724
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Application of Fluorescent Probes in Reactive Oxygen Species Disease Model

ORCID Icon, , &
Pages 437-472 | Published online: 31 May 2022

References

  • Finkel, T.; Holbrook, N. J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature. 2000, 408, 239–247. DOI: 10.1038/35041687.
  • Forman, H. J. Reactive Oxygen Species and Alpha,Beta-Unsaturated Aldehydes as Second Messengers in Signal Transduction. Ann N Y Acad Sci. 2010, 1203, 35–44. DOI: 10.1111/j.1749-6632.2010.05551.x.
  • Stadtman, E. R. Protein Oxidation and Aging. Free Radic Res. 2006, 40, 1250–1258. DOI: 10.1080/10715760600918142.
  • Winterbourn, C. C. Reconciling the Chemistry and Biology of Reactive Oxygen Species. Nat. Chem. Biol. 2008, 4, 278–286. DOI: 10.1038/nchembio.85.
  • Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Recent Progress in the Development of Fluorescent, Luminescent and Colorimetric Probes for Detection of Reactive Oxygen and Nitrogen Species. Chem. Soc. Rev. 2016, 45, 2976–3016. DOI: 10.1039/c6cs00192k.
  • Qiao, L.; Shao, J. SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/enhancer-Binding Protein Alpha Transcriptional Complex*. J. Biol. Chem. 2006, 281, 39915–39924. DOI: 10.1074/jbc.M607215200.
  • Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative Diseases and Oxidative Stress. Biomed. Pharmacother. 2004, 58, 39–46. DOI: 10.1016/j.biopha.2003.11.004.
  • Lin, M. T.; Beal, M. F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787–795. DOI: 10.1038/nature05292.
  • Burgoyne, J. R.; Oka, S-i.; Ale-Agha, N.; Eaton, P. Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System. Antioxid Redox Signal. 2013, 18, 1042–1052. DOI: 10.1089/ars.2012.4817.
  • Murfin, L. C.; Weber, M.; Park, S. J.; Kim, W. T.; Lopez-Alled, C. M.; McMullin, C. L.; Pradaux-Caggiano, F.; Lyall, C. L.; Kociok-Köhn, G.; Wenk, J.; et al. Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. J. Am. Chem. Soc. 2019, 141, 19389–19396. DOI: 10.1021/jacs.9b09813.
  • Dickinson, B. C.; Chang, C. J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells. J. Am. Chem. Soc. 2008, 130, 9638–9639. DOI: 10.1021/ja802355u.
  • Kato, A.; Nakai, S. Hydrophobicity Determined by a Fluorescence Probe Method and Its Correlation with Surface Properties of Proteins. Biochim Biophys Acta BBA Protein Struct. 1980, 624, 13–20. DOI: 10.1016/0005-2795(80)90220-2.
  • Pattison, D. I.; Davies, M. J. Evidence for Rapid Inter- and Intramolecular Chlorine Transfer Reactions of Histamine and Carnosine Chloramines: Implications for the Prevention of Hypochlorous-Acid-Mediated damage. Biochemistry 2006, 45, 8152–8162. DOI: 10.1021/bi060348s.
  • Ntziachristos, V.; Bremer, C.; Weissleder, R. Fluorescence Imaging with near-Infrared Light: new Technological Advances That Enable in Vivo Molecular Imaging. Eur. Radiol. 2003, 13, 195–208. DOI: 10.1007/s00330-002-1524-x.
  • Chi, C.; Du, Y.; Ye, J.; Kou, D.; Qiu, J.; Wang, J.; Tian, J.; Chen, X. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology. Theranostics 2014, 4, 1072–1084. DOI: 10.7150/thno.9899.
  • James, R. M.; Kirk, W. G.; Clifford, C. H.; Richard, M. L. M. D. Autofluorescence Removal, Multiplexing, and Automated Analysis Methods for in-Vivo Fluorescence Imaging. J. Biomed. Opt. 2005, 10, 1.
  • Liu, S.-R.; Wu, S.-P. Hypochlorous Acid Turn-on Fluorescent Probe Based on Oxidation of Diphenyl Selenide. Org. Lett. 2013, 15, 878–881. DOI: 10.1021/ol400011u.
  • Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. DOI: 10.1021/acs.chemrev.9b00145.
  • Wu, X.; Shi, W.; Li, X.; Ma, H. Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes. Acc. Chem. Res. 2019, 52, 1892–1904. DOI: 10.1021/acs.accounts.9b00214.
  • Wen, Y.; Huo, F.; Yin, C. Organelle Targetable Fluorescent Probes for Hydrogen Peroxide. Chin. Chem. Lett. 2019, 30, 1834–1842. DOI: 10.1016/j.cclet.2019.07.006.
  • Lei, Z.; Sun, C.; Pei, P.; Wang, S.; Li, D.; Zhang, X.; Zhang, F. Stable, Wavelength-Tunable Fluorescent Dyes in the NIR-II Region for In Vivo High-Contrast Bioimaging and Multiplexed Biosensing . Angew. Chem. Int. Ed. Engl. 2019, 58, 8166–8171. DOI: 10.1002/anie.201904182.
  • Yang, Y.; Wang, S.; Lu, L.; Zhang, Q.; Yu, P.; Fan, Y.; Zhang, F. NIR-II Chemiluminescence Molecular Sensor for In Vivo High-Contrast Inflammation Imaging . Angew. Chem. Int. Ed. Engl. 2020, 59, 18380–18385. DOI: 10.1002/anie.202007649.
  • Huang, J.; Li, J.; Lyu, Y.; Miao, Q.; Pu, K. Molecular Optical Imaging Probes for Early Diagnosis of Drug-Induced Acute Kidney Injury. Nat. Mater. 2019, 18, 1133–1143. DOI: 10.1038/s41563-019-0378-4.
  • Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134, 13510–13523. DOI: 10.1021/ja305802v.
  • Zhang, D.; Guo, S.; Li, L.; Shang, K. H2O2/HOCl-Based Fluorescent Probes for Dynamically Monitoring Pathophysiological Processes. Analyst 2020, 145, 7477–7487. DOI: 10.1039/d0an01313g.
  • Nathan, C.; Cunningham-Bussel, A. Beyond Oxidative Stress: An Immunologist’s Guide to Reactive Oxygen Species. Nat. Rev. Immunol. 2013, 13, 349–361. DOI: 10.1038/nri3423.
  • Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: biochemistry, Pathophysiology and Development of Therapeutics. Nat Rev Drug Discov. 2007, 6, 662–680. DOI: 10.1038/nrd2222.
  • Batinić-Haberle, I.; Rebouças, J. S.; Spasojević, I. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential. Antioxid Redox Signal. 2010, 13, 877–918. DOI: 10.1089/ars.2009.2876.
  • Gao, P.; Pan, W.; Li, N.; Tang, B. Fluorescent Probes for Organelle-Targeted Bioactive Species Imaging. Chem. Sci. 2019, 10, 6035–6071. DOI: 10.1039/c9sc01652j.
  • Elinav, E.; Nowarski, R.; Thaiss, C. A.; Hu, B.; Jin, C.; Flavell, R. A. Inflammation-Induced Cancer: crosstalk between Tumours, Immune Cells and Microorganisms. Nat Rev Cancer 2013, 13, 759–771. DOI: 10.1038/nrc3611.
  • Greten, F. R.; Grivennikov, S. I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. DOI: 10.1016/j.immuni.2019.06.025.
  • Prasad, S.; Gupta, S. C.; Tyagi, A. K. Reactive Oxygen Species (ROS) and Cancer: Role of Antioxidative Nutraceuticals. Cancer Lett. 2017, 387, 95–105. DOI: 10.1016/j.canlet.2016.03.042.
  • Wang, G.; Wang, Y.; Wang, C.; Huang, C.; Jia, N. A New Long-Wavelength Fluorescent Probe for Tracking Peroxynitrite in Live Cells and Inflammatory Sites of Zebrafish. Analyst 2020, 145, 828–835. DOI: 10.1039/c9an01934k.
  • Sonawane, P. M.; Yudhistira, T.; Halle, M. B.; Roychaudhury, A.; Kim, Y.; Surwase, S. S.; Bhosale, V. K.; Kim, J.; Park, H.-S.; Kim, Y-c.; et al. A Water-Soluble Boronate Masked Benzoindocyanin Fluorescent Probe for the Detection of Endogenous Mitochondrial Peroxynitrite in Live Cells and Zebrafish as Inflammation Models. Dyes Pigm. 2021, 191, 109371. DOI: 10.1016/j.dyepig.2021.109371.
  • Bi, X.; Wang, Y.; Wang, D.; Liu, L.; Zhu, W.; Zhang, J.; Zha, X. A Mitochondrial-Targetable Dual Functional near-Infrared Fluorescent Probe to Monitor pH and H2O2 in Living Cells and Mice. RSC Adv. 2020, 10, 26874–26879. DOI: 10.1039/d0ra03905e.
  • Fan, L.; Zan, Q.; Wang, X.; Wang, S.; Zhang, Y.; Dong, W.; Shuang, S.; Dong, C. A Mitochondria-Specific Orange/Near-Infrared-Emissive Fluorescent Probe for Dual-Imaging of Viscosity and H2O2 in Inflammation and Tumor Models. Chin. J. Chem. 2021, 39, 1303–1309. DOI: 10.1002/cjoc.202000725.
  • Zhou, R.; Peng, Q.; Wan, D.; Yu, C.; Zhang, Y.; Hou, Y.; Luo, Q.; Li, X.; Zhang, S.; Xie, L.; et al. Construction of a Lysosome-Targetable Ratiometric Fluorescent Probe for H2O2 Tracing and Imaging in Living Cells and an Inflamed Model. RSC Adv. 2021, 11, 24032–24037. DOI: 10.1039/D1RA04026J.
  • Wang, W.-X.; Jiang, W.-L.; Liu, Y.; Li, Y.; Zhang, J.; Li, C.-Y. Near-Infrared Fluorescence Probe with a Large Stokes Shift for Visualizing Hydrogen Peroxide in Ulcerative Colitis Mice. Sens. Actuators, B 2020, 320, 128296. DOI: 10.1016/j.snb.2020.128296.
  • Gao, W.; Ma, Y.; Liu, Y.; Ma, S.; Lin, W. Observation of Endogenous HClO in Living Mice with Inflammation, Tissue Injury and Bacterial Infection by a near-Infrared Fluorescent Probe. Sens. Actuators, B 2021, 327, 128884. DOI: 10.1016/j.snb.2020.128884.
  • Han, X.; Ma, Y.; Chen, Y.; Wang, X.; Wang, Z. Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model. Anal. Chem. 2020, 92, 2830–2838. DOI: 10.1021/acs.analchem.9b05347.
  • Mao, G.-J.; Liang, Z.-Z.; Bi, J.; Zhang, H.; Meng, H.-M.; Su, L.; Gong, Y.-J.; Feng, S.; Zhang, G. A near-Infrared Fluorescent Probe Based on Photostable Si-Rhodamine for Imaging Hypochlorous Acid during Lysosome-Involved Inflammatory Response. Anal. Chim. Acta. 2019, 1048, 143–153. DOI: 10.1016/j.aca.2018.10.014.
  • Mao, G.-J.; Wang, Y.-Y.; Dong, W.-P.; Meng, H.-M.; Wang, Q.-Q.; Luo, X.-F.; Li, Y.; Zhang, G. A Lysosome-Targetable Two-Photon Excited near-Infrared Fluorescent Probe for Visualizing Hypochlorous Acid-Involved Arthritis and Its Treatment. Spectrochim Acta A Mol Biomol Spectrosc. 2021, 249, 119326. DOI: 10.1016/j.saa.2020.119326.
  • Wang, W.; Xiong, J.; Song, X.; Wang, Z.; Zhang, F.; Mao, Z. Activatable Two-Photon near-Infrared Fluorescent Probe Tailored toward Peroxynitrite in Vivo Imaging in Tumors. Anal. Chem. 2020, 92, 13305–13312. DOI: 10.1021/acs.analchem.0c02587.
  • Zhang, X.; Chen, Y.; He, H.; Wang, S.; Lei, Z.; Zhang, F. ROS/RNS and Base Dual Activatable Merocyanine-Based NIR-II Fluorescent Molecular Probe for in Vivo Biosensing. Angew. Chem. Int. Ed. Engl. 2021, 60, 26337–26341. DOI: 10.1002/anie.202109728.
  • Collier, T. J.; Kanaan, N. M.; Kordower, J. H. Ageing as a Primary Risk Factor for Parkinson’s Disease: evidence from Studies of Non-Human Primates. Nat. Rev. Neurosci. 2011, 12, 359–366. DOI: 10.1038/nrn3039.
  • Devine, M. J.; Plun-Favreau, H.; Wood, N. W. Parkinson’s Disease and Cancer: two Wars, One Front. Nat. Rev. Cancer 2011, 11, 813–823. DOI: 10.1038/nrc3150.
  • Andersen, J. K. Oxidative Stress in Neurodegeneration: Cause or Consequence? Nat. Med. 2004, 10, S18–S25. DOI: 10.1038/nrn1434.
  • Sankhla, C. Oxidative Stress and Parkinson’s Disease. Neurol India 2017, 65, 269–270. DOI: 10.4103/0028-3886.201842.
  • Selkoe, D. J. Resolving Controversies on the Path to Alzheimer’s Therapeutics. Nat. Med. 2011, 17, 1060–1065. DOI: 10.1038/nm.2460.
  • Aleardi, A. M.; Benard, G.; Augereau, O.; Malgat, M.; Talbot, J. C.; Mazat, J. P.; Letellier, T.; Dachary-Prigent, J.; Solaini, G. C.; Rossignol, R. Gradual Alteration of Mitochondrial Structure and Function by Beta-Amyloids: Importance of Membrane Viscosity Changes, Energy Deprivation, Reactive Oxygen Species Production, and Cytochrome C Release. J. Bioenerg. Biomembr. 2005, 37, 207–225. DOI: 10.1007/s10863-005-6631-3.
  • Terry, R. D. The Pathogenesis of Alzheimer Disease: An Alternative to the Amyloid Hypothesis. J. Neuropathol. Experim. Neurol. 1996, 55, 1023.
  • Jalbert, J. J.; Daiello, L. A.; Lapane, K. L. Dementia of the Alzheimer Type. Epidemiol. Rev. 2008, 30, 15–34. DOI: 10.1093/epirev/mxn008.
  • Mao, P.; Reddy, P. H. Aging and Amyloid Beta-Induced Oxidative DNA Damage and Mitochondrial Dysfunction in Alzheimer’s Disease: Implications for Early Intervention and Therapeutics. Biochim. Biophys. Acta. 2011, 1812, 1359–1370. DOI: 10.1016/j.bbadis.2011.08.005.
  • Sedgwick, A. C.; Dou, W.-T.; Jiao, J.-B.; Wu, L.; Williams, G. T.; Jenkins, A. T. A.; Bull, S. D.; Sessler, J. L.; He, X.-P.; James, T. D. An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to Aβ-Aggregates. J. Am. Chem. Soc. 2018, 140, 14267–14271. DOI: 10.1021/jacs.8b08457.
  • Origlia, N.; Criscuolo, C.; Arancio, O.; Yan, S. S.; Domenici, L. RAGE Inhibition in Microglia Prevents Ischemia-Dependent Synaptic Dysfunction in an Amyloid-Enriched Environment. J. Neurosci. 2014, 34, 8749–8760. DOI: 10.1523/JNEUROSCI.0141-14.2014.
  • Persson, T.; Popescu, B. O.; Cedazo-Minguez, A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxid. Med. Cell. Longev. 2014, 2014, 427318. DOI: 10.1155/2014/427318.
  • Morishima, Y.; Gotoh, Y.; Zieg, J.; Barrett, T.; Takano, H.; Flavell, R.; Davis, R. J.; Shirasaki, Y.; Greenberg, M. E. β-Amyloid Induces Neuronal Apoptosis via a Mechanism That Involves the c-Jun N-Terminal Kinase Pathway and the Induction of Fas Ligand. J. Neurosci. 2001, 21, 7551–7560. DOI: 10.1523/JNEUROSCI.21-19-07551.2001.
  • Scheff, S. W.; Price, D. A.; Schmitt, F. A.; Mufson, E. J. Hippocampal Synaptic Loss in Early Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiol. Aging. 2006, 27, 1372–1384. DOI: 10.1016/j.neurobiolaging.2005.09.012.
  • Nestler, E. J.; Barrot, M.; DiLeone, R. J.; Eisch, A. J.; Gold, S. J.; Monteggia, L. M. Neurobiology of Depression. Neuron 2002, 34, 13–25. DOI: 10.1016/S0896-6273(02)00653-0.
  • Dickinson, B. C.; Chang, C. J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress Responses. Nat. Chem. Biol. 2011, 7, 504–511. DOI: 10.1038/nchembio.607.
  • Oudin, A.; Åström, D. O.; Asplund, P.; Steingrimsson, S.; Szabo, Z.; Carlsen, H. K. The Association between Daily Concentrations of Air Pollution and Visits to a Psychiatric Emergency Unit: A Case-Crossover Study. Environ Health 2018, 17, 4. DOI: 10.1186/s12940-017-0348-8.
  • Chen, J.-C.; Samet, J. M. Air Pollution and Suicide Risk: Another Adverse Effect of Air Pollution? Eur. J. Epidemiol. 2017, 32, 943–946. DOI: 10.1007/s10654-017-0329-9.
  • Wentworth, P.; Nieva, J.; Takeuchi, C.; Galve, R.; Wentworth Anita, D.; Dilley Ralph, B.; DeLaria Giacomo, A.; Saven, A.; Babior Bernard, M.; Janda Kim, D.; et al. Evidence for Ozone Formation in Human Atherosclerotic Arteries. Science 2003, 302, 1053–1056. DOI: 10.1126/science.1089525.
  • Wentworth, P.; McDunn Jonathan, E.; Wentworth Anita, D.; Takeuchi, C.; Nieva, J.; Jones, T.; Bautista, C.; Ruedi Julie, M.; Gutierrez, A.; Janda Kim, D.; et al. Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation. Science 2002, 298, 2195–2199. DOI: 10.1126/science.1077642.
  • Babior, B. M.; Takeuchi, C.; Ruedi, J.; Gutierrez, A.; Wentworth, P. Investigating Antibody-Catalyzed Ozone Generation by Human Neutrophils. Proc Natl Acad Sci U S A 2003, 100, 3031–3034. DOI: 10.1073/pnas.0530251100.
  • Li, P.; Wang, J.; Wang, X.; Ding, Q.; Bai, X.; Zhang, Y.; Su, D.; Zhang, W.; Zhang, W.; Tang, B. In Situ Visualization of Ozone in the Brains of Mice with Depression Phenotypes by Using a New near-Infrared Fluorescence Probe. Chem. Sci. 2019, 10, 2805–2810. DOI: 10.1039/c8sc04891f.
  • Li, S.; Wang, P.; Feng, W.; Xiang, Y.; Dou, K.; Liu, Z. Simultaneous Imaging of Mitochondrial Viscosity and Hydrogen Peroxide in Alzheimer’s Disease by a Single Near-Infrared Fluorescent Probe with a Large Stokes Shift. Chem Commun (Camb) 2020, 56, 1050–1053. DOI: 10.1039/c9cc08267k.
  • Shin, J.; Kang, D. M.; Yoo, J.; Heo, J.; Jeong, K.; Chung, J. H.; Han, Y. S.; Kim, S. Superoxide-Responsive Fluorogenic Molecular Probes for Optical Bioimaging of Neurodegenerative Events in Alzheimer’s Disease. Analyst 2021, 146, 4748–4755. DOI: 10.1039/d1an00692d.
  • Zhang, G.; Li, Z.; Chen, F.; Zhang, D.; Ji, W.; Yang, Z.; Wu, Q.; Zhang, C.; Li, L.; Huang, W. A Novel Fluorogenic Probe for Visualizing the Hydrogen Peroxide in Parkinson’s Disease Models. J. Innov. Opt. Health Sci. 2020, 13, 2050013. DOI: 10.1142/S1793545820500133.
  • Yan, M.; Fang, H.; Wang, X.; Xu, J.; Zhang, C.; Xu, L.; Li, L. A Two-Photon Fluorescent Probe for Visualizing Endoplasmic Reticulum Peroxynitrite in Parkinson’s Disease Models. Sens. Actuators, B 2021, 328, 129003. DOI: 10.1016/j.snb.2020.129003.
  • Li, H.; Xin, C.; Zhang, G.; Han, X.; Qin, W.; Zhang, C-w.; Yu, C.; Jing, S.; Li, L.; Huang, W. A Mitochondria-Targeted Two-Photon Fluorogenic Probe for the Dual-Imaging of Viscosity and H2O2 Levels in Parkinson’s Disease Models. J. Mater. Chem. B 2019, 7, 4243–4251. DOI: 10.1039/C9TB00576E.
  • Dayhaw-Barker, P. Mechanisms of Pathogenesis in Diabetes Mellitus. Optomet Vision Sci. 1995, 72,
  • Cade, W. T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. DOI: 10.2522/ptj.20080008.
  • Yoon, J.-W.; Jun, H.-S. Cellular and Molecular Pathogenic Mechanisms of Insulin-Dependent Diabetes Mellitus. Ann N Y Acad Sci. 2001, 928, 200–211. DOI: 10.1111/j.1749-6632.2001.tb05650.x.
  • Zhang, H.; Pollin, T. I. Epigenetics Variation and Pathogenesis in Diabetes. Curr. Diab. Rep. 2018, 18, 121. DOI: 10.1007/s11892-018-1091-4.
  • Gray, R. S.; Herd, R.; Clarke, B. F. The Clinical Features of Diabetes with Coexisting Autoimmune Thyroid Disease. Diabetologia 1981, 20, 602–606. DOI: 10.1007/BF00257427.
  • Lewis, E. J.; Hunsicker, L. G.; Bain, R. P.; Rohde, R. D. The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. N Engl. J. Med. 1993, 329, 1456–1462. DOI: 10.1056/NEJM199311113292004.
  • El-serag, H. B.; Tran, T.; Everhart, J. E. Diabetes Increases the Risk of Chronic Liver Disease and Hepatocellular Carcinoma. Gastroenterology 2004, 126, 460–468. DOI: 10.1053/j.gastro.2003.10.065.
  • Barber, A. J. A New View of Diabetic Retinopathy: A Neurodegenerative Disease of the Eye. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003, 27, 283–290. DOI: 10.1016/S0278-5846(03)00023-X.
  • Nishikawa, T.; Araki, E. Impact of Mitochondrial ROS Production in the Pathogenesis of Diabetes Mellitus and Its Complications. Antioxid Redox Signal. 2007, 9, 343–353. DOI: 10.1089/ars.2006.1458.
  • He, M.; Ye, M.; Wang, Z.; Liu, P.; Li, H.; Lu, C.; Wang, Y.; Liang, T.; Li, H.; Li, C. A Ratiometric near-Infrared Fluorescent Probe with a Large Emission Peak Shift for Sensing and Imaging Hypochlorous Acid. Sens. Actuators, B 2021, 343, 130063. DOI: 10.1016/j.snb.2021.130063.
  • Wang, W.-X.; Jiang, W.-L.; Mao, G.-J.; Tan, M.; Fei, J.; Li, Y.; Li, C.-Y. Monitoring the Fluctuation of Hydrogen Peroxide in Diabetes and Its Complications with a Novel near-Infrared Fluorescent Probe. Anal. Chem. 2021, 93, 3301–3307. DOI: 10.1021/acs.analchem.0c05364.
  • Mendis, S. Global Progress in Prevention of Cardiovascular Disease. Cardiovasc. Diagn. Ther. 2017, 7, S32–S38. DOI: 10.21037/cdt.2017.03.06.
  • Kearney, P. M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P. K.; He, J. Global Burden of Hypertension: Analysis of Worldwide Data. The Lancet 2005, 365, 217–223. DOI: 10.1016/S0140-6736(05)17741-1.
  • Small, H. Y.; Migliarino, S.; Czesnikiewicz-Guzik, M.; Guzik, T. J. Hypertension: Focus on Autoimmunity and Oxidative Stress. Free Radic Biol Med. 2018, 125, 104–115. DOI: 10.1016/j.freeradbiomed.2018.05.085.
  • Korsager Larsen, M.; Matchkov, V. V. Hypertension and Physical Exercise: The Role of Oxidative Stress. Medicina (Kaunas) 2016, 52, 19–27. DOI: 10.1016/j.medici.2016.01.005.
  • Xu, W.; Zeng, Z.; Jiang, J.-H.; Chang, Y.-T.; Yuan, L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. Engl. 2016, 55, 13658–13699. DOI: 10.1002/anie.201510721.
  • Wang, B.; Zhang, F.; Wang, S.; Yang, R.; Chen, C.; Zhao, W. Imaging Endogenous HClO in Atherosclerosis Using a Novel Fast-Response Fluorescence Probe. Chem Commun (Camb) 2020, 56, 2598–2601. DOI: 10.1039/c9cc07256j.
  • Yao, W.; Cao, Y.; She, M.; Yan, Y.; Li, J.; Leng, X.; Liu, P.; Zhang, S.; Li, J. Imaging and Monitoring the Hydrogen Peroxide Level in Heart Failure by a Fluorescent Probe with a Large Stokes Shift. ACS Sens. 2021, 6, 54–62. DOI: 10.1021/acssensors.0c01707.
  • Wang, H.; He, Z.; Yang, Y.; Zhang, J.; Zhang, W.; Zhang, W.; Li, P.; Tang, B. Ratiometric Fluorescence Imaging of Golgi H2O2 Reveals a Correlation between Golgi Oxidative Stress and Hypertension. Chem. Sci. 2019, 10, 10876–10880. DOI: 10.1039/c9sc04384e.
  • Park, B. K.; Kitteringham, N. R.; Maggs, J. L.; Pirmohamed, M.; Williams, D. P. The Role of Metabolic Activation in Drug-Induced Hepatotoxicity. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 177–202. DOI: 10.1146/annurev.pharmtox.45.120403.100058.
  • Reuben, A.; Koch, D. G.; Lee, W. M, Acute Liver Failure Study Group. Drug-Induced Acute Liver Failure: Results of a U.S. multicenter, Prospective Study. Hepatology 2010, 52, 2065–2076. DOI: 10.1002/hep.23937.
  • Kullak-Ublick, G. A.; Andrade, R. J.; Merz, M.; End, P.; Benesic, A.; Gerbes, A. L.; Aithal, G. P. Drug-Induced Liver Injury: Recent Advances in Diagnosis and Risk Assessment. Gut 2017, 66, 1154–1164. DOI: 10.1136/gutjnl-2016-313369.
  • Seitz, H. K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic Liver Disease. Nat. Rev. Dis. Primers. 2018, 4, 16. DOI: 10.1038/s41572-018-0014-7.
  • Tujios, S.; Fontana, R. J. Mechanisms of Drug-Induced Liver Injury: From Bedside to Bench. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 202–211. DOI: 10.1038/nrgastro.2011.22.
  • Wang, K. Molecular Mechanisms of Hepatic Apoptosis. Cell Death Dis. 2014, 5, e996. DOI: 10.1038/cddis.2013.499.
  • Wu, L.; Liu, J.; Tian, X.; Groleau, R. R.; Bull, S. D.; Li, P.; Tang, B.; James, T. D. Fluorescent Probe for the Imaging of Superoxide and Peroxynitrite during Drug-Induced Liver Injury. Chem. Sci. 2021, 12, 3921–3928. DOI: 10.1039/d0sc05937d.
  • Li, D.; Wang, S.; Lei, Z.; Sun, C.; El-Toni, A. M.; Alhoshan, M. S.; Fan, Y.; Zhang, F. Peroxynitrite Activatable NIR-II Fluorescent Molecular Probe for Drug-Induced Hepatotoxicity Monitoring. Anal. Chem. 2019, 91, 4771–4779. DOI: 10.1021/acs.analchem.9b00317.
  • Deng, Y.; Feng, S.; Xia, Q.; Gong, S.; Feng, G. A Novel Reaction-Based Fluorescence Probe for Rapid Imaging of HClO in Live Cells, Animals, and Injured Liver Tissues. Talanta 2020, 215, 120901. DOI: 10.1016/j.talanta.2020.120901.
  • Wang, Z.; Zhang, F.; Xiong, J.; Mao, Z.; Liu, Z. Investigations of Drug-Induced Liver Injury by a Peroxynitrite Activatable Two-Photon Fluorescence Probe. Spectrochim Acta A Mol Biomol Spectrosc. 2021, 246, 118960. DOI: 10.1016/j.saa.2020.118960.
  • Lou, Y.; Wang, C.; Chi, S.; Li, S.; Mao, Z.; Liu, Z. Construction of a Two-Photon Fluorescent Probe for Ratiometric Imaging of Hypochlorous Acid in Alcohol-Induced Liver Injury. Chem Commun (Camb) 2019, 55, 12912–12915. DOI: 10.1039/c9cc06888k.
  • Cerwenka, H.; Khoschsorur, G.; Bacher, H.; Werkgartner, G.; El-Shabrawi, A.; Quehenberger, F.; Rabl, H.; Mischinger, H. J. Normothermic Liver Ischemia and Antioxidant Treatment during Hepatic Resections. Free Radical Res. 1999, 30, 463–469. DOI: 10.1080/10715769900300501.
  • van Golen, R. F.; van Gulik, T. M.; Heger, M. Mechanistic Overview of Reactive Species-Induced Degradation of the Endothelial Glycocalyx during Hepatic Ischemia/Reperfusion Injury. Free Radic Biol Med. 2012, 52, 1382–1402. DOI: 10.1016/j.freeradbiomed.2012.01.013.
  • Glantzounis, G. K.; Salacinski, H. J.; Yang, W.; Davidson, B. R.; Seifalian, A. M. The Contemporary Role of Antioxidant Therapy in Attenuating Liver Ischemia-Reperfusion Injury: A Review. Liver Transpl. 2005, 11, 1031–1047. DOI: 10.1002/lt.20504.
  • Hutchinson, J.; Fogarty, A.; Hubbard, R.; McKeever, T. Global Incidence and Mortality of Idiopathic Pulmonary Fibrosis: A Systematic Review. Eur. Respir. J. 2015, 46, 795–806. DOI: 10.1183/09031936.00185114.
  • King, T. E.; Bradford, W. Z.; Castro-Bernardini, S.; Fagan, E. A.; Glaspole, I.; Glassberg, M. K.; Gorina, E.; Hopkins, P. M.; Kardatzke, D.; Lancaster, L.; et al. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N Engl. J. Med. 2014, 370, 2083–2092. DOI: 10.1056/NEJMoa1402582.
  • He, N.; Bai, S.; Huang, Y.; Xing, Y.; Chen, L.; Yu, F.; Lv, C. Evaluation of Glutathione S-Transferase Inhibition Effects on Idiopathic Pulmonary Fibrosis Therapy with a Near-Infrared Fluorescent Probe in Cell and Mice Models. Anal. Chem. 2019, 91, 5424–5432. DOI: 10.1021/acs.analchem.9b00713.
  • Ye, S.; Hananya, N.; Green, O.; Chen, H.; Zhao, A. Q.; Shen, J.; Shabat, D.; Yang, D. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew. Chem. Int. Ed. Engl. 2020, 59, 14326–14330. DOI: 10.1002/anie.202005429.
  • Zhai, B.; Hu, W.; Hao, R.; Ni, W.; Liu, Z. Development of a Ratiometric Two-Photon Fluorescent Probe for Imaging of Hydrogen Peroxide in Ischemic Brain Injury. Analyst 2019, 144, 5965–5970. DOI: 10.1039/c9an01326a.
  • Xu, R.; Wang, Y.; You, H.; Zhang, L.; Wang, Y.; Chen, L. A near-Infrared Fluorescent Probe for Evaluating Endogenous Hydrogen Peroxide during Ischemia/Reperfusion Injury. Analyst 2019, 144, 2556–2564. DOI: 10.1039/c9an00243j.
  • Song, X.; Bai, S.; He, N.; Wang, R.; Xing, Y.; Lv, C.; Yu, F. Real-Time Evaluation of Hydrogen Peroxide Injuries in Pulmonary Fibrosis Mice Models with a Mitochondria-Targeted near-Infrared Fluorescent Probe. ACS Sens. 2021, 6, 1228–1239. DOI: 10.1021/acssensors.0c02519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.