction and Building Materials, 167, 286–298. doi:10.1016/j.conbuildmat.2018.02.014.
  • Li, H., et al., 2020. Hot mixing behavior and curing process of epoxy asphalt. Journal of Wuhan University of Technology-Materials Science Edition, 35 (3), 605–610. doi:10.1007/s11595-020-2297-2.
  • Li, M., et al., 2022a. Influence of curing agent ratio, asphalt content and crosslinking degree on the compatibility and component distribution of epoxy asphalt in compound curing agent system. International Journal of Pavement Engineering, 24 (2), 1–17. doi:10.1080/10298436.2022.2136375.
  • Li, M., et al., 2022b. Influence of curing agent ratio, asphalt content and crosslinking degree on the compatibility and component distribution of epoxy asphalt in compound curing agent system. International Journal of Pavement Engineering, 1–17. doi:10.1080/10298436.2022.2136375.
  • Liu, Y., et al., 2017. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Materials and Structures, 50 (5), 219. doi:10.1617/s11527-017-1089-4.
  • Liu, Y., et al., 2018. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Construction and Building Materials, 165, 163–172. doi:10.1016/j.conbuildmat.2018.01.032.
  • Liu, Y., et al., 2022. Effect of curing reaction behaviors of warm Mix epoxy asphalt concrete on its field compaction characteristics using discrete-element method. Journal of Materials in Civil Engineering, 34 (6), Article 04022092. doi:10.1061/(ASCE)MT.1943-5533.0004196
  • Lu, Q. and Bors, J., 2015. Alternate uses of epoxy asphalt on bridge decks and roadways. Construction and Building Materials, 78, 18–25. doi:10.1016/j.conbuildmat.2014.12.125.
  • Málek, J., 2000. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 355 (1), 239–253. doi:10.1016/S0040-6031(00)00449-4.
  • Md Nor, N., et al., 2013. Acoustic emission signal for fatigue crack classification on reinforced concrete beam. Construction and Building Materials, 49, 583–590. doi:10.1016/j.conbuildmat.2013.08.057.
  • Ozer, H., et al., 2016. Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. doi:10.1016/j.conbuildmat.2016.03.144.
  • Saha, G. and Biligiri, K. P., 2016. Fracture properties of asphalt mixtures using semi-circular bending test: a state-of-the-art review and future research. Construction and Building Materials, 105, 103–112. doi:10.1016/j.conbuildmat.2015.12.046.
  • Senum, G. I. and Yang, R. T., 1977. Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis, 11 (3), 445–447. doi:10.1007/BF01903696.
  • Starink, M. J., 2003. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404 (1), 163–176. doi:10.1016/S0040-6031(03)00144-8.
  • Su, W., et al., 2021. Microstructure and performance of epoxy asphalt binders modified by core-shell rubbers containing different core polymers. Construction and Building Materials, 304, Article 124689. doi:10.1016/j.conbuildmat.2021.124689.
  • Sun, G., et al., 2024. An evaluation proposal for the fatigue and healing performances of high-viscosity polymer-modified bitumen based on continuous multiple linear amplitude sweep. Construction and Building Materials, 411, 134632. doi:10.1016/j.conbuildmat.2023.134632.
  • Tabasi, E., et al., 2023. Pre- and post-cracking behavior of asphalt mixtures under modes I and III at low and intermediate temperatures. Theoretical and Applied Fracture Mechanics, 124, 103826. doi:10.1016/j.tafmec.2023.103826.
  • Vyazovkin, S., et al., 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520 (1-2), 1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, Q., et al., 2022. Mechanical behavior and thermal oxidative aging of anhydride-cured epoxy asphalt with different asphalt contents. Journal of Materials in Civil Engineering, 34 (10), 4022245. doi:10.1061/(ASCE)MT.1943-5533.0004408
  • Wang, S., et al., 2023. Characteristic analysis of cement grouted asphalt mixture cracking based on acoustic emission. Construction and Building Materials, 375, 130927. doi:10.1016/j.conbuildmat.2023.130927.
  • Wei, J. and Zhang, Y. (2012). Study on the curing process of epoxy asphalt. Conshohocken, PA, USA: ASTM International West. doi:10.1520/JTE20120136
  • Xiang, Q. and Xiao, F., 2020. Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235, 117529. doi:10.1016/j.conbuildmat.2019.117529.
  • Xie, H., Li, C., and Wang, Q., 2022. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Construction and Building Materials, 326, Article 126792. doi:10.1016/j.conbuildmat.2022.126792
  • Xu, P., et al., 2018. Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt. Construction and Building Materials, 165, 295–302. doi:10.1016/j.conbuildmat.2017.12.182.
  • Xu, G., et al., 2021. Rheological and aging properties of composite modified bitumen by styrene-butadiene-styrene and desulfurized crumb rubber. Polymers, 13 (18). doi:10.3390/polym13183037.
  • Xu, P., et al., 2022. Properties of paving epoxy asphalt with epoxy-terminated hyperbranched polyester. Road Materials and Pavement Design, 23 (1), 234–246. doi:10.1080/14680629.2020.1826342.
  • Xue, Y. and Qian, Z., 2016. Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber. Construction and Building Materials, 102, 378–383. doi:10.1016/j.conbuildmat.2015.10.157.
  • Yang, J., et al., 2021. Characterization of desulfurized crumb rubber/styrene-butadiene-styrene composite modified asphalt based on rheological properties. Materials, 14 (14). doi:10.3390/ma14143780.
  • Yin, H., et al., 2015. Performance of hot mix epoxy asphalt binder and its concrete. Materials and Structures, 48 (11), 3825–3835. doi:10.1617/s11527-014-0442-0
  • Yu, X., et al., 2016. Rheological and microstructural properties of foamed epoxy asphalt. Construction and Building Materials, 114, 215–222. doi:10.1016/j.conbuildmat.2016.03.179.
  • Yu, M., et al., 2021. Properties and curing kinetics of epoxy resin toughened by dimer acid diglycidyl ester. Thermochimica Acta, 699, 178910. doi:10.1016/j.tca.2021.178910.
  • Zarei, M., Abdi Kordani, A., and Zahedi, M., 2022. Evaluating the fracture behaviour of modified asphalt concrete composites (ACC) at low and intermediate temperatures using edge notched disc bend (ENDB) specimen. Road Materials and Pavement Design, 23 (8), 1917–1941. doi:10.1080/14680629.2021.1950819.
  • Zhang, D., et al., 2010. The effect of hyperbranched polyester epoxy resin on the curing kinetics and thermal degradation kinetics of the diglycidyl ether of bisphenol-A epoxy resin. Polymer-Plastics Technology and Engineering, 49 (12), 1182–1187. doi:10.1080/03602559.2010.496406.
  • Zhang, Z., et al., 2022. Characterizing the curing behavior and high-temperature performance of epoxy-resin modified asphalts. Construction and Building Materials, 353, 129046. doi:10.1016/j.conbuildmat.2022.129046.
  • Zhou, F., et al., 2017. Selection and preliminary evaluation of laboratory cracking tests for routine asphalt mix designs. Road Materials and Pavement Design, 18 (Sup1), 62–86. doi:10.1080/14680629.2016.1266741.
  • Zhou, Y., et al., 2023. Investigation of the rheological properties of devulcanized rubber-modified asphalt with different rubber devulcanization degrees and rubber contents. Road Materials and Pavement Design, 26, 1–14. doi:10.1080/14680629.2023.2287714.
  • Zolghadr, M., et al., 2019. Epoxy resin modification by reactive bio-based furan derivatives: curing kinetics and mechanical properties. Thermochimica Acta, 673, 147–157. doi:10.1016/j.tca.2019.01.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.