Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 36, 2024 - Issue 2
131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of crutch and walking-boot use on whole-body angular momentum during gait

, DPT, , SBSE & , PT, PhDORCID Icon
Pages 164-172 | Accepted 13 Jun 2023, Published online: 27 Jul 2023

References

  • Bateni, H., & Maki, B. E. (2005). Assistive devices for balance and mobility: Benefits, demands, and adverse consequences [Review]. Archives of Physical Medicine & Rehabilitation, 86(1), 134–145. https://doi.org/10.1016/j.apmr.2004.04.023
  • Bennett, B. C., Russell, S. D., Sheth, P., & Abel, M. F. (2010). Angular momentum of walking at different speeds. Human Movement Science, 29(1), 114–124. https://doi.org/10.1016/j.humov.2009.07.011
  • Capecci, D., Kim, S. H., Reed, K. B., & Handzic, I. (2015). Crutch tip for swing-through crutch walking control based on a kinetic shape. IEEE.
  • Dalton, A., Maxwell, D., Kreder, H. J., & Borkhoff, C. M. (2015). Prospective clinical evaluation comparing standard axillary crutches vs. the hands free crutch. University of Toronto.
  • Faruqui, S. R., & Jaeblon, T. (2010). Ambulatory assistive devices in orthopaedics: Uses and modifications. American Academy of Orthopaedic Surgeon, 18(1), 41–50. https://doi.org/10.5435/00124635-201001000-00006
  • Gulgin, H., Hall, K., Luzadre, A., & Kayfish, E. (2018). 3D gait analysis with and without an orthopedic walking boot. Gait & Posture, 59, 76–82. https://doi.org/10.1016/j.gaitpost.2017.09.024
  • Hefflin, B. J., Gross, T. P., & Schroeder, T. J. (2004). Estimates of medical device–associated adverse events from emergency departments. American Journal of Preventive Medicine, 27(3), 246–253. https://doi.org/10.1016/j.amepre.2004.04.005
  • Herr, H., & Popovic, M. (2008). Angular momentum in human walking. The Journal of Experimental Biology, 211(4), 467–481. https://doi.org/10.1242/jeb.008573
  • Ikeda, A. J., Fergason, J. R., & Wilken, J. M. (2019). Clinical outcomes with the intrepid dynamic exoskeletal orthosis: A retrospective analysis. Military Medicine, 184(11–12), 601–605. https://doi.org/10.1093/milmed/usz004
  • Kaye, H. S., Kang, T., & LaPlante, M. P. (2000). Mobility device use in the United States. Disability Statistics Report (14).
  • Kuntze, G., Russell, M., Jivan, S., Ronsky, J. L., & Manocha, R. H. K. (2022). The effect of axillary crutch length on upper limb kinematics during swing-through gait [Article in press]. PM&R: The Journal of Injury, Function, and Rehabilitation, 15(5), 570–578. https://doi.org/10.1002/pmrj.12809
  • Lim, G. A., & MacLeod, T. D. (2016). Comparison of subjective and physical function outcomes using axillary crutches and a “hands free crutch” in comparison to no crutch, for mobility. California State University.
  • Manocha, R. H. K., MacGillivray, M. K., Eshraghi, M., & Sawatzky, B. J. (2021). Injuries associated with crutch use: A narrative review. PM & R: The Journal of Injury, Function, & Rehabilitation, 13(10), 1176–1192. https://doi.org/10.1002/pmrj.12514
  • Martin, K. D., Unangst, A. M., Huh, J., & Chisholm, J. (2019). Patient preference and physical demand for hands-free single crutch vs standard axillary crutches in foot and ankle patients. Foot & Ankle International, 40(10), 1203–1208. https://doi.org/10.1177/1071100719862743
  • Myers, A. M., Fletcher, P. C., Myers, A. H., & Sherk, W. (1998). Discriminative and Evaluative Properties of the Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 53A(4), M287–M294. https://doi.org/10.1093/gerona/53A.4.M287
  • Nagpurkar, A., & Troeller, A. (2018). Evaluation of crutch energetics using standard and “hands-free” crutches. University of Guelph.
  • Neptune, R. R., & McGowan, C. P. (2011). Muscle contributions to whole-body sagittal plane angular momentum during walking. Journal of Biomechanics, 44(1), 6–12. https://doi.org/10.1016/j.jbiomech.2010.08.015
  • Neptune, R. R., & McGowan, C. P. (2016). Muscle contributions to frontal plane angular momentum during walking. Journal of Biomechanics, 49(13), 2975–2981. https://doi.org/10.1016/j.jbiomech.2016.07.016
  • Nolasco, L. A., Silverman, A. K., & Gates, D. H. (2019). Whole-body and segment angular momentum during 90-degree turns. Gait & Posture, 70, 12–19. https://doi.org/10.1016/j.gaitpost.2019.02.003
  • Nott, C. R., Neptune, R. R., & Kautz, S. A. (2014). Relationships between frontal-plane angular momentum and clinical balance measures during post-stroke hemiparetic walking. Gait & Posture, 39(1), 129–134. https://doi.org/10.1016/j.gaitpost.2013.06.008
  • Orishimo, K., Shapira, A., Kremenic, I., McHugh, M., & Nicholas, S. (2021). Comparison of hip and low back loads between normal gait, axillary crutch ambulation and walking with a hands-free crutch in a healthy population. International Journal of Sports Physical Therapy, 16(6), 1454–1458. https://doi.org/10.26603/001c.29517
  • Pickle, N. T., Silverman, A. K., Wilken, J. M., & Fey, N. P. (2017). Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps. IEEE International Conference on Rehabilitation Robotics: [Proceedings], 2017, 1609–1614. https://doi.org/10.1109/ICORR.2017.8009478
  • Pickle, N. T., Wilken, J. M., Aldridge Whitehead, J. M., & Silverman, A. K. (2016). Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses. Journal of Biomechanics, 49(14), 3397–3406. https://doi.org/10.1016/j.jbiomech.2016.09.010
  • Powell, L. E., & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 50A(1), M28–34. https://doi.org/10.1093/gerona/50a.1.m28
  • Rambani, R., Shahid, M. S., & Goyal, S. (2007). The use of a hands-free crutch in patients with musculoskeletal injuries: Randomized control trial. International Journal of Rehabilitation Research, 30(4), 357–359. https://doi.org/10.1097/MRR.0b013e3282f1fecf
  • Robert, T., Bennett, B. C., Russell, S. D., Zirker, C. A., & Abel, M. F. (2009). Angular momentum synergies during walking. Experimental Brain Research, 197(2), 185–197. https://doi.org/10.1007/s00221-009-1904-4
  • Russell Esposito, E., Schmidtbauer, K. A., & Wilken, J. M. (2018, 1). Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction [Article]. Journal of Neuroengineering and Rehabilitation, 15 (1). https://doi.org/10.1186/s12984-018-0455-y
  • Silverman, A. K., & Neptune, R. R. (2011). Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. Journal of Biomechanics, 44(3), 379–385. https://doi.org/10.1016/j.jbiomech.2010.10.027
  • Silverman, A. K., Neptune, R. R., Sinitski, E. H., & Wilken, J. M. (2014). Whole-body angular momentum during stair ascent and descent. Gait & Posture, 39(4), 1109–1114. https://doi.org/10.1016/j.gaitpost.2014.01.025
  • Silverman, A. K., Wilken, J. M., Sinitski, E. H., & Neptune, R. R. (2012). Whole-body angular momentum in incline and decline walking. Journal of Biomechanics, 45(6), 965–971. https://doi.org/10.1016/j.jbiomech.2012.01.012
  • Simoneau, G. G., & Krebs, D. E. (2000). Whole-body momentum during gait: A preliminary study of non-fallers and frequent fallers [Article]. Journal of Applied Biomechanics, 16(1), 1–13. https://doi.org/10.1123/jab.16.1.1
  • Vistamehr, A., Kautz, S. A., Bowden, M. G., & Neptune, R. R. (2016). Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis. Journal of Biomechanics, 49(3), 396–400. https://doi.org/10.1016/j.jbiomech.2015.12.047
  • Wilken, J. M., Rodriguez, K. M., Brawner, M., & Darter, B. J. (2012). Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait & Posture, 35(2), 301–307. https://doi.org/10.1016/j.gaitpost.2011.09.105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.