Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 36, 2024 - Issue 3
244
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Towards meaningful community ambulation in individuals post stroke through use of a smart hip exoskeleton: A preliminary investigation

, MSPOORCID Icon, , MS & , PhD
Pages 198-208 | Accepted 14 Jul 2023, Published online: 02 Aug 2023

References

  • Aström, M., Asplund, K., & Aström, T. (1992). Psychosocial function and life satisfaction after stroke. Stroke, 23(4), 527–531. https://doi.org/10.1161/01.STR.23.4.527
  • Bohannon, R. W., & Crouch, R. (2017). Minimal clinically important difference for change in 6‐minute walk test distance of adults with pathology: A systematic review. Journal of Evaluation in Clinical Practice, 23(2), 377–381. https://doi.org/10.1111/jep.12629
  • Browning, R. C., Modica, J. R., Kram, R., & Goswami, A. (2007). The effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine & Science in Sports and Exercise, 39(3), 515–525. https://doi.org/10.1249/mss.0b013e31802b3562
  • Bryan, G. M., Franks, P. W., Song, S., Reyes, R., O’Donovan, M. P., Gregorczyk, K. N., & Collins, S. H. (2021). Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Journal of Neuroengineering and Rehabilitation, 18(1), 1–13. https://doi.org/10.1186/s12984-021-00955-8
  • Débora Pacheco, B., Guimaraes Caetano, L. C., Amorim Samora, G., Sant’ana, R., Fuscaldi Teixeira-Salmela, L., & Scianni, A. A. (2021). Perceived barriers to exercise reported by individuals with stroke, who are able to walk in the community. Disability & Rehabilitation, 43(3), 331–337. https://doi.org/10.1080/09638288.2019.1624396
  • Eng, J. J., Chu, K. S., Dawson, A. S., Kim, C. M., & Hepburn, K. E. (2002). Functional walk tests in individuals with stroke: Relation to perceived exertion and myocardial exertion. Stroke, 33(3), 756–761. https://doi.org/10.1161/hs0302.104195
  • Farris, D. J., Hampton, A., Lewek, M. D., & Sawicki, G. S. (2015). Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: From individual limbs to lower limb joints. Journal of Neuroengineering and Rehabilitation, 12(1), 1–12. https://doi.org/10.1186/s12984-015-0012-x
  • Franchignoni, F., Giordano, A., Ferriero, G., Orlandini, D., Amoresano, A., & Perucca, L. (2007). Measuring mobility in people with lower limb amputation: Rasch analysis of the mobility section of the prosthesis evaluation questionnaire. Journal of Rehabilitation Medicine, 39(2), 138–144. https://doi.org/10.2340/16501977-0033
  • Fredrickson, E., Ruff, R. L., & Daly, J. J. (2007). Physiological cost index as a proxy measure for the oxygen cost of gait in stroke patients. Neurorehabilitation and Neural Repair, 21(5), 429–434. https://doi.org/10.1177/1545968307300400
  • Gouelle, A., Mégrot, F., Presedo, A., Husson, I., Yelnik, A., & Penneçot, G.-F. (2013). The gait variability index: A new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait & Posture, 38(3), 461–465. https://doi.org/10.1016/j.gaitpost.2013.01.013
  • Gouelle, A., Rennie, L., Clark, D. J., Mégrot, F., Balasubramanian, C. K., & Tan, M. P. (2018). Addressing limitations of the gait variability index to enhance its applicability: The enhanced GVI (EGVI). PLoS ONE, 13(6), e0198267. https://doi.org/10.1371/journal.pone.0198267
  • Jørgensen, L., Engstad, T., & Jacobsen, B. K. (2002). Higher incidence of falls in long-term stroke survivors than in population controls: Depressive symptoms predict falls after stroke. Stroke, 33(2), 542–547. https://doi.org/10.1161/hs0202.102375
  • Kang, I., Kunapuli, P., Hsu, H., Young, A. J., (Eds.). (2019). Electromyography (EMG) signal contributions in speed and slope estimation using robotic exoskeletons. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Ontario, Canada. IEEE.
  • Kang, I., Kunapuli, P., & Young, A. J. (2019). Real-time neural network-based gait phase estimation using a robotic hip exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2(1), 28–37. https://doi.org/10.1109/TMRB.2019.2961749
  • Kang, I., Peterson, R. R., Herrin, K. R., Mazumdar, A., & Young, A. J. (2022). Design and validation of a torque-controllable series elastic actuator-based hip exoskeleton for dynamic locomotion. Journal of Mechanisms and Robotics, 15(2). https://doi.org/10.1115/1.4054724
  • Kunapuli, P. A. (2020). Online adaptation of user state estimation in a powered hip exoskeleton using machine learning. Georgia Institute of Technology.
  • Latham, N. K., Jette, D. U., Slavin, M., Richards, L. G., Procino, A., Smout, R. J., & Horn, S. D. (2005). Physical therapy during stroke rehabilitation for people with different walking abilities. Archives of Physical Medicine & Rehabilitation, 86(12), 41–50. https://doi.org/10.1016/j.apmr.2005.08.128
  • Lee, H., Lee, S., Seo, K., Lee, M., Chang, W., & Choi, B. (2019). Training for walking efficiency with a wearable hip-assist robot in stroke patients: A pilot randomized controlled trial. Stroke, 50(12), 3545–3552. https://doi.org/10.1161/STROKEAHA.119.025950
  • Lord, S. E., McPherson, K., McNaughton, H. K., Rochester, L., & Weatherall, M. (2004). Community ambulation after stroke: How important and obtainable is it and what measures appear predictive? Archives of physical medicine and rehabilitation. Archives of Physical Medicine & Rehabilitation, 85(2), 234–239. https://doi.org/10.1016/j.apmr.2003.05.002
  • Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
  • Mackenzie, A., & Chang, A. (2002). Predictors of quality of life following stroke. Disability & Rehabilitation, 24(5), 259–265. https://doi.org/10.1080/09638380110081805
  • Metz, D. H. (2000). Mobility of older people and their quality of life. Transport Policy, 7(2), 149–152. https://doi.org/10.1016/S0967-070X(00)00004-4
  • Middleton, A., Fritz, S. L., & Lusardi, M. (2015). Walking speed: The functional vital sign. Journal of Aging & Physical Activity, 23(2), 314–322. https://doi.org/10.1123/japa.2013-0236
  • Mudge, S., & Stott, N. S. (2007). Outcome measures to assess walking ability following stroke: A systematic review of the literature. Physiotherapy, 93(3), 189–200. https://doi.org/10.1016/j.physio.2006.12.010
  • Nyberg, L., & Gustafson, Y. (1995). Patient falls in stroke rehabilitation: A challenge to rehabilitation strategies. Stroke, 26(5), 838–842. https://doi.org/10.1161/01.STR.26.5.838
  • Ovbiagele, B., & Nguyen-Huynh, M. N. (2011). Stroke epidemiology: Advancing our understanding of disease mechanism and therapy. Neurotherapeutics, 8(3), 319. https://doi.org/10.1007/s13311-011-0053-1
  • Patterson, K. K., Gage, W. H., Brooks, D., Black, S. E., & McIlroy, W. E. (2010). Changes in gait symmetry and velocity after stroke: A cross-sectional study from weeks to years after stroke. Neurorehabilitation and Neural Repair, 24(9), 783–790. https://doi.org/10.1177/1545968310372091
  • Patterson, K. K., Parafianowicz, I., Danells, C. J., Closson, V., Verrier, M. C., Staines, W. R., Black, S. E., & McIlroy, W. E. (2008). Gait asymmetry in community-ambulating stroke survivors. Archives of Physical Medicine & Rehabilitation, 89(2), 304–310. https://doi.org/10.1016/j.apmr.2007.08.142
  • Perry, J., Garrett, M., Gronley, J. K., & Mulroy, S. J. (1995). Classification of walking handicap in the stroke population. Stroke, 26(6), 982–989. https://doi.org/10.1161/01.STR.26.6.982
  • Prevention CfDC. 2012. Prevalence of stroke–United States, 2006-2010. MMWR Morbidity and Mortality Weekly Report, 379.
  • Ramstrand, N., & Stevens, P. M. (2021). Clinical outcome measures to evaluate the effects of orthotic management post-stroke: A systematic review. Disability & Rehabilitation, 44(13), 1–20. https://doi.org/10.1080/09638288.2020.1859630
  • Regan, E., Middleton, A., Stewart, J. C., Wilcox, S., Pearson, J. L., & Fritz, S. (2020). The six-minute walk test as a fall risk screening tool in community programs for persons with stroke: A cross-sectional analysis. Topics in Stroke Rehabilitation, 27(2), 118–126. https://doi.org/10.1080/10749357.2019.1667657
  • Rosenberg, D. E., Bombardier, C. H., Hoffman, J. M., & Belza, B. (2011). Physical activity among persons aging with mobility disabilities: Shaping a research agenda. Journal of Aging Research, 2011, 1–16. https://doi.org/10.4061/2011/708510
  • Rozanski, G. M., Wong, J. S., Inness, E. L., Patterson, K. K., & Mansfield, A. (2020). Longitudinal change in spatiotemporal gait symmetry after discharge from inpatient stroke rehabilitation. Disability & Rehabilitation, 42(5), 705–711. https://doi.org/10.1080/09638288.2018.1508508
  • Scherr, J., Wolfarth, B., Christle, J. W., Pressler, A., Wagenpfeil, S., & Halle, M. (2013). Associations between borg’s rating of perceived exertion and physiological measures of exercise intensity. European Journal of Applied Physiology, 113(1), 147–155. https://doi.org/10.1007/s00421-012-2421-x
  • Schertzer, E., & Riemer, R. (2014). Metabolic rate of carrying added mass: A function of walking speed, carried mass and mass location. Applied Ergonomics, 45(6), 1422–1432. https://doi.org/10.1016/j.apergo.2014.04.009
  • Tyson, S. F., & Kent, R. M. (2013). Effects of an ankle-foot orthosis on balance and walking after stroke: A systematic review and pooled meta-analysis. Archives of Physical Medicine & Rehabilitation, 94(7), 1377–1385. https://doi.org/10.1016/j.apmr.2012.12.025
  • Verma, R., Arya, K. N., Sharma, P., & Garg, R. (2012). Understanding gait control in post-stroke: Implications for management. Journal of Bodywork and Movement Therapies, 16(1), 14–21. https://doi.org/10.1016/j.jbmt.2010.12.005
  • Wei, T.-S., Liu, P.-T., Chang, L.-W., Liu, S.-Y., & Martines, F. (2017). Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients. PLoS One, 12(5), e0177136. https://doi.org/10.1371/journal.pone.0177136
  • Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., MacKay-Lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Stiers, W., & Zorowitz, R. D. (2016). Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 47(6), e98–e169. https://doi.org/10.1161/STR.0000000000000098
  • Wonsetler, E. C., & Bowden, M. G. (2017). A systematic review of mechanisms of gait speed change post-stroke. Part 1: Spatiotemporal parameters and asymmetry ratios. Topics in Stroke Rehabilitation, 24(6), 435–446. https://doi.org/10.1080/10749357.2017.1285746
  • Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64, 120–136. https://doi.org/10.1016/j.robot.2014.09.032
  • Young, A. J., & Ferris, D. P. (2016). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182. https://doi.org/10.1109/TNSRE.2016.2521160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.