Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 36, 2024 - Issue 1
328
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Healthcare professionals’ perspectives on development of assistive technology using the comprehensive assistive technology model

, MScORCID Icon, , PhD, , BSc, , MSc, , MSc, , MSc, , BSc, , PhD, , PhD, , PhD & , PhDORCID Icon show all
Pages 51-59 | Accepted 03 Apr 2023, Published online: 28 Apr 2023

References

  • Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member checking: A tool to enhance trustworthiness or merely a nod to validation? Qualitative Health Research, 26(13), 1802–1811. https://doi.org/10.1177/1049732316654870
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Bruni, M. F., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2018). What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 48, 11–17. https://doi.org/10.1016/j.jocn.2017.10.048
  • Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.
  • Feys, P., & Straudi, S. (2019). Beyond therapists: Technology-aided physical MS rehabilitation delivery. Multiple Sclerosis Journal, 25(10), 1387–1393. https://doi.org/10.1177/1352458519848968
  • Gagnon Shaigetz, V., Proulx, C., Cabral, A., Choudhury, N., Hewko, M., Kohlenberg, E., Segado, M., Smith, M. S. D., & Debergue, P. (2021). An immersive and interactive platform for cognitive assessment and rehabilitation (bWell): Design and iterative development process. JMIR Rehabilitation and Assistive Technologies, 8(4), e26629. https://doi.org/10.2196/26629
  • Gassert, R., & Dietz, V. (2018). Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. Journal of Neuroengineering and Rehabilitation, 15(1), 46. https://doi.org/10.1186/s12984-018-0383-x
  • Gordt, K., Gerhardy, T., Najafi, B., & Schwenk, M. (2018). Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: A systematic review and meta-analysis of randomized controlled trials. Gerontology, 64(1), 74–89. https://doi.org/10.1159/000481454
  • Göttgens, I., & Oertelt-Prigione, S. (2021). The application of human-centered design approaches in health research and innovation: A narrative review of current practices. JMIR mHealth and uHealth, 9(12), e28102. https://doi.org/10.2196/28102
  • Guest, G., Namey, E., & McKenna, K. (2017). How many focus groups are enough? Building an evidence base for nonprobability sample sizes. Field Methods, 29(1), 3–22. https://doi.org/10.1177/1525822X16639015
  • Hersh, M., & Johnson, M. (2008a). On modelling assistive technology systems – Part 2: Applications of the comprehensive assistive technology model. Technology and Disability, 20(4), 251–270. https://doi.org/10.3233/TAD-2008-20401
  • Hersh, M., & Johnson, M. (2008b). On modelling assistive technology systems – Part I: Modelling framework. Technology and Disability, 20(3), 193–215. https://doi.org/10.3233/TAD-2008-20303
  • International Organization for Standardization. (2019). Ergonomics of human-system interaction, in ISO 9241-210: Human centred design for interactive systems. European Committee for Standardization.
  • Jakob, I., Kollreider, A., Germanotta, M., Benetti, F., Cruciani, A., Padua, L., & Aprile, I. (2018). Robotic and sensor technology for upper limb rehabilitation. PM&R, 10(9 Suppl 2), S189–S197. https://doi.org/10.1016/j.pmrj.2018.07.011
  • Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE guide no. 131. Medical Teacher, 42(8), 846–854. https://doi.org/10.1080/0142159X.2020.1755030
  • Kim, J., & Park, H. A. (2012). Development of a health information technology acceptance model using consumers’ health behavior intention. Journal of Medical Internet Research, 14(5), e133. https://doi.org/10.2196/jmir.2143
  • Krainer, D., Wohofsky, L., & Schubert, P. (2022). Design requirements for a (Tele-) rehabilitation platform: Results from a participatory process. Studies in Health Technology and Informatics, 293, 224–231. https://doi.org/10.3233/shti220373
  • Langer, A., Feingold-Polak, R., Mueller, O., Kellmeyer, P., & Levy-Tzedek, S. (2019). Trust in socially assistive robots: Considerations for use in rehabilitation. Neuroscience & Biobehavioral Reviews, 104, 231–239. https://doi.org/10.1016/j.neubiorev.2019.07.014
  • Lin, W.-Y., Chou, W.-C., Tsai, T.-H., Lin, C.-C., & Lee, M.-Y. (2016). Development of a wearable instrumented vest for posture monitoring and system usability verification based on the technology acceptance model. Sensors (Basel), 16(12), 2172. https://doi.org/10.3390/s16122172
  • Lin, L.-F., Lin, Y.-J., Lin, Z.-H., Chuang, L.-Y., Hsu, W.-C., & Lin, Y.-H. (2018). Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: A randomized controlled pilot study. European Journal of Physical and Rehabilitation Medicine, 54(3), 388–396. https://doi.org/10.23736/S1973-9087.17.04691-3
  • Maceira Elvira, P., Popa, T., Schmid, A.-C., & Hummel, F. C. (2019). Wearable technology in stroke rehabilitation: Towards improved diagnosis and treatment of upper-limb motor impairment. Journal of Neuroengineering and Rehabilitation, 16(1), 142. https://doi.org/10.1186/s12984-019-0612-y
  • Mehrholz, J., Pollock, A., Pohl, M., Kugler, J., & Elsner, B. (2020). Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. Journal of Neuroengineering and Rehabilitation, 17(1), 83. https://doi.org/10.1186/s12984-020-00715-0
  • Mehrholz, J., Thomas, S., Kugler, J., Pohl, M., & Elsner, B. (2020). Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews, 2020(10), Cd006185. https://doi.org/10.1002/14651858.CD006185.pub5
  • Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L. … Shaw, L. (2019). Robot assisted training for the upper limb after stroke (RATULS): A multicentre randomised controlled trial. The Lancet, 394(10192), 51–62. https://doi.org/10.1016/S0140-6736(19)31055-4
  • Shah, S. G. S., & Robinson, I. (2007). Benefits of and barriers to involving users in medical device technology development and evaluation. International Journal of Technology Assessment in Health Care, 23(1), 131–137. https://doi.org/10.1017/S0266462307051677
  • Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., & Delp, S. L. (2014). Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & Posture, 40(1), 11–19. https://doi.org/10.1016/j.gaitpost.2014.03.189
  • Steen, M. (2011). Tensions in human-centred design. CoDesign, 7(1), 45–60. https://doi.org/10.1080/15710882.2011.563314
  • Vaezipour, A., Whelan, B.-M., Wall, K., & Theodoros, D. (2019). Acceptance of rehabilitation technology in adults with moderate to severe traumatic brain injury, their caregivers, and healthcare professionals: A systematic review. The Journal of Head Trauma Rehabilitation, 34(4), E67–E82. https://doi.org/10.1097/HTR.0000000000000462
  • Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: A systematic review. Journal of Neuroengineering and Rehabilitation, 14(1), 20. https://doi.org/10.1186/s12984-017-0229-y
  • Weber, L. M., & Stein, J. (2018). The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation, 43(1), 99–110. https://doi.org/10.3233/NRE-172408
  • Wirz, M., & Rupp, R. (2016). Application issues for robotics. In D. J. Reinkensmeyer & V. Dietz (Eds.), Neurorehabilitation technology (pp. 141–160). Springer International Publishing.
  • Zheng, Q. X., Ge, L., Wang, C. C., Ma, Q.-S., Liao, Y.-T., Huang, P.-P., Wang, G.-D., Xie, Q.-L., & Rask, M. (2019). Robot-assisted therapy for balance function rehabilitation after stroke: A systematic review and meta-analysis. International Journal of Nursing Studies, 95, 7–18. https://doi.org/10.1016/j.ijnurstu.2019.03.015
  • Zuber, C. D., & Moody, L. (2018). Creativity and innovation in health care: Tapping into organizational enablers through human-centered design. Nursing Administration Quarterly, 42(1), 62–75. https://doi.org/10.1097/NAQ.0000000000000267

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.