99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment and mechanism of antioxidant activity of phenols as asphalt antioxidants

, &
Article: 2335316 | Received 08 Nov 2023, Accepted 20 Mar 2024, Published online: 16 Apr 2024

References

  • Aigner, E., Lackner, R., and Pichler, C, 2009. Multiscale prediction of viscoelastic properties of asphalt concrete. Journal of Materials in Civil Engineering, 21 (12), 771–780. doi:10.1061/(ASCE)0899-1561(2009)21:12(771).
  • American Association of State Highway and Transportation Officials, 2009. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV) (AASHTO R028-09-UL).
  • Anderson, R.M., et al., 2011. Evaluation of the relationship between asphalt binder properties and non-load related cracking. Journal of the Association of Asphalt Paving Technologists, 80.
  • Antunes, F.E., et al., 2011. Gels of pluronic f127 and nonionic surfactants from rheological characterization to controlled drug permeation. Colloids and Surfaces B: Biointerfaces, 87 (1), 42–48. doi:10.1016/j.colsurfb.2011.04.033.
  • Arafat, S., et al., 2019. Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties. Journal of Cleaner Production, 217, 456–468. doi:10.1016/j.jclepro.2019.01.238.
  • Birt, D.F., Hendrich, S., and Wang, W, 2001. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics, 90 (2-3), 157–177. doi:10.1016/S0163-7258(01)00137-1.
  • Colbert, B., Mohd Hasan, M.R., and You, Z, 2016. A hybrid strategy in selecting diverse combinations of innovative sustainable materials for asphalt pavements. Journal of Traffic and Transportation Engineering (English Edition), 3 (2), 89–103. doi:10.1016/j.jtte.2016.02.001.
  • Cordischi, D., Occhiuzzi, M., and Dragone, R, 1999. Quantitative EPR spectroscopy: comparison between primary standards and application to MgO-MnO and α-Al2O3-Cr2O3 solid solutions. Applied Magnetic Resonance, 16 (3), 427–445. doi:10.1007/BF03161929.
  • Cortizo, M.S., et al., 2004. Effect of the thermal degradation of sbs copolymers during the ageing of modified asphalts. Polymer Degradation and Stability, 86 (2), 275–282. doi:10.1016/j.polymdegradstab.2004.05.006.
  • Fagernäs, L., et al., 2012. Chemical composition of birch wood slow pyrolysis products. Energy & Fuels, 26 (2), 1275–1283. doi:10.1021/ef2018836.
  • Fan, Y., et al., 2023. Cracking resistance evaluation of epoxy asphalt mixtures with 100% reclaimed asphalt pavement (RAP). Construction and Building Materials, 395, 132320. doi:10.1016/j.conbuildmat.2023.132320.
  • Hu, D., et al., 2021. Investigating the aging mechanism of asphaltene and its dependence on environmental factors through AIMD simulations and DFT calculations. Science of The Total Environment, 795, 148897. doi:10.1016/j.scitotenv.2021.148897.
  • Ingrassia, L.P., et al., 2020. Investigating the “circular propensity” of road bio-binders: effectiveness in hot recycling of reclaimed asphalt and recyclability potential. Journal of Cleaner Production, 255, 120193. doi:10.1016/j.jclepro.2020.120193.
  • Kassem, E., et al., 2019. Retarding aging of asphalt binders using antioxidant additives and copolymers. International Journal of Pavement Engineering, 20 (10), 1154–1169. doi:10.1080/10298436.2017.1394098.
  • Kris-Etherton, P.M., et al., 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113 (9, Supplement 2), 71–88. Available from: https://www.sciencedirect.com/science/article/pii/S0002934301009950.
  • Lei, Y., et al., 2018. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Construction and Building Materials, 191, 692–701. doi:10.1016/j.conbuildmat.2018.10.064.
  • Leopoldini, M., Russo, N., and Toscano, M, 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125 (2), 288–306. doi:10.1016/j.foodchem.2010.08.012.
  • Lesueur, D, 2009. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145 (1-2), 42–82. doi:10.1016/j.cis.2008.08.011.
  • Li, Y., et al., 2010. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer and application in polymer-modified asphalt. Journal of Applied Polymer Science, 116 (2), 754–761. doi:10.1002/app.31458.
  • Li, H.B., et al., 2022a. Compound reutilization of waste cooking oil and waste engine oil as asphalt rejuvenator: performance evaluation and application. Environmental Science and Pollution Research, 29 (60), 90463–90478. doi:10.1007/s11356-022-22153-2.
  • Li, Z., et al., 2022b. Influence of residual SB di-block in sbs on the thermo–oxidative aging behaviors of SBS and SBS modified asphalt. Materials and Structures, 55 (1), 23. doi:10.1617/s11527-022-01882-3.
  • Liu, Q., et al., 2008. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82 (1), 170–177. doi:10.1016/j.jaap.2008.03.007.
  • Liu, D., et al., 2017. Synergistic antioxidant performance of lignin and quercetin mixtures. ACS Sustainable Chemistry & Engineering, 5 (9), 8424–8428. doi:10.1021/acssuschemeng.7b02282.
  • Liu, S., et al., 2024. Biomass waste to produce bio oil as rejuvenator for asphalt based on pyrolysis technology. International Journal of Pavement Engineering, 25 (1), 2287695. doi:10.1080/10298436.2023.2287695.
  • Loise, V., et al., 2021. Additives on aged bitumens: what probe to distinguish between rejuvenating and fluxing effects? Journal of Molecular Liquids, 339, 116742. doi:10.1016/j.molliq.2021.116742.
  • Oasmaa, A., et al., 2005. Quality improvement of pyrolysis liquid: effect of light volatiles on the stability of pyrolysis liquids. Energy & Fuels, 19 (6), 2556–2561. doi:10.1021/ef0400924.
  • Oliviero Rossi, C., et al., 2018. Effects of natural antioxidant agents on the bitumen aging process: An EPR and rheological investigation. Applied Sciences, 8 (8), 1405. doi:10.3390/app8081405.
  • Park, K.-B., et al., 2022. Biomass waste to produce phenolic compounds as antiaging additives for asphalt. ACS Sustainable Chemistry & Engineering, 10 (12), 3892–3908. doi:10.1021/acssuschemeng.1c07870.
  • Petersen, J.C, 2009. A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships. Transportation Research Circular (E-C, 140).
  • Pinto, O., et al., 2018. Fast pyrolysis of tannins from pine bark as a renewable source of catechols. Journal of Analytical and Applied Pyrolysis, 136, 69–76. doi:10.1016/j.jaap.2018.10.022.
  • Robak, J., and Gryglewski, R, 1996. Bioactivity of flavonoids. Polish Journal of Pharmacology, 48 (6), 555–564.
  • Sirin, O., Paul, D.K., and Kassem, E, 2018. State of the art study on aging of asphalt mixtures and use of antioxidant additives. Advances in Civil Engineering, 2018, 3428961. doi:10.1155/2018/3428961.
  • Sun, L., et al., 2023. Anti-aging mechanism and rheological properties of lignin, quercetin, and gallic acid as antioxidants in asphalt. Construction and Building Materials, 369, 130560. doi:10.1016/j.conbuildmat.2023.130560.
  • Tp101, A., 2014. Estimating damage tolerance of asphalt binders using the linear amplitude sweep. Recuperado el, 12.
  • Wang, Y.D., Keshavarzi, B., and Kim, Y.R, 2018. Fatigue performance prediction of asphalt pavements with flexpavetm, the s-vecd model, and dr failure criterion. Transportation Research Record, 2672 (40), 217–227. doi:10.1177/0361198118756873. [Accessed 19 Dec 2023].
  • Wang, F., Li, H.Y., and Yang, J.N., 2014. Utilization and prospect of greening waste biomass energyed. Advanced Materials Research, 864, 1894–1898.
  • Williams, M.L., Landel, R.F., and Ferry, J.D, 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77 (14), 3701–3707. doi:10.1021/ja01619a008.
  • Xu, S., et al., 2024. Effect of antioxidant/CA-LDHS on the properties of SBS-modified bitumen. Journal of Materials in Civil Engineering, 36 (3), 04023604. doi:10.1061/JMCEE7.MTENG-16896.
  • Yan, C., et al., 2020. Characterizing the sbs polymer degradation within high content polymer modified asphalt using atr-ftir. Construction and Building Materials, 233, 117708. doi:10.1016/j.conbuildmat.2019.117708.
  • Zahedi, M., et al., 2020. Experimental determination of the optimum percentage of asphalt mixtures reinforced with lignin. SN Applied Sciences, 2, 1–13. doi:10.1007/s42452-019-1685-8.
  • Zhang, R., et al., 2018. Thermal storage stability of bio-oil modified asphalt. Journal of Materials in Civil Engineering, 30 (4), 04018054. doi:10.1061/(ASCE)MT.1943-5533.0002237. [Accessed 13 Nov 2022].
  • Zhao, Z.J., et al., 2015. The aging resistance of asphalt containing a compound of ldhs and antioxidant. Petroleum Science and Technology, 33 (7), 787–793. doi:10.1080/10916466.2015.1014965.
  • Zhou, Y., et al., 2023. Investigation of the rheological properties of devulcanized rubber-modified asphalt with different rubber devulcanization degrees and rubber contents. Road Materials and Pavement Design, 1–14. https://doi.org/10.1080/14680629.2023.2287714.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.