202
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental studies on pavement quality geopolymer-based concrete (PQGPC) for high-volume roads: a sustainable infrastructure

&
Article: 2337917 | Received 28 Dec 2023, Accepted 26 Mar 2024, Published online: 10 Apr 2024

References

  • Albitar, M., et al., 2017. Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. doi:10.1016/j.conbuildmat.2017.01.056
  • Ambikakumari Sanalkumar, K.U., Lahoti, M., and Yang, E.-H., 2019. Investigating the potential reactivity of fly ash for geopolymerization. Construction and Building Materials, 225, 283–291. doi:10.1016/j.conbuildmat.2019.07.140
  • American Concrete Institute (ACI), 1999. ACI 209R: 1999. Prediction of creep, shrinkage and temperature effects in concrete structures. Detriot: American Concrete Institute.
  • American Concrete Institute (ACI), 2005. ACI 318-14: 2005. Building code requirements for structural concrete. Michigan: American Concrete Institute, Farmington Hills.
  • Andrews-Phaedonos, F., 2016. Specification of geopolymer concrete: general guide. Austroads Ltd., 22.
  • ASTM International, 2013a. ASTM C1585: 2013. Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM International, West Conshohocken, PA: ASTM International.
  • ASTM International, 2013b. ASTM C642: 2013. Standard test method for density, absorption and voids in hardened concrete. ASTM International, West Conshohocken, PA: ASTM International.
  • Australian Standards (AS), 2009. AS 3600: 2009. Concrete structures. Australian Standards, Sydney: SAI Global Limited.
  • Badkul, A., et al., 2022. A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement. Road Materials and Pavement Design, 23 (8), 1815–1835. doi:10.1080/14680629.2021.1926311
  • Bureau of Indian Standards (BIS), 1959. IS 516: 1959. Methods of tests for strength of concrete. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 1983. IS SP:24: 1983. Explanatory handbook on Indian strandard code of practice for plain and reinforced concrete. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 1987. IS 12089: 1987. Specifications for granulated slag for the manufacturing of portland-slag cement. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 1999a. IS 13311: 1999. Method of test: non-destructive testing of concrete, part-1. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 1999b. IS 5816: 1999. Splitting tensile strength of concrete – method of test. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 2000. IS456: 2000. Indian standard code for plain and reinforced concrete- Code of practice. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 2013. IS 3812: 2013. Specifications for pulverized fuel ash, Part-1: for use as pozzolana in cement, cement mortar and concrete. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 2016. IS 383: 2016. Specifications for coarse and fine aggregate for concrete. New Delhi: Bureau of Indian Standards.
  • Bureau of Indian Standards (BIS), 2018. IS 1199: 2018. Fresh concrete - method of sampling, testing and analysis part 2. Determination of consistency of fresh concrete. New Delhi: Bureau of Indian Standards.
  • Chi, M. and Huang, R., 2013. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials, 40, 291–298. doi:10.1016/j.conbuildmat.2012.11.003
  • Davidovits, J., 1991. Geopolymers. Journal of Thermal Analysis, 37 (8), 1633–1656. doi:10.1007/BF01912193
  • Deb, P.S., Nath, P., and Sarker, P.K., 2014. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design (1980–2015), 62, 32–39. doi:10.1016/j.matdes.2014.05.001
  • Diaz-Loya, E.I., Allouche, E.N., and Vaidya, S., 2011. Mechanical properties of fly-ash-based geopolymer concrete. ACI Materials Journal, 108 (3), 300–306. doi:10.14359/51682495.
  • Diaz, E.I., Allouche, E.N., and Eklund, S., 2010. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89 (5), 992–996. doi:10.1016/j.fuel.2009.09.012
  • Ding, Y., Dai, J.-G., and Shi, C.-J., 2016. Mechanical properties of alkali-activated concrete: a state-of-the-art review. Construction and Building Materials, 127, 68–79. doi:10.1016/j.conbuildmat.2016.09.121
  • Ding, Y., Shi, C.-J., and Li, N., 2018. Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Construction and Building Materials, 190, 787–795. doi:10.1016/j.conbuildmat.2018.09.138
  • Duxson, P., et al., 2007a. Geopolymer technology: the current state of the art. Journal of Materials Science, 42 (9), 2917–2933. doi:10.1007/s10853-006-0637-z
  • Duxson, P., et al., 2007b. The role of inorganic polymer technology in the development of ‘green concrete.’. Cement and Concrete Research, 37 (12), 1590–1597. doi:10.1016/j.cemconres.2007.08.018
  • El-Hassan, H., Shehab, E., and Al-Sallamin, A., 2021. Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete. Journal of Sustainable Cement-Based Materials, 10 (5), 289–317. doi:10.1080/21650373.2021.1883145
  • Fernández-Jiménez, A. and Palomo, A., 2005. Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cement and Concrete Research, 35 (10), 1984–1992. doi:10.1016/j.cemconres.2005.03.003
  • Ghasemzadeh Mousavinejad, S.H. and Gashti, M.F., 2021. Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavyweight geopolymer concrete. Theoretical and Applied Fracture Mechanics, 113, 102967. doi:10.1016/j.tafmec.2021.102967
  • Girish, M.G., Shetty, K.K., and Nayak, G., 2022. Synthesis of fly-ash and slag based geopolymer concrete for rigid pavement. Materials Today: Proceedings, 60, 46–54. doi:10.1016/j.matpr.2021.11.332
  • Girish, M.G., Shetty, K.K., and Nayak, G., 2023. Effect of slag sand on mechanical strengths and fatigue performance of paving grade geopolymer concrete. International Journal of Pavement Research and Technology. doi:10.1007/s42947-023-00363-2. Article in Online.
  • Girish, M.G., Shetty, K.K., and Rao Raja, A., 2018. Self-consolidating paving grade geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 431, 092006. doi:10.1088/1757-899X/431/9/092006
  • Hardjito, D., Cheak, C.C., and Lee Ing, C.H., 2008. Strength and setting times of low calcium fly ash-based geopolymer mortar. Modern Applied Science, 2 (4), 3–11. doi:10.5539/mas.v2n4p3.
  • Hasanbeigi, A., Price, L., and Lin, E., 2012. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renewable and Sustainable Energy Reviews, 16 (8), 6220–6238. doi:10.1016/j.rser.2012.07.019
  • Indian Road Congress (IRC), 2014. IRC SP 62: 2014. Guidelines for design and construction of cement concrete pavement for low volume roads. New Delhi: Indian Road Congress.
  • Indian Road Congress (IRC), 2015. IRC 58: 2015. Guidelines for the design of plain jointed rigid pavements for highways. Indian Road Congress, New Delhi, India.
  • Indian Road Congress (IRC), 2017. IRC 44: 2017. Guidelines for cement concrete mix design for pavement. New Delhi: Indian Road Congress.
  • Jiao, X., 2015. Effect of pavement-vehicle interaction on highway fuel consumption and emission. Florida International University, Miami, Florida. doi:10.25148/etd.FIDC000142
  • Karthik, A., Sudalaimani, K., and Vijaya Kumar, C.T., 2017. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Construction and Building Materials, 149, 338–349. doi:10.1016/j.conbuildmat.2017.05.139
  • Khale, D. and Chaudhary, R., 2007. Mechanism of geopolymerization and factors influencing its development: a review. Journal of Materials Science, 42 (3), 729–746. doi:10.1007/s10853-006-0401-4
  • Kong, D.L.Y. and Sanjayan, J.G., 2008. Damage behavior of geopolymer composites exposed to elevated temperatures. Cement and Concrete Composites, 30 (10), 986–991. doi:10.1016/j.cemconcomp.2008.08.001
  • Kurklu, G., 2016. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Composites Part B: Engineering, 92, 9–18. doi:10.1016/j.compositesb.2016.02.043
  • Lee, N.K. and Lee, H.K., 2013. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201–1209. doi:10.1016/j.conbuildmat.2013.05.107
  • Lloyd, N. and Rangan, V., 2010. Geopolymer concrete with fly ash. Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, UWM Centre for by-Products Utilization, 1493–1504.
  • Luhar, S. and Khandelwal, U., 2015. A study on water absorption and sorptivity of geopolymer concrete. International Journal of Civil Engineering, 2 (8), 1–9. doi:10.14445/23488352/IJCE-V2I8P101
  • Maddalena, R., Roberts, J.J., and Hamilton, A., 2018. Can portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. Journal of Cleaner Production, 186, 933–942. doi:10.1016/j.jclepro.2018.02.138
  • Marathe, S., et al., 2021. Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates. Case Studies in Construction Materials, 15, e00732. doi:10.1016/J.CSCM.2021.E00732
  • Ministry of Road Transportation and Highways, 2013. MoRTH: 2013. Specifications for road and bridge works. MoRTH 5th revision. New Delhi: Indian Road Congress.
  • Mohmmad, S.H., et al., 2023. Sustainable alternatives to cement: synthesizing metakaolin-based geopolymer concrete using nano-silica. Construction Materials, 3 (3), 276–286. doi:10.3390/constrmater3030018
  • Nath, P. and Sarker, P.K., 2014. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080
  • Niyazuddin and Umesh, B., 2023. Mechanical and durability properties of standard and high strength geopolymer concrete using particle packing theory. Construction and Building Materials, 400, 132722. doi:10.1016/j.conbuildmat.2023.132722
  • Provis, J.L. and Van Deventer, J.S.J., 2009. Geopolymers: structure, processing, properties and industrial applications. Cambridge: Woodhead Publishing In Materials, CRC Press.
  • Puertas, F., et al., 2000. Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement and Concrete Research, 30 (10), 1625–1632.
  • Puligilla, S. and Mondal, P., 2015. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cement and Concrete Research, 70, 39–49. doi:10.1016/j.cemconres.2015.01.006
  • Ramachandran, A., et al., 2012. Modified guidelines for geopolymer concrete mix design using Indian standard. Asian Journal of Civil Engineering (Building And Housing), 13 (3), 353–364. https://www.researchgate.net/publication/286998254
  • Rashad, A.M., 2014. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005–1025. doi:10.1016/j.matdes.2013.07.074
  • Ravi Kumar, N.S.M. and Venkateswara Rao, S., 2023. A study on development of pavement quality geopolymer concrete for low volume roads. Materials Today: Proceedings, Article in Online. doi:10.1016/j.matpr.2023.03.684.
  • Sathvik, S., et al., 2023. Evaluating the potential of geopolymer concrete as a sustainable alternative for thin white-topping pavement. Frontiers in Materials, 10, 01–14. doi:10.3389/fmats.2023.1181474.s.
  • Saxena, R. and Gupta, T., 2022. Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. Journal of Material Cycles and Waste Management, 24 (2), 725–742. doi:10.1007/s10163-022-01353-5
  • Shakthi Sustainable Energy Foundation, 2014. Technology compendium on energy saving oppurtunities.
  • Singh, B., et al., 2015. Geopolymer concrete: a review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036
  • Singh, B., et al., 2016. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171–179. doi:10.1016/j.conbuildmat.2016.05.008
  • Sofi, M., et al., 2007. Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37 (2), 251–257. doi:10.1016/j.cemconres.2006.10.008
  • Sun, X. and Shi, Q., 2022. Factors influencing embodied energy trade between the belt and road countries: a gravity approach. Environmental Science and Pollution Research, 29 (8), 11574–11589. doi:10.1007/s11356-021-16457-y
  • Talkeri, A. and Ravi Shankar, A.U., 2022. Alkali activated slag-fly ash concrete incorporating precious slag as fine aggregate for rigid pavements. Journal of Traffic and Transportation Engineering (English Edition), 9 (1), 78–92. doi:10.1016/j.jtte.2021.05.001
  • Venu, M. and Gunneswara Rao, T.D., 2017. Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns. Construction and Building Materials, 151, 28–35. doi:10.1016/j.conbuildmat.2017.06.065
  • Wang, J., et al., 2012. The effect of alkali on compressive of metakaolin based geopolymeric cement. Advanced Materials Research, 554–556, 327–330. doi:10.4028/www.scientific.net/AMR.554-556.327
  • Xie, J., et al., 2019. Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete. Construction and Building Materials, 204, 384–398. doi:10.1016/j.conbuildmat.2019.01.191
  • Xu, H. and Van Deventer, J.S.J., 2002. Geopolymerisation of multiple minerals. Minerals Engineering, 15 (12), 1131–1139. doi:10.1016/S0892-6875(02)00255-8
  • Yip, C.K., Lukey, G.C., and van Deventer, J.S.J., 2005. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35 (9), 1688–1697. doi:10.1016/j.cemconres.2004.10.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.