85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of compaction quality of highway subgrade via roller-integrated positive maximum velocity detection technique

, , , , , , , & show all
Article: 2342405 | Received 25 May 2023, Accepted 08 Apr 2024, Published online: 17 Apr 2024

References

  • An, Z.Z., et al., 2020. Neural network model for evaluating compaction quality of rockfill materials by compaction meter value. Journal of Hydroelectric Engineering, 39 (4), 110–120. doi:10.11660/slfdxb.20200411.
  • Anderegg, R. and Kaufmann, K., 2004. Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control. Transportation Research Record, 1868 (1), 124–134. doi:10.3141/1868-31.
  • Anderegg, R., Von Felten, D.A., and Kaufmann, K., 2006. Compaction monitoring using intelligent soil compactors. In: Geocongress 2006: geotechnical engineering in the information technology age. Atlanta, USA. doi:10.1061/40803(187)41.
  • Barman, M., et al., 2016a. Quality control of subgrade soil using intelligent compaction. Innovative Infrastructure Solutions, 1–23. doi:10.1007/s41062-016-0020-0.
  • Barman, M., et al., 2016b. Quality improvement of subgrade through intelligent compaction. Transportation Research Record, 2579, 59–69. doi:10.3141/2579-07.
  • Canillas, E.C. and Salokhe, V.M., 2001. Regression analysis of some factors influencing soil compaction. Soil & Tillage Research, 61, 167–178. doi:10.1016/S0167-1987(01)00206-9.
  • Cao, L.P., et al., 2021. Evaluation of subgrade compaction uniformity based on continuous compaction control technology. Journal of Central South University (Science and Technology), 52 (7), 2200–2210. doi:10.11817/j.issn.1672-7207.2021.07.008.
  • Cheng, L.L., Liu, J., and Zhou, C., 2023. Non-destructive compaction quality evaluation of runway construction based on GPR data. Nondestructive Testing and Evaluation, Early Access. doi:10.1080/10589759.2023.2255363.
  • Dai, J.Q., et al., 2016. True triaxial tests and strength characteristics of silty clay. Rock and Soil Mechanics, 37 (9), 2534–2546. doi:10.16285/j.rsm.2016.09.013.
  • Dondi, G., Sangiorgi, C., and Lantieri, C., 2013. Applying geostatistics to continuous compaction control of construction and demolition materials for road embankments. Journal of Geotechnical and Geoenvironmental Engineering, 140 (3), 1–4. doi:10.1061/(ASCE)GT.1943-5606.0001044.
  • Dong, C., Liu, W.J., and Li, L., 2018. Four-parameter prediction model and its FE realization for dynamic resilient modulus of subgrade compacted silty clay. Journal of Vibration and Shock, 37 (9), 61–68. doi:10.13465/j.cnki.jvs.2018.09.010.
  • Facas, N.W. and Mooney, M.A., 2010. Position reporting error of intelligent compaction and continuous compaction control roller-measured soil properties. Journal of Testing and Evaluation, 38 (1), 1–6. doi:10.1520/JTE102323.
  • Facas, N.W. and Mooney, M.A., 2012. Characterizing the precision uncertainty in vibratory roller measurement values. Journal of Testing and Evaluation, 40 (1), 1–9. doi:10.1520/JTE103507.
  • Ganju, E., et al., 2018. Quality assurance and quality control of subgrade compaction using the dynamic cone penetrometer. International Journal of Pavement Engineering, 19 (11), 966–975. doi:10.1080/10298436.2016.1227.
  • Guo, D.Z., 2001. Mechanics of layered viscoelastic system. Harbin, People’s Republic of China: Harbin Institute of Technology Press. ISBN: 9787560316567.
  • Hassani, H., Khodaygan, S., and Ghaderi, A., 2021. Bayesian reliability-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties. Engineering Optimization, 55 (4), 543–563. doi:10.1080/0305215X.2021.2014828.
  • Hou, Z.Y., et al., 2021. Research on intelligent compaction technology of subgrade based on regression analysis. Advances in Materials Science and Engineering, 4100896. doi:10.1155/2021/4100896.
  • Hu, W., et al., 2019. Investigating key factors of intelligent compaction for asphalt paving: a comparative case study. Construction and Building Materials, 229, 116876. doi:10.1016/j.conbuildmat.2019.116876.
  • Hua, T.B., et al., 2020. Assessment of geomaterial compaction using the pressure-wave fundamental frequency. Transportation Geotechnics, 22, 100318. doi:10.1016/j.trgeo.2020.100318.
  • Imran, S.A., et al., 2018. Artificial neural network-based intelligent compaction analyzer for real-time estimation of subgrade quality. International Journal of Geomechanics, 18 (6), 04018048. doi:10.1061/(ASCE)GM.1943-5622.0001089.
  • JTG/T 3430-2020, 2020. Test methods of soils for highway engineering. Beijing, People’s Republic of China: China Communications Press Co., Ltd. ISBN: 9787114168284.
  • JTG/T 3610-2019, 2019. Technical specifications for construction of highway subgrades. Beijing, People’s Republic of China: China Communications Press Co., Ltd. ISBN: 9787114157691.
  • Komandi, G., 1999. An evaluation of the concept of rolling resistance. Journal of Terramechanics, 36 (3), 159–166. doi:10.1016/S0022-4898(99)00005-1.
  • Li, D., 2016. Simulation analysis of vibrating compaction process of asphalt pavement. Thesis (M.D). Chongqing Jiaotong University, Chongqing, People’s Republic of China.
  • Ling, J.M., et al., 2018. Continuous compaction control technology for granite residual subgrade compaction. Journal of Materials in Civil Engineering, 30 (12), 04018316. doi:10.1061/(ASCE)MT.1943-5533.0002522.
  • Liu, D.H, et al., 2012. Compaction quality control of earth-rock dam construction using real-time field operation data. Journal of Construction Engineering and Management, 138 (9), 1085–1094. doi:10.1061/(ASCE)CO.1943-7862.0000510.
  • Liu, D.H., Li, Z.L., and Lian, Z.H., 2014a. Compaction quality assessment of earth-rock dam materials using roller-integrated compaction monitoring technology. Automation in Construction, 44, 234–246. doi:10.1016/j.autcon.2014.04.016.
  • Liu, D.H., Li, Z.L., and Wang, A.G., 2014b. Roller working-based real-time monitoring and rapid assessment of rock-fill dam compaction quality. Journal of Hydraulic Engineering, 45 (10), 1223–1230. doi:10.13243/j.cnki.slxb.2014.10.011.
  • Liu, D.H., Lin, M., and Li, S., 2016. Real-time quality monitoring and control of highway compaction. Automation in Construction, 62, 114–123. doi:10.1016/j.autcon.2015.11.007.
  • Ma, Y., et al., 2021. Dynamic simulation and evolution of key control parameters for intelligent compaction of subgrade. Journal of Central South University (Science and Technology), 52 (7), 2246–2257. doi:10.11817/j.issn.1672-7207.2021.07.012.
  • Ma, Y., et al., 2022. Assessment of intelligent compaction quality evaluation index and uniformity. Journal of Transportation Engineering, Part B: Pavements, 148 (22), 04022024. doi:10.1061/JPEODX.0000368.
  • Meehan, C.L., et al., 2017. Assessing soil compaction using continuous compaction control and location-specific in situ tests. Automation in Construction, 73, 31–44. doi:10.1016/j.autcon.2016.08.017.
  • Mooney, M.A. and Rinehart, R.V., 2007. Field monitoring of roller vibration during compaction of subgrade soil. Journal of Geotechnical and Geoenvironmental Engineering, 133 (3), 257–265. doi:10.1061/(ASCE)1090-0241(2007)133:3(257).
  • Nazzal, M.D. and Mohammad, L.N., 2010. Estimation of resilient modulus of subgrade soils using falling weight deflectometer. Transportation Research Record, 2186, 1–10. doi:10.3141/2186-01.
  • Rahman, F., Hossain, M., and Romanoschi, S.A., 2008. Intelligent compaction control of highway embankment soil in Kansas. Final report, KTRAN: KSU-06-7, Kansas Dept. of Transportation, Topeka, KS. Available from: https://rosap.ntl.bts.gov/view/dot/38198.
  • Ren, K.B., et al., 2019. Influence of the compaction procedure on mechanical behaviors and pore characteristics of silts. Chinese Journal of Rock Mechanics and Engineering, 38 (4), 842–851. doi:10.13722/j.cnki.jrme.2018.1446.
  • Rinehart, R. and Mooney, M., 2008. Instrumentation of a roller compactor to monitor vibration behavior during earthwork compaction. Automation in Construction, 17 (2), 144–150. doi:10.1016/j.autcon.2006.12.006.
  • Russell, H.S. and Hossain, M., 2000. Design resilient modulus of subgrade soils from FWD tests. Pavement Subgrade, Unbound Materials, and Nondestructive Testing, ASCE, 286 (6), 87–103. doi:10.1061/40509(286)6.
  • Shi, M.N., et al., 2022. Effective compaction power index for real-time compaction quality assessment of coarse-grained geomaterials: proposal and comparative study. Construction and Building Materials, 321, 126375. doi:10.1016/j.conbuildmat.2022.126375.
  • Si, J.Z., 2018. Intelligent compaction for quality control and acceptance for soil and base compaction through statistical analysis. Transportation Research Record, 2672 (52), 1–8. doi:10.1177/0361198118778925.
  • Thevanayagam, S., 1998. Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124 (6), 479–491. doi:10.1061/(ASCE)1090-0241(1998)124:6(479).
  • Thompson, M.J. and White, D.J., 2007. Field calibration and spatial analysis of compaction monitoring technology measurements. Transportation Research Record, 2004(1), 69–79. doi:10.3141/2004-08.
  • Thompson, M.J. and White, D.J., 2008. Estimating compaction of cohesive soils from machine drive power. Journal of Geotechnical and Geoenvironmental Engineering, 134 (12), 1771–1777. doi:10.1061/(ASCE)1090-0241(2008)134:12(1771).
  • Vennapusa, P.K., White, D.J., and Morris, M.D., 2010. Geostatistical analysis for spatially referenced roller-integrated compaction measurements. Journal of Geotechnical and Geoenvironmental Engineering, 136 (6), 813–822. doi:10.1061/(ASCE)GT.1943-5606.0000285.
  • Wang, X., et al., 2016. Evaluation of roller-integrated compaction uniformity based on geostatistics. Rock and Soil Mechanics, 37 (12), 3545–3552. doi:10.16285/j.rsm.2016.12.025.
  • Wang, X.F., et al., 2022. Real-time monitoring and quality assessment of subgrade compaction: key factors and ANN model. Acta Geotechnica, 2022, 1–18. doi:10.1007/s11440-022-01769-1.
  • Wang, X.F., et al., 2023. Automated monitoring and evaluation of highway subgrade compaction quality using artificial neural networks. Automation in Construction, 145, 104663. doi:10.1016/j.autcon.2022.104663.
  • Wessel, P., 2009. A general-purpose green’s function-based interpolator. Computers & Geosciences-UK, 35, 1247–1254. doi:10.1016/j.cageo.2008.08.012.
  • White, D.J., et al., 2005. Real-time compaction monitoring in cohesive soils from machine response. Transportation Research Record, 1936, 73–180. doi:10.1177/0361198105193600120.
  • White, D.J. and Thompson, M.J., 2008. Relationship between in situ and roller-integrated compaction measurements for granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 134 (12), 1763–1770. doi:10.1061/(ASCE)1090-0241(2008).
  • Wu, L.L., et al., 2022. Research on identification model of continuous compaction based on energy dissipation. Journal of Vibration and Shock, 2022, 9998387. doi:10.1155/2022/9998387.
  • Xiao, C.Z., Li, X.F., and Zhang, J.J., 2017. Effect of compaction degree and water content on performance of sandy silt. Journal of Shenzhen University Science and Engineering, 34 (5), 501–508. doi:10.3724/SP.J.1249.2017.05501.
  • Xu, F., et al., 2013. Green’s function-based interpolator and its application. Progress in Geophysics, 28 (4), 1721–1728. doi:10.6038/pg20130412.
  • Xu, Q.W. and Chang, G.K., 2016. Adaptive quality control and acceptance of pavement material density for intelligent road construction. Automation in Construction, 62, 78–88. doi:10.1016/j.autcon.2015.11.004.
  • Yang, Z.Y., et al., 2017. GPU-based parallel Kriging and its application in reserve estimation. Journal of Beijing Normal University(Natural Science), 53 (2), 155–158. doi:10.16360/j.cnki.jbnuns.2017.02.007.
  • Ye, Y.S., et al., 2020. Research on new continuous compaction control index of high-speed railway subgrade based on vibration energy. Journal of the China Railway Society, 42 (7), 127–132. doi:10.3969/j.issn.1001-8360.2020.07.016.
  • Ye, Y.S., et al., 2021. Review on vibration compaction theory and intelligent compaction technology of high-speed railway subgrade. China Railway Science, 42 (5), 1–11. doi:10.3969/j.issn.1001-4632.2021.05.01.
  • Zhang, Z.X., et al., 2000. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining, 37 (5), 745–762. doi:10.1016/S1365-1609(00)00008-3.
  • Zhang, Q.L., et al., 2019. Compaction quality assessment of rockfill materials using roller-integrated acoustic wave detection technique. Automation in Construction, 97, 110–121. doi:10.1016/j.autcon.2018.11.003.
  • Zhang, Q.L., et al., 2020. Intelligent rolling compaction system for earth-rock dams. Automation in Construction, 116, 103246. doi:10.1016/j.autcon.2020.103246.
  • Zhang, Q.L., et al., 2022a. A momentum-based continuous detection method for compaction quality of filling engineering. China: CN202211515256.7, 2022.
  • Zhang, Q.L., et al., 2022b. A review on roller compaction quality control and assurance methods for earthwork in five application scenarios. Materials, 15, 2610. doi:10.3390/ma15072610.
  • Zhang, Q.L., et al., 2024. Compaction quality control and assurance of silt subgrade using roller-integrated compaction monitoring technology. Journal of Testing and Evaluation, 52, 78–79. doi:10.1520/JTE20230117.
  • Zhu, X.Y., et al., 2018. Assessment of compaction quality of multi-layer pavement structure based on intelligent compaction technology. Construction and Building Materials, 161, 316–329. doi:10.1016/j.conbuildmat.2017.11.139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.