90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revolutionising Egyptian pavement design: a comprehensive E* database and advanced modeling approach for contextually informed performance predictions

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2335308 | Received 02 Jan 2024, Accepted 20 Mar 2024, Published online: 05 Apr 2024

References

  • AASHTO, 2008. Mechanistic-empirical pavement design guide: a manual of practice. Washington, D.C.: American Association of State Highway and Transportation Officials.
  • AASHTO M 332-23, 2023. Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. Washington, DC: American Association of State Highway Transportation Officials.
  • AASHTO R 28-22, 2022. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO R 62-13, 2021. Standard practice for developing dynamic modulus master curves for asphalt mixtures. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 312-22, 2022. Standard method of test for preparing and determining the density of asphalt mixture specimens by means of the superpave gyratory compactor. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 315-22, 2022. Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 342-22, 2022. Standard method of test for determining dynamic modulus of hot mix asphalt (HMA). Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 350-19, 2023. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 49-22, 2022. Standard method of test for penetration of bituminous materials. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 53-22, 2022. Standard method of test for softening point of bitumen (ring-and-ball apparatus). Washington, DC: American Association of State Highway and Transportation Officials.
  • Aboelmagd, A. Y., et al., 2021. Evaluation of hot mix asphalt and binder performance modified with high content of nano silica fume. JES. Journal of Engineering Sciences, 49 (4), 378–399.
  • Aguib, A. A., 2021. Flexible pavement design AASHTO 1993 versus mechanistic-empirical pavement design.
  • Ahmed, M. A., and Attia, M. I., 2013. Impact of aggregate gradation and type on hot mix asphalt rutting in Egypt. International Journal of Engineering Research and Applications (IJERA), 3 (4), 2249–2258.
  • Aidara, M. L. C., Ba, M., and Carter, A., 2020. Evaluation of dynamic modulus of HMA sigmoidal prediction models and optimization by approach of US mesh sieve by AFNOR and LC mesh sieve. Open Journal of Civil Engineering, 10 (03), 195. doi:10.4236/ojce.2020.103017
  • Al-Tawalbeh, A., et al., 2022. Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study. Case Studies in Construction Materials, 17, e01580. doi:10.1016/j.cscm.2022.e01580
  • Ali, Y., et al., 2021. An eXtreme gradient boosting model for predicting dynamic modulus of asphalt concrete mixtures. Construction and Building Materials, 295, 123642. doi:10.1016/j.conbuildmat.2021.123642
  • Andrei, D, Witczak, M, and Mirza, M., 1999. Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A.
  • ARA, Inc., ERES Consultants Division., 2004. Guide for mechanistic-empirical design of new and rehabilitated pavement structures, NCHRP 1-37A final report. Washington, DC: Transportation Research Board, National Research Council.
  • ASTM C127-15, 2015. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM C128-22, 2022. Standard test method for relative density (specific gravity) and absorption of fine aggregate. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM C131/C131M-20, 2020. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM D2172/ D2172M-17e1, 2017. Standard test methods for quantitative extraction of asphalt binder from asphalt mixtures. Conshohocken, PA: American Society for Testing and Materials (ASTM International), West.
  • ASTM D2493/ D2493M-16, 2016. Standard practice for viscosity-temperature chart for asphalt binders. Conshohocken, PA: American Society for Testing and Materials (ASTM International), West.
  • ASTM D2872-22, 2022. Standard test method for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test). West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM D4402/D4402M-23, 2023. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM D6927-22, 2022. Standard test method for Marshall stability and flow of asphalt mixtures. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • ASTM D-854-23, 2023. Standard test methods for specific gravity of soil solids by the water displacement method. West Conshohocken, PA: American Society for Testing and Materials (ASTM International).
  • Awed, A. M., et al., 2023. Boosting hot mix asphalt dynamic modulus prediction using statistical and machine learning regression modeling techniques. Sustainability, 15 (19), 14464. doi:10.3390/su151914464
  • Azari, H., et al., 2007. Comparison of simple performance test | E*| of accelerated loading facility mixtures and prediction | E*| use of NCHRP 1-37A and Witczak's new equations. Transportation Research Record, 1998 (1), 1–9. doi:10.3141/1998-01
  • Bari, J., and Witczak, M., 2006. Development of a new revised version of the Witczak E* predictive models for hot mix asphalt mixtures. Journal of the Association of Asphalt Paving Technologists, 75, 381–423.
  • Batioja-Alvarez, D., Lee, J., and Nantung, T., 2019. Evaluating dynamic modulus for Indiana mechanistic-empirical pavement design guide practice. Transportation Research Record: Journal of the Transportation Research Board, 2673 (2), 346–357. doi:10.1177/0361198118823518
  • Behnood, A., and Daneshvar, D., 2020. A machine learning study of the dynamic modulus of asphalt concretes: an application of M5P model tree algorithm. Construction and Building Materials, 262, 120544. doi:10.1016/j.conbuildmat.2020.120544
  • Bi, Y., et al., 2021. Correlation analysis between asphalt binder/asphalt mastic properties and dynamic modulus of asphalt mixture. Construction and Building Materials, 276, 122256. doi:10.1016/j.conbuildmat.2021.122256
  • Birgisson, B., Sholar, G., and Roque, R., 2005. Evaluation of predicted dynamic modulus for Florida mixtures. Journal of the Transportation Research Record, 1929 (1), 200–207. doi: 10.1177/0361198105192900124
  • Bonaquist, R. F., 2010. Wisconsin mixture characterization using the asphalt mixture performance tester (AMPT) on historical aggregate structures. Madison, WI: Wisconsin Highway Research Program.
  • Boone, J., 2013. Comparison of Ontario pavement designs using the AASHTO 1993 empirical method and the mechanistic-empirical pavement design guide method. Master's thesis. University of Waterloo.
  • Ceylan, H., et al., 2009. Accuracy of predictive models for dynamic modulus of hot-mix asphalt. Journal of Materials in Civil Engineering, 21 (6), 286–293. doi:10.1061/(ASCE)0899-1561(2009)21:6(286)
  • Chehab, G. R., et al., 2018. Implementation initiatives of the mechanistic-empirical pavement design guide in countries with insufficient design input data–the case of Lebanon. In Advancement in the design and performance of sustainable asphalt pavements: proceedings of the 1st GeoMEast international congress and exhibition, Egypt 2017 on sustainable civil infrastructures 1, Springer International Publishing, 147–167.
  • Chen, Z., et al., 2023. Analysis of factors influencing the modulus of Hot-recycled asphalt mixture with high RAP. Materials, 16 (15), 5280. doi:10.3390/ma16155280
  • Christensen Jr, D. W., Pellinen, T., and Bonaquist, R. F., 2003. Hirsch model for estimating the modulus of asphalt concrete. Journal of the Association of Asphalt Paving Technologists, 72.
  • Clyne, T. R., et al., 2003. Dynamic and resilient modulus of Mn/DOT asphalt mixtures (No. MN/RC-2003-09).
  • Cross, S. A., Jakatimath, Y., and KC, S., 2007. Determination of dynamic modulus master curves for Oklahoma HMA mixtures (No. FHWA/OK 07 (05)). Oklahoma State University.
  • Darter, M. I., et al., 2006. NCHRP research results digest 308: changes to the mechanistic-empirical pavement design guide software through Version 0.900. Washington, DC: Transportation Research Board, National Research Council.
  • Delgadillo, R., Nam, K., and Bahia, H., 2006. Why do we need to change G*/sinδ and how. Road Materials and Pavement Design, 7 (1), 7–27.
  • ECP 104, 2020. Egyptian code of practice for urban and rural roads - Part 4: road material and its tests.
  • El-Ashwah, A. S., El-Badawy, S. M., and Gabr, A. R., 2021. A simplified mechanistic-empirical flexible pavement design method for moderate to hot climate regions. Sustainability, 13 (19), 10760. doi:10.3390/su131910760
  • El-Badawy, S., Abd El-Hakim, R., and Awed, A., 2018. Comparing artificial neural networks with regression models for Hot-Mix asphalt dynamic modulus prediction. Journal of Materials in Civil Engineering, 30 (7), 04018128. doi:10.1061/(ASCE)MT.1943-5533.0002282.
  • El-Badawy, S. M., Awed, A., and Bayomy, F. M., 2011. Evaluation of the MEPDG dynamic modulus prediction models for asphalt concrete mixtures. In Transportation and Development Institute Congress 2011: integrated transportation and development for a better tomorrow, 576–585.
  • El-Badawy, S., Bayomy, F., and Awed, A., 2012. Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for Idaho. Journal of Materials in Civil Engineering, 24 (11), 1412–1421. doi:10.1061/(ASCE)MT.1943-5533.0000518
  • El-Hakim, A., et al., 2021. Influence of unbound materials input level on pavement performance using MEPDG. MEJ-Mansoura Engineering Journal, 40 (5), 77–85.
  • Esfandiarpour, S. S., and Shalaby, A., 2017. Alternatives for calibration of dynamic modulus prediction models of asphalt concrete containing RAP. International Journal of Pavement Research and Technology, 10 (3), 203–218. doi:10.1016/j.ijprt.2016.11.005
  • Flintsch, G. W., and Diefenderfer, S. D., 2007. Asphalt materials characterization in support of implementation of the proposed mechanistic-empirical pavement design guide (No. VTRC 07-CR10). Virginia Transportation Research Council.
  • Gedafa, D. S., et al., 2011. Comparison of pavement design using AASHTO 1993 and NCHRP mechanistic-empirical pavement design guides. In Transportation and Development Institute Congress 2011: integrated transportation and development for a better tomorrow, 538–547.
  • Georgouli, K., Loizos, A., and Plati, C., 2016. Calibration of dynamic modulus predictive model. Construction and Building Materials, 102, 65–75. doi:10.1016/j.conbuildmat.2015.10.163
  • Gong, H., et al., 2020. Improved estimation of dynamic modulus for hot mix asphalt using deep learning. Construction and Building Materials, 263, 119912. doi:10.1016/j.conbuildmat.2020.119912
  • Hatoum, A., Khatib, J., and Elkordi, A., 2023. Comparison of flexible pavement designs: mechanistic-empirical (NCHRP1-37A) versus empirical (AASHTO 1993) flexible pavement design using available local calibration models. Transportation Infrastructure Geotechnology, 1–23. doi:10.1007/s40515-023-00305-2.
  • Ipekyuz, B., YAMAN, H. T., and Öztürk, H. I., 2022. Challenges and benefits of the use of AASHTOWare for 3 climatic regions in Turkey. Teknik Dergi, 33 (5), 12473–12500. doi:10.18400/tekderg.793889
  • Irfan, M., et al., 2016. Characterization of various plant-produced asphalt concrete mixtures using dynamic modulus test. Advances in Materials Science and Engineering, 2016, Article ID 5618427. doi:10.1155/2016/5618427
  • Islam, M. R., Kalevela, S. A., and Mendel, G., 2019. How the mix factors affect the dynamic modulus of hot-mix asphalt. Journal of Composites Science, 3 (3), 72. doi:10.3390/jcs3030072
  • Kaya, O., 2015. Investigation of AASHTOWare pavement ME Design/Darwin-ME TM performance prediction models for Iowa pavement analysis and design. Doctoral dissertation. Iowa State University.
  • Khattab, A. M., El-Badawy, S. M., and Elmwafi, M., 2014. Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Construction and Building Materials, 64, 360–369. doi:10.1016/j.conbuildmat.2014.04.066
  • Khedr, S. A., and Breakah, T. M., 2012. Preliminary evaluation of the materials in Egypt for superpave implementation. Road Materials and Pavement Design, 13 (2), 360–367. doi:10.1080/14680629.2012.664501
  • Khedr, S., and Saudy, M., 2023. Development of superpave regional implementation framework in developing countries with hot and arid climates: Egyptian case study. Case Studies in Construction Materials, 18, e01772. doi:10.1016/j.cscm.2022.e01772
  • Kim, Y. R., King, M., and Momen, M., 2005, January. Typical dynamic moduli values of hot mix asphalt in North Carolina and their prediction. In CD-ROM. 84th Annual Meeting, TRB.
  • Kuchiishi, A. K., et al., 2023. Ruggedness evaluation of dynamic modulus test using small-scale test specimens for asphalt mixture performance tester. Transportation Research Record, 2677 (11), 387–400. doi: 10.1177/03611981231165780
  • Leiva-Villacorta, F., and Vargas-Nordcbeck, A., 2019. Neural network-based model to estimate dynamic modulus E* for mixtures in Costa Rica. Journal of Soft Computing in Civil Engineering, 3 (2), 1–15.
  • Li, X., et al., 2008. Effect of reclaimed asphalt pavement (proportion and type) and binder grade on asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2051, 90–97. doi:10.3141/2051-11
  • Li, J., et al., 2010. Updating the pavement design catalog for the Washington State Department of Transportation: Using 1993 AASHTO Guide, mechanistic–empirical pavement design guide, and historical performance. Transportation research record, 2154 (1), 124–129. doi:10.3141/2154-12
  • Li, Q., et al., 2011. Mechanistic-empirical pavement design guide (MEPDG): a bird’s-eye view. Journal of Modern Transportation, 19, 114–133. doi:10.1007/BF03325749
  • Liu, J., et al., 2023. Involving prediction of dynamic modulus in asphalt mix design with machine learning and mechanical-empirical analysis. Construction and Building Materials, 407, 133610. doi:10.1016/j.conbuildmat.2023.133610
  • Mahran, N., Moussa, G., and Younis, H., 2023. Flexible pavement distresses prediction models using AASHTOWare. JES. Journal of Engineering Sciences, 51 (6), 345–364.
  • Martinez, F. O., and Angelone, S. M., 2009. Evaluation of different predictive dynamic modulus models of asphalt mixtures used in Argentina. In: E. Tutumluer and I. L. Al-Qadi, eds. In bearing capacity of roads, railways and airfields. 8th international conference (BCR2A'09). Urbana-Champaign: University of Illinois, 275–284.
  • Mohammad, L., et al., 2008. Characterization of Louisiana asphalt mixtures using simple performance tests. Journal of Testing and Evaluation, 36 (1), 5–16. doi:10.1520/JTE101245
  • Mohammadi Golafshani, E., Behnood, A., and Karimi, M. M., 2021. Predicting the dynamic modulus of asphalt mixture using hybridized artificial neural network and grey wolf optimizer. International Journal of Pavement Engineering, 24 (1), 1–11. doi: 10.1080/10298436.2021.2005056
  • Moussa, G. S., and Owais, M., 2020. Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction. Construction and Building Materials, 265, 120239. doi:10.1016/j.conbuildmat.2020.120239
  • Mulandi, J., et al., 2006. Comparison of pavement design using AASHTO 1993 and NCHRP mechanistic-empirical pavement design guides. In Airfield and highway pavement: meeting today's challenges with emerging technologies, 912–923.
  • Othman, K., 2022. Estimation of the compaction parameters of aggregate base course using artificial neural networks. SN Applied Sciences, 4 (10), 272. doi:10.1007/s42452-022-05158-x
  • Owais, M., 2023. Analysing Witczak 1-37A, Witczak 1-40D and Modified Hirsch Models for asphalt dynamic modulus prediction using global sensitivity analysis. International Journal of Pavement Engineering, 24 (1), 2268808. doi:10.1080/10298436.2023.2268808
  • Ren, J., and Yin, C., 2022. Investigating mechanical characteristics of aggregate structure for road materials. International Journal of Pavement Engineering, 23 (2), 372–386. doi:10.1080/10298436.2020.1748189
  • Salem, M. E., et al., 2022. Comprehensive physico-chemical and rheo-mechanical characterization of multiple asphalt binder microphases to meet Egyptian conditions. Case Studies in Construction Materials, 17, e01539. doi: 10.1016/j.cscm.2022.e01539
  • Saudy, M., et al., 2023b. Regional implementation of the mechanistic empirical pavement design and analysis approach: Egyptian case study. Case Studies in Construction Materials, 18, e01863. doi:10.1016/j.cscm.2023.e01863
  • Saudy, M., Breakah, T., and El-Badawy, S., 2023a. Dynamic modulus prediction validation for the AASHTOWare pavement ME design implementation in Egypt. Sustainability, 15 (18), 14030. doi:10.3390/su151814030
  • Singh, D., Zaman, M., and Commuri, S., 2012. Inclusion of aggregate angularity, texture, and form in estimating dynamic modulus of asphalt mixes. Road Materials and Pavement Design, 13 (2), 327–344. doi:10.1080/14680629.2011.650088
  • Smith, B., and Nair, H., 2015. Development of local calibration factors and design criteria values for mechanistic-empirical pavement design (No. FHWA/VCTIR 16-R1). Virginia Center for Transportation Innovation and Research.
  • Solatifar, N., et al., 2019. Development of dynamic modulus master curves of in-service asphalt layers using MEPDG models. Road Materials and Pavement Design, 20 (1), 225–243. doi:10.1080/14680629.2017.1380688
  • Tashman, L., and Elangovan, M., 2013. Dynamic modulus of HMA and its relationship to actual and predicted field performance using MEPDG. Journal of Performance of Constructed Facilities, 27 (3), 334–345. doi:10.1061/(ASCE)CF.1943-5509.0000328
  • Uwanuakwa, I. D., et al., 2022. Comparing machine learning models with witczak NCHRP 1-40D model for Hot-Mix asphalt dynamic modulus prediction. Arabian Journal for Science and Engineering, 47 (10), 13579–13591. doi:10.1007/s13369-022-06935-x
  • Wang, G., et al., 2020. Analysis of the influence of temperature field on the dynamic modulus of rubber asphalt pavement. Frontiers in Materials, 7, 586457. doi:10.3389/fmats.2020.586457
  • Witczak, M. W., 2007. Specification criteria for simple performance tests for rutting, Volume I: Dynamic Modulus (E*) and Volume II: Flow Number and Flow Time. Washington, D.C.: NCHRP report 580, Transportation Research Board.
  • Xu, W., et al., 2022. Developing hybrid machine learning models to determine the dynamic modulus (e*) of asphalt mixtures using parameters in Witczak 1-40d model: a comparative study. Materials, 15 (5), 1791. doi:10.3390/ma15051791
  • Yasin Çodur, M., and Tortum, A., 2015. An artificial neural network model for highway accident prediction: a case study of Erzurum, Turkey. PROMET - Traffic&Transportation, 27 (3), 217–225. doi:10.7307/ptt.v27i3.1551
  • Ye, Q., Wu, S., and Li, N., 2009. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures. International Journal of Fatigue, 31, 1598–1602. doi:10.1016/j.ijfatigue.2009.04.008
  • Yousefdoost, S., et al., 2013, September. Evaluation of dynamic modulus predictive models for typical Australian asphalt mixes. In Proceedings of the 15th AAPA International Flexible Pavements Conference, 22–25.
  • Yu, H, and Shen, S, 2012. Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method. Construction and Building Materials, 26 (1), 302–309. doi:10.1016/j.conbuildmat.2011.06.025
  • Zhang, M., et al., 2022. Dynamic modulus prediction model and analysis of factors influencing asphalt mixtures using gray relational analysis methods. Journal of Materials Research and Technology, 19, 1312–1321. doi:10.1016/j.jmrt.2022.05.120
  • Zhao, S., et al., 2017. Dynamic modulus characterization of Alaskan asphalt mixtures for mechanistic-empirical pavement design. Journal of Materials in Civil Engineering, 29 (11), 04017213. doi:10.1061/(ASCE)MT.1943-5533.0002069
  • Zhao, H., et al, 2023. Study on the influence factors of dynamic modulus and phase angle of dense gradation polyurethane mixture. Coatings, 13 (2), 474. doi:10.3390/coatings13020474

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.