Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 12
94
Views
4
CrossRef citations to date
0
Altmetric
Articles

The flow analysis of Williamson nanofluid considering the Thompson and Troian slip conditions at the boundary

, , , ORCID Icon &
Pages 1937-1953 | Received 27 Mar 2023, Accepted 04 May 2023, Published online: 24 May 2023

References

  • R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: 10.1016/j.rser.2010.11.035.
  • Z. Said et al., “Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids,” Phys. Rep., vol. 946, pp. 1–94, 2022. DOI: 10.1016/j.physrep.2021.07.002.
  • H.-X. Bao et al., “Boundary-layer flow of heat and mass for tiwari-das nanofluid model over a flat plate with variable wall temperature,” Therm. Sci., vol. 26, no. Spec. Issue 1, pp. 39–47, 2022. DOI: 10.2298/TSCI22S1039B.
  • A. M. Alqahtani et al., “Thermal analysis of a radiative nanofluid over a stretching/shrinking cylinder with viscous dissipation,” Chem. Phys. Lett., vol. 808, pp. 140133, 2022. DOI: 10.1016/j.cplett.2022.140133.
  • V. Puneeth, E. H. Aly, and I. Pop, “Nanofluid flowing over a rotating disk that is stretching and permeable: An unsteady model,” Int. J. Mod. Phys. B, pp. 2350249, 2023. DOI: 10.1142/S0217979223502491.
  • F. Wang et al., “Heat and mass transfer of Ag- H2O nano-thin film flowing over a porous medium: A modified Buongiorno’s model,” Chin. J. Phys., 2023. DOI: 10.1016/j.cjph.2023.01.001.
  • U. Khan et al., “A novel analysis of heat transfer in the nanofluid composed by nanodimaond and silver nanomaterials: Numerical investigation,” Sci. Rep., vol. 12, no. 1, pp. 1284, 2022. DOI: 10.1038/s41598-021-04658-x.
  • R. Du, D. Jiang, Y. Wang, and K. Wei Shah, “An experimental investigation of CuO/water nanofluid heat transfer in geothermal heat exchanger,” Energy Build., vol. 227, pp. 110402, 2020. DOI: 10.1016/j.enbuild.2020.110402.
  • Z. Li, M. Sheikholeslami, A. S. Mittal, A. Shafee, and R. Ul Haq, “Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method,” Eur. Phys. J. Plus, vol. 134, no. 1, 2019. DOI: 10.1140/epjp/i2019-12406-8.
  • W. Ajeeb, R. R. da Silva, and S. S. Murshed, “Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger,” Appl. Therm. Eng., vol. 218, pp. 119321, 2023. DOI: 10.1016/j.applthermaleng.2022.119321.
  • Y. Azizi, M. Bahramkhoo, and A. Kazemi, “Influence of non-uniform magnetic field on the thermal efficiency hydrodynamic characteristics of nanofluid in double pipe heat exchanger,” Sci. Rep., vol. 13, no. 1, pp. 407, 2023. DOI: 10.1038/s41598-022-26285-w.
  • P. Kumar, R. Dwivedi, and K. Pandey, “Numerical investigation of thermo-hydraulic transport characteristics of laminar flow through partially filled porous wavy channel: Effect of Prandtl number,” Numer. Heat Transf., Part A: Appl., pp. 1–20, 2022. DOI: 10.1080/10407782.2021.1969809.
  • M. Boussoufi and A. Sabeur, “Natural convective nanofluid flow characteristics with Brownian motion effect in an annular space between confocal elliptic cylinders,” Numer. Heat Transf. Part A: Appl., vol. 83, no. 10, pp. 1130–1145, 2023. DOI: 10.1080/10407782.2022.2102396.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. Part A: Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • G. Mandal and D. Pal, “Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet,” Numer. Heat Transf. Part A: Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2022.2163944.
  • R. Williamson, “The flow of pseudoplastic materials,” Ind. Eng. Chem., vol. 21, no. 11, pp. 1108–1111, 1929. DOI: 10.1021/ie50239a035.
  • Y. B. Kho, A. Hussanan, M. K. A. Mohamed, and M. Z. Salleh, “Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model,” Propuls. Power Res., vol. 8, no. 3, pp. 243–252, 2019. DOI: 10.1016/j.jppr.2019.01.011.
  • V. S. Patil, P. P. Humane, and A. B. Patil, “Mhd Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction,” Int. J. Model. Simul., pp. 1–15, 2022. DOI: 10.1080/02286203.2022.2062166.
  • A. Abbas, M. B. Jeelani, A. S. Alnahdi, and A. Ilyas, “MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: Effects of heat generation and viscous dissipation,” Processes, vol. 10, no. 6, pp. 1221, 2022. DOI: 10.3390/pr10061221.
  • P. Loganathan and S. Sangeetha, “Effect of Williamson parameter on cu-water Williamson nanofluid over a vertical plate,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106273, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106273.
  • B. Rana et al., “Swimming of microbes in blood flow of nano-bioconvective Williamson fluid,” Therm. Sci. Eng. Prog., vol. 25, pp. 101018, 2021. DOI: 10.1016/j.tsep.2021.101018.
  • V. Puneeth, M. S. Anwar, and M. R. Khan, “Bioconvective Darcy–Frochherimer flow of the Ree–Eyring nanofluid through a stretching sheet with velocity and thermal slips,” Waves Random Complex Media, pp. 1–22, 2022. DOI: 10.1080/17455030.2022.2157507.
  • V. Puneeth, F. Ali, M. R. Khan, M. S. Anwar, and N. A. Ahammad, “Theoretical analysis of the thermal characteristics of Ree–Eyring nanofluid flowing past a stretching sheet due to bioconvection,” Biomass Conv. Bioref., pp. 1–12, 2022. DOI: 10.1007/s13399-022-02985-1.
  • F. Wang et al., “MHD Williamson nanofluid flow over a slender elastic sheet of irregular thickness in the presence of bioconvection,” Nanomaterials, vol. 11, no. 9, pp. 2297, 2021. DOI: 10.3390/nano11092297.
  • V. Puneeth et al., “Stratified bioconvective jet flow of Williamson nanofluid in porous medium in the presence of Arrhenius activation energy,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 309–319, 2023. DOI: 10.1142/S2737416523400069.
  • U. Khan, A. Zaib, I. Pop, S. A. Bakar, and A. Ishak, “Unsteady micropolar hybrid nanofluid flow past a permeable stretching/shrinking vertical plate,” Alex. Eng. J., vol. 61, no. 12, pp. 11337–11349, 2022. DOI: 10.1016/j.aej.2022.05.011.
  • U. Khan et al., “Features of magnetic field on biological Williamson fluid in radiated blood flow induced by gold particles through a curved moving surface with buoyancy effect,” Int. J. Mod. Phys. B, vol. 37, no. 03, pp. 2350021, 2023. DOI: 10.1142/S0217979223500212.
  • U. Khan et al., “Time-dependent flow of water-based ternary hybrid nanoparticles over a radially contracting/expanding and rotating permeable stretching sphere,” Therm. Sci. Eng. Prog., vol. 36, pp. 101521, 2022. DOI: 10.1016/j.tsep.2022.101521.
  • P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature, vol. 389, no. 6649, pp. 360–362, 1997. DOI: 10.1038/38686.
  • Z. Abbas, M. Sheikh, J. Hasnain, H. Ayaz, and A. Nadeem, “Numerical aspects of Thomson and Troian boundary conditions in a Tiwari–Das nanofluid model with homogeneous–heterogeneous reactions,” Phys. Scr., vol. 94, no. 11, pp. 115220, 2019. DOI: 10.1088/1402-4896/ab27f0.
  • S. Nadeem, S. Ahmad, and M. N. Khan, “Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2099–2109, 2021. DOI: 10.1007/s10973-020-09747-z.
  • K. Gangadhar, P. M. Seshakumari, M. V. S. Rao, and A. J. Chamkha, “MHD flow analysis of a Williamson nanofluid due to Thomson and Troian slip condition,” Partial Differ. Equ. Appl. Math., vol. 4, pp. 100108, 2021.
  • S. Li et al., “Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet,” Sci. Rep., vol. 13, no. 1, pp. 2340, 2023. DOI: 10.1038/s41598-023-29485-0.
  • N. Fatima et al., “Heat and mass transmission in a boundary layer flow due to swimming of motile gyrotactic microorganisms with variable wall temperature over a flat plate,” Case Stud. Therm. Eng., vol. 45, pp. 102953, 2023. DOI: 10.1016/j.csite.2023.102953.
  • M. Arain, A. Zeeshan, M. S. Alhodaly, L. Fasheng, and M. Bhatti, “Bioconvection nanofluid flow through vertical rigid parallel plates with the application of Arrhenius kinetics: A numerical study,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2123115.
  • S. Shaheen et al., “A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: A semi-numerical approach,” Case Stud. Therm. Eng., vol. 41, pp. 102523, 2023. DOI: 10.1016/j.csite.2022.102523.
  • U. Khan et al., “Features of hybridized AA7072 and AA7075 alloys nanomaterials with melting heat transfer past a movable cylinder with Thompson and Troian slip effect,” Arab. J. Chem., vol. 16, no. 2, pp. 104503, 2023. DOI: 10.1016/j.arabjc.2022.104503.
  • T. Hussain, S. Shehzad, A. Alsaedi, T. Hayat, and M. Ramzan, “Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model,” J. Cent. South Univ., vol. 22, no. 3, pp. 1132–1140, 2015. DOI: 10.1007/s11771-015-2625-4.
  • M. Mahmood, S. Asghar, and M. Hossain, “Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel,” Appl. Math. Mech.-Engl. Ed., vol. 34, no. 1, pp. 97–112, 2013. DOI: 10.1007/s10483-013-1656-6.
  • W. Akaje and B. Olajuwon, “Impacts of nonlinear thermal radiation on a stagnation point of an aligned MHD Casson nanofluid flow with Thompson and Troian slip boundary condition,” J. Adv. Res. Exp. Fluid Mech. Heat Transf., vol. 6, no. 1, pp. 1–15, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.