Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 12
74
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization for dense location and geometrical parameter of wavy microchannel to improve temperature distribution

, &
Pages 2024-2043 | Received 02 Sep 2022, Accepted 10 May 2023, Published online: 24 May 2023

References

  • D. Edenfeld, A. B. Kabng, M. Rodgers, and Y. Zorian, “2003 International technology roadmap for semiconductors (ITRS),” IEEE Comput. Soc., vol. 37, no. 1, pp. 47–56, 2004. DOI: 10.1109/MC.2004.1260725.
  • S. G. Yao, Z. S. Ma, L. Luo, and R. B. Chen, “Improvement of heat pipe technique for high heat flux electronics cooling,” J. East China Shipbuild. Inst., vol. 17, pp. 9–12, 2003.
  • D. B. Tuckerman and R. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Dev. Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. IL, USA: Argonne National Lab, 1995.
  • S. Ferrouillat, A. Bontemps, O. Poncelet, O. Soriano, and J. A. Gruss, “Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids,” Appl. Therm. Eng., vol. 51, no. 12, pp. 839–851, 2013. DOI: 10.1016/j.applthermaleng.2012.10.020.
  • G. D. Xia, R. Liu, J. Wang, and M. Du, “The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids,” Int. Commun. Heat Mass Transf., vol. 76, pp. 256–264, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.05.034.
  • G. D. Xia, H. M. Jiang, R. Liu, and Y. L. Zhai, “Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids,” Int. J. Therm. Sci., vol. 84, pp. 118–124, 2014. DOI: 10.1016/j.ijthermalsci.2014.05.004.
  • M. Bahiraei and S. Heshmatian, “Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles,” Energy Convers. Manag., vol. 168, pp. 357–370, 2018. DOI: 10.1016/j.enconman.2018.05.020.
  • T. Ambreen and M. H. Kim, “Influence of particle size on the effective thermal conductivity of nanofluids: A critical review,” Appl. Energy, vol. 264, pp. 114684, 2020. DOI: 10.1016/j.apenergy.2020.114684.
  • B. X. Wang and X. F. Peng, “Experimental investigation on liquid forced convection heat transfer through micro-channels,” Int. J. Heat Mass Transf., vol. 37, pp. 73–82, 1994. DOI: 10.1016/0017-9310(94)90011-6.
  • X. L. Xie, Z. J. Liu, Y. L. He, and W. Q. Tao, “Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink,” Appl. Therm. Eng., vol. 29, no. 1, pp. 64–74, 2009. DOI: 10.1016/j.applthermaleng.2008.02.002.
  • P. Gao, S. L. Person, and M. Favremarinet, “Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels,” Int. J. Therm. Sci., vol. 41, no. 11, pp. 1017–1027, 2002. DOI: 10.1016/S1290-0729(02)01389-3.
  • F. Zhou et al., “Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars,” Appl. Therm. Eng., vol. 175, pp. 115296, 2020. DOI: 10.1016/j.applthermaleng.2020.115296.
  • L. Chai and L. Wang, “Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers,” Int. J. Therm. Sci., vol. 127, pp. 201–212, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.029.
  • C. Xu, S. Xu, and R. D. Eticha, “Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite),” Energy Convers. Manag., vol. 236, pp. 114071, 2021. DOI: 10.1016/j.enconman.2021.114071.
  • V. R. Kumar, K. Balasubramanian, N. Tiwari, K. Bhatia, and K. K. Kumar, “Numerical investigation of heat transfer enhancement in wavy microchannel with tangential branched secondary channels,” Asia‐Pac. J. Chem. Eng., vol. 14, no. 4, pp. 2325, 2019. DOI: 10.1002/apj.2325.
  • H. S. Wang, L. Chai, and G. D. Xia, “Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls,” Appl. Therm. Eng. Des. Process. Equip. Econ., vol. 92, pp. 32–41, 2016. DOI: 10.1016/j.applthermaleng.2015.09.071.
  • L. Gong, K. Krishna, W. Q. Tao, and Y. Joshi, “Parametric numerical study of flow and heat transfer in microchannels with wavy walls,” J. Heat Transf.-ASME, vol. 133, no. 5, pp. 051702, 2011. DOI: 10.1115/1.4003284.
  • Y. Sui, P. S. Lee, and C. J. Teo, “An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section,” Int. J. Therm. Sci., vol. 50, no. 12, pp. 2473–2482, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.017.
  • Y. Sui, P. S. Lee, and C. J. Teo, “Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs,” Int. J. Therm. Sci., vol. 146, pp. 106068, 2019.
  • Y. F. Yan, A. Kms, L. B. Ying, and Z. Q. He, “Numerical simulation of heat transfer enhancement in wavy microchannel heat sink,” Int. Commun. Heat Mass Transf., vol. 38, no. 1, pp. 63–68, 2011.
  • M. Pan et al., “Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities,” Int. J. Heat Mass Transf., vol. 134, no. May, pp. 1199–1208, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.140.
  • Y. F. Yan, A. Kms, L. B. Ying, and Z. Q. He, “Thermal-hydraulic performance enhancement of miniature heat sinks using connected Y-shaped fractal micro-channels,” Chem. Eng. Process. - Process Intensif., vol. 166, pp. 108487, 2021. DOI: 10.1016/j.cep.2021.108487.
  • S. G. Kandlikar, W. K. Kuan, D. A. Willistein, and J. Borrelli, “Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites,” J. Heat Transf., vol. 128, no. 4, pp. 389–396, 2006. DOI: 10.1115/1.2165208.
  • A. O. Adelaja, J. Dirker, and J. P. Meyer, “Effects of the thick walled pipes with convective boundaries on laminar flow heat transfer,” Appl. Energy, vol. 130, no. 5, pp. 838–845, 2014. DOI: 10.1016/j.apenergy.2014.01.072.
  • G. Xia et al., “Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure,” Energy Convers. Manag., vol. 105, pp. 848–857, 2015. DOI: 10.1016/j.enconman.2015.08.042.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978.
  • S. Kandlikar, S. Garimella, D. Li, and M. R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels. Netherlands: Elsevier, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.