Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 12
116
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of the quenching behavior in impinging flame: Flow and thermal characteristics

, , , , &
Pages 1973-1987 | Received 28 Oct 2022, Accepted 08 May 2023, Published online: 19 May 2023

References

  • R. Viskanta, “Heat transfer to impinging isothermal gas and flame jets,” Exp. Therm. Fluid Sci., vol. 6, no. 2, pp. 111–134, Feb. 1993. DOI: 10.1016/0894-1777(93)90022-B.
  • V. C. Raj, P. Kuntikana, S. Sreedhara, and S. V. Prabhu, “Heat transfer characteristics of impinging methane diffusion and partially premixed flames,” Int. J. Heat Mass Transf., vol. 129, pp. 873–893, Feb. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.009.
  • C. Fan, N. Keiya, Y. Liu, T. Zheng, and Y. Sun, “Experimental study on diesel spray combustion and heat transfer characteristics with multiple injection strategies by means of rapid compression and expansion machine,” J. Energy Inst., vol. 108, pp. 101232, Mar. 2023. DOI: 10.1016/j.joei.2023.101232.
  • L. L. Dong, C. S. Cheung, and C. W. Leung, “Heat transfer optimization of an impinging port-array inverse diffusion flame jet,” Energy, vol. 49, no. 1, pp. 182–192, 2013. DOI: 10.1016/j.energy.2012.10.041.
  • H. Wang et al., “Turbulence/flame/wall interactions in non-premixed inclined slot-jet flames impinging at a wall using direct numerical simulation,” Proc. Combust. Inst., vol. 38, no. 2, pp. 2711–2720, 2021. DOI: 10.1016/j.proci.2020.06.307.
  • K. Takizawa, N. Igarashi, S. Takagi, K. Tokuhashi, and S. Kondo, “Quenching distance measurement of highly to mildly flammable compounds,” Fire Saf. J., vol. 71, pp. 58–68, 2015. DOI: 10.1016/j.firesaf.2014.11.013.
  • C. Barfuss, D. Heilbronn, and T. Sattelmayer, “Impact of local flame quenching on the flame acceleration in H2-CO-air mixtures in obstructed channels,” J. Loss Prev. Process Ind., vol. 71, no. March, pp. 104491, 2021. DOI: 10.1016/j.jlp.2021.104491.
  • C. K. Westbrook, A. A. Adamczyk, and G. A. Lavoie, “A numerical study of laminar flame wall quenching,” Combust. Flame, vol. 40, no. C, pp. 81–99, 1981. DOI: 10.1016/0010-2180(81)90112-7.
  • F. Zhang et al., “Near wall dynamics of premixed flames,” Proc. Combust. Inst., vol. 38, no. 2, pp. 1955–1964, 2021. DOI: 10.1016/j.proci.2020.06.058.
  • N. P. Sullivan, M. C. Branch, M. Strobel, and M. Ulsh, “Transport issues when impinging laminar premixed flame jets on a rotating cylinder,” Proc. Combust. Inst., vol. 28, no. 1, pp. 1405–1411, 2000. DOI: 10.1016/S0082-0784(00)80356-2.
  • J. E. Rivera, R. L. Gordon, and M. Talei, “Flame-wall interaction of a forced laminar premixed propane flame: Flame dynamics and exhaust CO emissions,” Proc. Combust. Inst., vol. 37, no. 4, pp. 5385–5392, 2019. DOI: 10.1016/j.proci.2018.07.030.
  • F. Foucher et al., “Flame wall interaction: Effect of stretch,” Exp. Therm. Fluid Sci., vol. 27, no. 4, pp. 431–437, 2003. DOI: 10.1016/S0894-1777(02)00255-8.
  • K. K. J. Ranga Dinesh, X. Jiang, and J. A. Van Oijen, “Analysis of impinging wall effects on hydrogen non-premixed flame,” Combust. Sci. Technol., vol. 184, no. 9, pp. 1244–1268, 2012. DOI: 10.1080/00102202.2012.679715.
  • X. Fang, X. Sun, X. Zhang, R. K. K. Yuen, and L. Hu, “Experimental study of impinging flame structures and thermal characteristics in ceiling flow generated by fuel jet diffusion combustion with air entrainment constraint in a corner,” Fuel, vol. 323, pp. 124361, Sept. 2022. DOI: 10.1016/j.fuel.2022.124361.
  • M. J. Tummers, J. Jacobse, and S. G. J. Voorbrood, “Turbulent flow in the near field of a round impinging jet,” Int. J. Heat Mass Transf., vol. 54, no. 2324, pp. 4939–4948, Nov. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.007.
  • X. Jiang, H. Zhao and K. H. Luo, “Direct numerical simulation of a non-premixed impinging jet flame,” J. Heat Transf., vol. 129, no. 8, pp. 951–957, 2007. DOI: 10.1115/1.2737480.
  • F. Afroz and M. A. R. Sharif, “Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement,” Int. J. Therm. Sci., vol. 151, no. December 2019, pp. 106257, 2020. DOI: 10.1016/j.ijthermalsci.2019.106257.
  • P. Kuntikana and S. V. Prabhu, “Heat transfer investigations on methane-air premixed flame jet exiting from a circular nozzle and impinging over semi-cylindrical surfaces,” Int. J. Therm. Sci., vol. 128, pp. 105–123, Jun. 2018. DOI: 10.1016/j.ijthermalsci.2018.02.016.
  • H. S. Zhen et al., “A study on acoustically modulated bunsen flame and its impingement heat transfer,” Int. J. Hydrogen Energy, vol. 47, no. 26, pp. 13168–13177, Mar. 2022. DOI: 10.1016/j.ijhydene.2022.02.055.
  • P. Kuntikana and S. V. Prabhu, “Air jet impingement technique for thermal characterisation of premixed methane-air impinging flame jets,” Appl. Therm. Eng., vol. 99, pp. 905–918, 2016. DOI: 10.1016/j.applthermaleng.2016.01.090.
  • V. Yousefi-Asli, E. Houshfar, F. Beygi-Khosroshahi, and M. Ashjaee, “Experimental investigation on temperature field and heat transfer distribution of a slot burner methane/air flame impinging on a curved surface,” Appl. Therm. Eng., vol. 129, pp. 761–771, 2018. DOI: 10.1016/j.applthermaleng.2017.10.084.
  • J. Kitayama and T. Kubo, “Effect of jet inflow angle on heat transportation in an impinging jet interfering with a Couette flow,” Int. J. Heat Mass Transf., vol. 167, pp. 120831, Mar. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120831.
  • D. Mira et al., “Heat transfer effects on a fully premixed methane impinging flame,” Flow Turbulence Combust., vol. 97, no. 1, pp. 339–361, 2016. DOI: 10.1007/s10494-015-9694-1.
  • M. Tao, H. Ge, B. VanDerWege, and P. Zhao, “Fuel wall film effects on premixed flame propagation, quenching and emission,” Int. J. Engine Res., vol. 21, no. 6, pp. 1055–1066, 2020. DOI: 10.1177/1468087418799565.
  • C. He et al., “Analysis of the NH3 blended ratio on the impinging flame structure in non-premixed CH4/NH3/air combustion,” Fuel, vol. 330, no. August, pp. 125559, 2022. DOI: 10.1016/j.fuel.2022.125559.
  • H. Li et al., “Effects of coflow velocity and coflow moisture contents on the formation and emissions of CO/NO in non-premixed impinging flames,” Numer. Heat Transf. Part A Appl., vol. 79, no. 8, pp. 594–610, 2021. DOI: 10.1080/10407782.2021.1872269.
  • H. Li et al., “A study of the influence of coflow on flame dynamics in impinging jet diffusion flames,” J. Turbul., vol. 22, no. 8, pp. 461–480, 2021. DOI: 10.1080/14685248.2021.1917769.
  • P. Breda, M. Hansinger, and M. Pfitzner, “Chemistry computation without a sub-grid PDF model in LES of turbulent non-premixed flames showing moderate local extinction,” Proc. Combust. Inst., vol. 38, no. 2, pp. 2655–2663, Jan. 2021. DOI: 10.1016/j.proci.2020.06.161.
  • M. Saeedipour and S. Schneiderbauer, “Favre-filtered LES-VOF of two-phase flows with eddy viscosity-based subgrid closure models: An a-posteriori analysis,” Int. J. Multiph. Flow, vol. 144, pp. 103780, Nov. 2021. DOI: 10.1016/j.ijmultiphaseflow.2021.103780.
  • G. Bulat, W. P. Jones, and A. J. Marquis, “NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method,” Combust. Flame, vol. 161, no. 7, pp. 1804–1825, 2014. DOI: 10.1016/j.combustflame.2013.12.028.
  • W. Zheng, L. Pang, Y. Liu, F. Xie, and W. Zeng, “Effects of methane addition on laminar flame characteristics of premixed blast furnace gas/air mixtures,” Fuel, vol. 302, pp. 121100, 2021. DOI: 10.1016/j.fuel.2021.121100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.