Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 12
36
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical solutions for magneto-convective boundary layer slip flow from a nonlinear stretching sheet with wall transpiration and thermal radiation effects

, &
Pages 1922-1936 | Received 11 Oct 2022, Accepted 23 Nov 2022, Published online: 11 Apr 2024

References

  • Z. Tadmor and I. Klein, Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series. New York: Van Nostrand Reinhold, 1970.
  • L. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. (ZAMP), vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • K. Vajravelu and J. R. Cannon, “Fluid flow over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 181, no. 1, pp. 609–618, 2006. DOI: 10.1016/j.amc.2005.08.051.
  • R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 184, no. 2, pp. 864–873, 2007. DOI: 10.1016/j.amc.2006.06.077.
  • C. Y. Wang, “Review of similarity stretching exact solutions of the Navier-Stokes equations,” Eur. J. Mech. B/Fluids., vol. 30, no. 5, pp. 475–479, 2011. DOI: 10.1016/j.euromechflu.2011.05.006.
  • R. Cortell, “Heat and fluid flow due to non-linearly stretching surfaces,” Appl. Math. Comput., vol. 217, no. 19, pp. 7564–7572, 2011. DOI: 10.1016/j.amc.2011.02.029.
  • W. F. Hughes and F. J. Young, The Electromagnetodynamics of Fluids. New York, USA: John Wiley, 1966.
  • M. S. Abel, E. Sanjayanand and M. M. Nandeppanavar, “Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and Ohmic dissipations,” Commu. Nonlinear Sci. Numer. Simulat., vol. 13, no. 9, pp. 1808–1821, 2008. DOI: 10.1016/j.cnsns.2007.04.007.
  • P. Rana, R. Bhargava and O. A. Beg, “Finite element simulation of unsteady MHD transport phenomena on a stretching sheet in a rotating nanofluid,” Proc. IMECHE – Part N; J. Nanoeng. Nanosyst., vol. 227, no. 2, pp. 77–99, 2013. DOI: 10.1177/1740349912463312.
  • A. Pantokratoras, “Study of MHD Boundary layer flow over a heated stretching sheet with variable viscosity: a numerical investigation,” Int. J. Heat Mass Transf., vol. 51, no. 1–2, pp. 104–110, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.007.
  • A. Raptis and C. Perdikis, “Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field,” Int. J. Non-Lin. Mech., vol. 41, no. 4, pp. 527–529, 2006. DOI: 10.1016/j.ijnonlinmec.2005.12.003.
  • O. A. Bég, A. Y. Bakier and V. R. Prasad, “Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects,” Computat. Mater. Sci., vol. 46, no. 1, pp. 57–65, 2009. DOI: 10.1016/j.commatsci.2009.02.004.
  • C. Chen, “Combined effects of Joule heating and viscous dissipation on magnetohydrodynamic flow past a permeable, stretching surface with free convection and radiative heat transfer,” ASME J. Heat Transf., vol. 132, no. 6, pp. 064503–064501, 2010. DOI: 10.1115/1.4000946.
  • T. Javed, Z. Abbas, M. Sajid and N. Ali, “Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet,” Int. J. Heat Mass Transf., vol. 54, no. 9–10, pp. 2034–2042, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.025.
  • N. S. Akbar, D. Tripathi, Z. Khan and O. Anwar Bég, “A numerical study of magnetohydrodynamic transport of nanofluids from a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects,” Chem. Phys. Lett., vol. 661, pp. 20–30, 2016. DOI: 10.1016/j.cplett.2016.08.043.
  • T. Thumma, O. Anwar Bég and A. Kadir, “Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet,” J. Mol. Liq., vol. 232, pp. 159–173, 2017. DOI: 10.1016/j.molliq.2017.02.032.
  • H. I. Andersson, “Slip flow past a stretching surface,” Acta. Mech., vol. 158, no. 1–2, pp. 121–125, 2002. DOI: 10.1007/BF01463174.
  • B. Sahoo, “Effects of slip on sheet-driven flow and heat transfer of a non-Newtonian fluid past a stretching sheet,” Comp. Math. Appl., vol. 61, no. 5, pp. 1442–1456, 2011. DOI: 10.1016/j.camwa.2011.01.017.
  • A. S. Rao, V. R. Prasad, N. Nagendra, K. V. N. Murthy, N. B. Reddy and O. A. Beg, “Numerical modeling of non-similar mixed convection heat transfer over a stretching surface with slip conditions,” WJM., vol. 05, no. 06, pp. 117–128, 2015. DOI: 10.4236/wjm.2015.56013.
  • M. Abd El-Aziz and A. A. Afify, “Influence of slip velocity and induced magnetic field on MHD stagnation-point flow and heat transfer of Casson fluid over a stretching sheet,” Math. Prob. Eng., vol. 2018, pp. 1–11, 2018. DOI: 10.1155/2018/9402836.
  • N. Shukla, P. Rana, O. A. Bég, B. Singh and A. Kadir, “Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation,” Propulsion Power Res., vol. 8, no. 2, pp. 147–162, 2019. DOI: 10.1016/j.jppr.2019.01.005.
  • T. Hayat, M. Qasim and S. Mesloub, “MHD flow and heat transfer over permeable stretching sheet with slip conditions,” Numer. Methods Fluids., vol. 66, no. 8, pp. 963–975, 2011. DOI: 10.1002/fld.2294.
  • M. H. Yazdi, S. Abdullah, I. Hashim and K. Sopian, “Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3214–3225, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.009.
  • Y. D. Reddy, F. Mebarek-Oudina, B. S. Goud and A. I. Ismail, “Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium,” Arab J. Sci. Eng., vol. 47, no. 12, pp. 16355–16369, 2022. DOI: 10.1007/s13369-022-06825-2.
  • P. Mishra, D. Kumar, Y. Dharmendar Reddy and B. Shankar Goud, “Numerical investigation of MHD flow of Williamson nanofluid with variable viscosity pasting a wedge within porous media: a non‐Darcy model approach,” Heat Trans., vol. 51, no. 7, pp. 6071–6086, 2022. DOI: 10.1002/htj.22580.
  • S. Goud Bejawada, Y. Dharmendar Reddy, W. Jamshed, K. S. Nisar, A. N. Alharbi and R. Chouikh, “Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium,” Alexandria Eng. J., vol. 61, no. 10, pp. 8207–8220, 2022. DOI: 10.1016/j.aej.2022.01.043.
  • Y. Reddy, B. Shankar Goud, M. R. Khan, M. AbdelghanyElkotb and A. M. Galal, “Transport properties of a hydromagneticradiative stagnation point flow of a nanofluid across a stretching surface,” Case Stud. Therm. Eng, vol. 31, pp. 101839, 2022. DOI: 10.1016/j.csite.2022.101839.
  • Y. D. Reddy, B. S. Goud, A. J. Chamkha and M. A. Kumar, “Influence of radiation and viscous dissipation on MHD heat transfer Cassonnanofluid flow along a nonlinear stretching surface with chemical reaction,” Heat Trans., vol. 51, no. 4, pp. 3495–3511, 2022. DOI: 10.1002/htj.22460.
  • B. Shankar Goud, Y. Dharmendar Reddy and S. Mishra, “Joule heating and thermal radiation impact on MHD boundary layer nanofluid flow along an exponentially stretching surface with thermal stratified medium,” Proc. Inst. Mech. Eng. Part J. Nanomater. Nanoeng. Nanosyst., vol. 237, no. 3-4, 2022. 23977914221100961.
  • B. Vasu, R. S. R. Gorla, P. V. S. N. Murthy, V. R. Prasad, O. A. Bég and S. Siddiqa, “MHD free convection-radiation interaction in a porous medium – part II: Soret/Dufour effects,” Int. J. Appl. Mech. Eng., vol. 25, no. 2, pp. 157–175, 2020. DOI: 10.2478/ijame-2020-0013.
  • S. Kuharat, O. Anwar Bég, A. Kadir and B. Vasu, “Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects,” Arabian J. Sci. Eng., vol. 11, pp. 9075–9093, 2020. DOI: 10.1007/s13369-020-04678-1.
  • T. Thumma, S. R. Mishra and O. A. Bég, “ADM solution for Cu/CuO–water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects,” J. Appl. Comput. Mech., vol. 7, no. 3, pp. 1291–1305, 2021. DOI: 10.22055/jacm.2020.33137.2167.
  • A. G. Hansen, Similarity Analyses of Boundary Value Problems in Engineering. Englewood Cliffs, N.J.: Prentice Hall, 1964, pp. 86–91.
  • T. Y. Na, Computational Methods in Engineering Boundary Value Problems. New York: Academic Press, 1979.
  • R. Seshadri and T. Y. Na, Group Invariance in Engineering Boundary Value Problems. New York: Springer, 1985.
  • G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations. New York: Springer, 2009.
  • A. A. Avramenko, S. G. Kobzar, I. V. Shevchuk, A. V. Kuznetsov and L. T. Iwanisov, “Symmetry of turbulent boundary-layer flows: investigation of different eddy viscosity models,” Acta Mech., vol. 151, no. 1–2, pp. 1–14, 2001. DOI: 10.1007/BF01272521.
  • M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, “Biomagnetic fluid flow past a stretching/shrinking sheet with slip conditions using lie group analysis,” AIP Conference Proceedings 2121, pp. 050005, 2019. DOI: 10.1063/1.5115892.
  • M. Ferdows, G. Murtaza, J. C. Misra, E. E. Tzirtzilakis and A. Alsenafi, “Dual solutions in biomagnetic fluid flow and heat transfer over a nonlinear stretching/shrinking sheet: application of lie group transformation method,” Math. Biosci. Eng., vol. 17, no. 5, pp. 4852–4874, 2020. DOI: 10.3934/mbe.2020264.
  • M. J. Uddin, N. H. M. Yusoff, O. A. Beg and A. I. Ismail, “Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation,” Phys. Scr., vol. 87, no. 2, pp. 025401, 2013. DOI: 10.1088/0031-8949/87/02/025401.
  • M. J. Uddin, W. A. Khan and A. I. M. Ismail, “Scaling group transformation for MHD boundary layer slip flow of a nanofluid over a convectively heated stretching sheet with heat generation,” Math. Prob. Eng., vol. 2012, pp. 1–20, 2012. DOI: 10.1155/2012/934964.
  • S. Mukhopadhyay and G. C. Layek, “Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink,” Meccanica., vol. 47, no. 4, pp. 863–876, 2012. DOI: 10.1007/s11012-011-9457-6.
  • O. A. Bég, M. J. Uddin, M. M. Rashidi and N. Kavyani, “Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects,” J. Eng. Thermophys., vol. 23, no. 2, pp. 79–97, 2014. DOI: 10.1134/S1810232814020015.
  • M. J. Uddin, O. A. Bég and N. S. Amin, “Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing,” J. Magnet. Mag. Mater., vol. 368, pp. 252–261, 2014. DOI: 10.1016/j.jmmm.2014.05.041.
  • O. Anwar Bég, W. A. Khan and M. J. Uddin, “Multiple slip effects on unsteady magnetohydrodynamic nanofluid transport with heat generation/absorption effects in temperature dependent porous media,” J. Por. Media, vol. 18, no. 9, pp. 907–922, 2015. DOI: 10.1615/JPorMedia.v18.i9.70.
  • M. J. Uddin, O. A. Bég and A. I. Ismail, “Radiative-convective nanofluid flow past a stretching/shrinking sheet with slip effects,” J. Thermophys. Heat Transf., vol. 29, no. 3, pp. 513–523, 2015. DOI: 10.2514/1.T4372.
  • N. A. Amirsom, M. F. M. Basir, M. J. Uddin, A. I. Ismail, O. A. Bég and A. Kadir, “Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties,” Appl. Sci. (Applied Biosciences and Bioengineering Section), vol. 9, no. 12, pp. 2493, 2019. DOI: 10.3390/app9122493.
  • O. A. Bég, M. J. Uddin, T. A. Bég, A. Kadir, M. Shamshuddin and M. Babaie, “Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip,” Indian J. Phys., vol. 94, no. 6, pp. 863–877, 2020. DOI: 10.1007/s12648-019-01520-9.
  • M. J. Uddin, W. A. Khan, O. A. Bég and A. I. M. Ismail, “Non-similar solution of g-jitter induced unsteady magnetohydrodynamic radiative slip flow of nanofluid,” Appl. Sci., vol. 10, no. 4, pp. 1420, 2020. DOI: 10.3390/app10041420.
  • W. A. Khan and A. Aziz, “Natural convection flow of nanofluid over a vertical plate with uniform surface heat flux,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1207–1214, 2011. DOI: 10.1016/j.ijthermalsci.2011.02.015.
  • O. D. Makinde and A. Aziz, “Boundary layer flow of a naofluid past a stretching sheet with convective boundary condition,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1326–1332, 2011. DOI: 10.1016/j.ijthermalsci.2011.02.019.
  • F. P. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer. 6th ed. New York: John Wiley, 2007.
  • G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics. New York, USA: McGraw-Hill Book Company, 1965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.