564
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography – a Review

, &
Pages 473-486 | Published online: 06 Jun 2022

References

  • Tamokou, J. D. D.; Mbaveng, A. T.; Kuete, V. Chapter 8 - Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, 2017; pp 207–237. DOI: 10.1016/B978-0-12-809286-6.00008-X.
  • Matheyambath, A. C.; Padmanabhan, P.; Paliyath, G. Citrus Fruits. In Encyclopedia of Food and Health; Caballero, B.; Finglas, P. M.; Toldrá, F., Eds.; Academic Press: Cambridge, MA, 2016, pp 136–140. DOI: 10.1016/B978-0-12-384947-2.00165-3.
  • FAO. 2021. Citrus Fruit Statistical Compendium 2020. Rome. https://www.fao.org/markets-and-trade/commodities/citrus/en/
  • Rafiq, S.; Kaul, R.; Sofi, S. A.; Bashir, N.; Nazir, F.; Nayik, G. A. Citrus Peel as a Source of Functional Ingredient: A Review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. DOI: 10.1016/j.jssas.2016.07.006.
  • Pai, D. A.; Vangala, V. R.; Ng, J. W.; Ng, W. K.; Tan, R. B. H. Resistant Maltodextrin as a Shell Material for Encapsulation of Naringin: Production and Physicochemical Characterization. J. Food Eng. 2015, 161, 68–74. DOI: 10.1016/j.jfoodeng.2015.03.037.
  • Yadav, M.; Sehrawat, N.; Singh, M.; Upadhyay, K. S.; Aggarwal, D.; Sharma, A. K. Cardioprotective and Hepatoprotective Potential of Citrus Flavonoid Naringin: Current Status and Future Perspectives for Health Benefits. Asian J. Biol. Sci. 2020, 9, 1–5. DOI: 10.5530/ajbls.2020.9.1
  • Cavia-Saiz, M.; Busto, M. D.; Pilar-Izquierdo, M. C.; Ortega, N.; Perez-Mateos, M.; Muniz, P. Antioxidant Properties, Radical Scavenging Activity and Biomolecule Protection Capacity of Flavonoid Naringenin and Its Glycoside Naringin: A Comparative Study. J. Sci. Food Agric. 2010, 90, 1238–1244. DOI: 10.1002/jsfa.3959.
  • Yang, Y.; Trevethan, M.; Wang, S.; Zhao, L. Beneficial Effects of Citrus Flavanones Naringin and Naringenin and Their Food Sources on Lipid Metabolism: An Update on Bioavailability, Pharmacokinetics, and Mechanisms. J. Nutr. Biochem. 2022, 104, 108967. DOI: 10.1016/j.jnutbio.2022.108967.">].
  • Pleguezuelos-Villa, M.; Mir-Palomo, S.; Díez-Sales, O.; Buso, M.; Sauri, A. R.; Nácher, A. A Novel Ultradeformable Liposomes of Naringin for anti-Inflammatory Therapy. Colloids. Surf. B Biointerfaces 2018, 162, 265–270. DOI: 10.1016/j.colsurfb.2017.11.068.
  • Moghaddam, R. H.; Samimi, Z.; Moradi, S. Z.; Little, P. J.; Xu, S.; Hosein Farzaei, M. H. Naringenin and Naringin in Cardiovascular Disease Prevention: A Preclinical Review. Eur. J. Pharmacol. 2020, 887, 173535. https://doi.org/10.1016/j.ejphar.2020.173535
  • Rivoira, M.; Rodríguez, V.; Picotto, G.; Battaglino, R.; Tolosa de Talamoni, N. Naringin Prevents Bone Loss in a Rat Model of Type 1 Diabetes Mellitus. Arch. Biochem. Biophys. 2018, 637, 56–63. DOI: 10.1016/j.abb.2017.12.001.
  • Syed, A. A.; Reza, M. I.; Shafiq, M.; Kumariya, S.; Singh, P.; Husain, A.; Hanif, K.; Gayen, J. R. Naringin Ameliorates Type 2 Diabetes Mellitus-Induced Steatohepatitis by Inhibiting RAGE/NF-κB Mediated Mitochondrial Apoptosis. Life Sci. 2020, 257, 118118. DOI: 10.1016/j.lfs.2020.118118.
  • Memariani, Z.; Abbas, S. Q.; ul Hassan, S. S.; Ahmadi, A.; Chabra, A. Naringin and Naringenin as Anticancer Agents and Adjuvants in Cancer Combination Therapy: Efficacy and Molecular Mechanisms of Action, a Comprehensive Narrative Review. Pharmacol. Res. 2021, 171, 105264. DOI: 10.1016/j.phrs.2020.105264.
  • Wang, D.; Gao, K.; Li, X.; Shen, X.; Zhang, X.; Ma, C.; Qin, C.; Zhang, L. Long-Term Naringin Consumption Reverses a Glucose Uptake Defect and Improves Cognitive Deficits in a Mouse Model of Alzheimer’s Disease. Pharmacol. Biochem. Behav. 2012, 102, 13–20. DOI: 10.1016/j.pbb.2012.03.013.
  • Sachdeva, A. K.; Kuhad, A.; Chopra, K. Naringin Ameliorates Memory Deficits in Experimental Paradigm of Alzheimer's Disease by Attenuating Mitochondrial Dysfunction. Pharmacol. Biochem. Behav. 2014, 127, 101–110. DOI: 10.1016/j.pbb.2014.11.002.
  • Ahmed, S.; Khan, H.; Aschner, M.; Hasan, M. M.; Hassan, S. T. S. Therapeutic Potential of Naringin in Neurological Disorders. Food Chem. Toxicol. 2019, 132, 110646. DOI: 10.1016/j.fct.2019.110646.
  • Razavi, B. M.; Hosseinzadeh, H. Chapter 34 - a Review of the Effects of Citrus Paradisi (Grapefruit) and Its Flavonoids, Naringin, and Naringenin in Metabolic Syndrome. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Watson, R. R.; Victor R. Preedy, V. R., Eds.; Academic Press: Cambridge, MA, 2019; pp 515–543. DOI: 10.1016/B978-0-12-813822-9.00034-5.
  • Liu, Y.; Benohoud, M.; Yamdeu, J. H. G.; Gong, Y. Y.; Orfila, C. Green Extraction of Polyphenols From Citrus Peel By-Products and Their Antifungal Activity Against Aspergillus Flavus. Food Chemistry X 2021, 12, 100144. DOI: 10.1016/j.fochx.2021.100144.
  • Feng, C.-H.; Otani, C.; Yuichi Ogawa, Y. Innovatively Identifying Naringin and Hesperidin by Using Terahertz Spectroscopy and Evaluating Flavonoids Extracts from Waste Orange Peels by Coupling with Multivariate Analysis. Food Control. 2022, 137, 108897. DOI: 10.1016/j.foodcont.2022.108897.
  • Coelho, E. M.; da Silva Haas, I. C.; de Azevedo, L. C.; Bastos, D. C.; Fedrigo, I. M. T.; Lima, M. S.; Amboni, R. D. M. C. Multivariate Chemometric Analysis for the Evaluation of 22 Citrus Fruits Growing in Brazil’s Semi-Arid Region. J. Food Compos. Anal. 2021, 101, 103964. DOI: 10.1016/j.jfca.2021.103964.
  • Büyüktüncel, E. Fast Determination of Naringin and Hesperidin in Natural and Commercial Citrus Juices by HPLC Method. Asian J. Chem. 2017, 29, 2384–2386. DOI: 10.14233/ajchem.2017.20675.
  • Zhang, J.; Sun, C.; Yan, Y.; Chen, Q.; Luo, F.; Zhu, X.; Li, X.; Chen, K. Purification of Naringin and Neohesperidin from Huyou (Citrus Changshanensis) Fruit and Their Effects on Glucose Consumption in Human HepG2 Cells. Food Chem. 2012, 135, 1471–1478. DOI: 10.1016/j.foodchem.2012.06.004.
  • Sharma, A.; Bhardwaj, P.; Arya.; S. K.; Naringin. A Potential Natural Product in the Field of Biomedical Applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100068. DOI: 10.1016/j.carpta.2021.100068.
  • Alam, M. A.; Subhan, N.; Rahman, M. M.; Uddin, S. J.; Reza, H. M.; Sarke, S. D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. DOI: 10.3945/an.113.005603.
  • Yu, K. E.; Alder, K. D.; Morris, M. T.; Munger, A. M.; Lee, I.; Cahill, S. V.; Kwon, H.-K.; Back, J.; Lee, F. Y. Re-Appraising the Potential of Naringin for Natural, Novel Orthopedic Biotherapies. Ther. Adv. Musculoskelet. 2020, 12, 1759720X2096613–1759720X2096621. DOI: 10.1177/1759720X20966135.
  • Shirani, K.; Yousefsani, B. S.; Shirani, M.; Karimi, G. Protective Effects of Naringin against Drugs and Chemical Toxins Induced Hepatotoxicity: A Review. Phytother. Res. 2020, 34, 1734–1744. DOI: 10.1002/ptr.6641.
  • Wang, C.-Y.; Wang, Y.-T.; Wu, S.-J.; Shyu, Y.-T. Quality Changes in High Hydrostatic Pressure and Thermal Pasteurized Grapefruit Juice during Cold Storage. J. Food Sci. Technol. 2018, 55, 5115–5122. DOI: 10.1007/s13197-018-3452-z.
  • Izawa, K.; Amino, Y.; Kohmura, M.; Ueda, Y.; Kuroda, M. Human–Environment Interactions – Taste. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Amsterdam, NL, 2010; pp 631–671. DOI: 10.1016/b978-008045382-8.00108-8.
  • Sudto, K.; Pornpakakul, S.; Wanichwecharungruang, S. An Efficient Method for the Large Scale Isolation of Naringin from Pomelo (Citrus Grandis) Peel. Int. J. Food Sci. 2009, 44, 1737–1742. DOI: 10.1111/j.1365-2621.2009.01989.x.
  • Igual, M.; García-Martínez, E.; Camacho, M. M.; Martínez-Navarrete, N. Jam Processing and Storage Effects on β-Carotene and Flavonoids Content in Grapefruit. J. Funct. Foods 2013, 5, 736–744. DOI: 10.1016/j.jff.2013.01.019.
  • Khan, M. K.; Zill-E-Huma; Dangles, O. A Comprehensive Review on Flavanones, the Major Citrus Polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. DOI: 10.1016/j.jfca.2013.11.004.
  • Lu, Y.; Zhang, C.; Bucheli, P.; Wei, D. Citrus Flavonoids in Fruit and Traditional Chinese Medicinal Food Ingredients in China. Plant Foods Hum. Nutr. 2006, 61, 55–63. DOI: 10.1007/s11130-006-0014-8.
  • Berhow, M.; Tisserat, B.; Kanes, K.; Vandercook, C. Survey of Phenolic Compounds Produced in Citrus. USDA-ARS 1998, 1, 1–151. https://www.ars.usda.gov/ARSUserFiles/34764/ MABSurveyCitrus. pdf
  • Flores, I. R.; Vásquez-Murrieta, M. S.; Franco-Hernández, M. O.; Márquez-Herrera, C. E.; Ponce-Mendoza, A.; López-Cortéz, M. S. Bioactive Compounds in Tomato (Solanum Lycopersicum) Variety Saladette and Their Relationship with Soil Mineral Content. Food Chem. 2021, 344, 128608. DOI: 10.1016/j.foodchem.2020.128608.
  • Figueroa Pérez, M. G.; Rocha-Guzmán, N. E.; Mercado-Silva, E.; Loarca-Piña, G.; Reynoso-Camacho, R. Effect of Chemical Elicitors on Peppermint (Mentha Piperita) Plants and Their Impact on the Metabolite Profile and Antioxidant Capacity of Resulting Infusions. Food Chem. 2014, 156, 273–278. DOI: 10.1016/j.foodchem.2014.01.101.
  • Riachi, L. G.; De Maria, C. A. B. Peppermint Antioxidants Revisited. Food Chem. 2015, 176, 72–81. DOI: 10.1016/j.foodchem.2014.12.028.
  • Barbieri, J. B.; Goltz, C.; Batistão Cavalheiro, F.; Theodoro Toci, A.; Igarashi-Mafra, L.; Mafra, M. R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus Officinalis L.) Phenolic Compounds. Ind. Crops Prod. 2020, 144, 112049. DOI: 10.1016/j.indcrop.2019.112049.
  • Prasad, G.; Seal, T.; Mao, A. A.; Vijayan, D.; Lokho, A. Assessment of Clonal Fidelity and Phytomedicinal Potential in Micropropagated Plants of Bulbophyllum Odoratissimum - An Endangered Medicinal Orchid of Indo Burma Megabiodiversity Hotspot. S. Afr. J. Bot. 2021, 141, 487–497. DOI: 10.1016/j.sajb.2021.05.015.
  • Chandra, P.; Pandey, R.; Kumar, B.; Srivastva, M.; Pandey, P.; Sarkar, J.; Singh, B. P. Quantification of Multianalyte by Uplc–Qqqlit–Ms/Ms and in-Vitro anti-Proliferative Screening in Cassia Species. Ind. Crops Prod. 2015, 76, 1133–1141. DOI: 10.1016/j.indcrop.2015.08.030.
  • Gecibesler, I. H.; Erdogan, M. A New Nutraceutical Resource from a Rare Native Plant Growing in Turkey and for Its Spectro-Chemical and Biological Insights: Endemic Diplotaenia Bingolensis (Apiaceae). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 117358. DOI: 10.1016/j.saa.2019.117358.
  • Peng, C.; Zhu, Y.; Yan, F.; Su, Y.; Zhu, Y.; Zhang, Z.; Zuo, C.; Wu, H.; Zhang, Y.; Kan, J.; Peng, D. The Difference of Origin and Extraction Method Significantly Affects the Intrinsic Quality of Licorice: A New Method for Quality Evaluation of Homologous Materials of Medicine and Food. Food Chem. 2021, 340, 127907. DOI: 10.1016/j.foodchem.2020.127907.
  • Sang, Q.; Jia, Q.; Zhang, H.; Lin, C.; Zhao, X.; Zhang, M.; Wang, Y.; Hu, P. Chemical Profiling and Quality Evaluation of Zhishi-Xiebai-Guizhi Decoction by UPLC-Q-TOF-MS and UPLC Fingerprint. J. Pharm. Biomed. Anal. 2021, 194, 113771. DOI: 10.1016/j.jpba.2020.113771.
  • Belboukhari, N.; Cheriti, A.; Roussel, C.; Vanthuyne, N. Chiral Separation of Hesperidin and Naringin and Its Analysis in a Butanol Extract of Launeae Arborescens. Nat. Prod. Res. 2010, 24, 669–681. DOI: 10.1080/14786410903178376.
  • Srinivasan, S.; Vinothkumar, V.; Murali, R.; Watson, R. R. Chapter 22 Antidiabetic Efficacy of Citrus Fruits with Special Allusion to Flavone Glycosides. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Preedy, V.R., Eds.; Academic Press: Cambridge, MA, 2019; pp 335–346. DOI: 10.1016/B978-0-12-813822-9.00022-9.
  • Zhang, K.; Ding, Z.; Duan, W.; Mo, M.; Su, Z.; Bi, Y.; Kon, F. Optimized Preparation Process for Naringenin and Evaluation of Its Antioxidant and α-Glucosidase Inhibitory Activities. J. Food Process. Preserv. 2020, 44, e14931. DOI: 10.1111/jfpp.14931.
  • Qu, H.; Zhang, Y.; Qu, B.; Cheng, J.; Liu, S.; Feng, S.; Wang, Q.; Zhao, Y. Novel Immunoassay and Rapid Immunoaffinity Chromatography Method for the Detection and Selective Extraction of Naringin in Citrus Aurantium. J. Sep. Sci. 2016, 39, 1389–1398. DOI: 10.1002/jssc.201501034.
  • Bhatlu, M. L. D.; Singh, S. V.; Verma, A. K. Recovery of Naringin from Kinnow (Citrus Reticulata Blanco) Peels by Adsorption–Desorption Technique Using an Indigenous Resin. Sadhana 2017, 42, 85–94. DOI: 10.1007/s12046-016-0583-7.
  • Silva, M.; García, C. J.; Ottens, M. Polyphenol Liquid-Liquid Extraction Process Development Using NRTL-SAC. Ind. Eng. Chem. Res. 2018, 57, 9210–9221. DOI: 10.1021/acs.iecr.8b00613.
  • Jabbari, M.; Khosravi, N.; Feizabadi, M.; Ajloo, D. D. Solubility Temperature and Solvent Dependence and Preferential Solvation of Citrus Flavonoid Naringin in Aqueous DMSO Mixtures: An Experimental and Molecular Dynamics Simulation Study. RSC Adv. 2017, 7, 14776–14789. DOI: 10.1039/C7RA00038C.
  • Chen, M.; Li, R.; Gao, Y.; Zheng, Y.; Liao, L.; Cao, Y.; Li, J.; Zhou, W. Encapsulation of Hydrophobic and Low-Soluble Polyphenols into Nanoliposomes by pH-Driven Method: Naringenin and Naringin as Model Compounds. Foods 2021, 10, 963. DOI: 10.3390/foods10050963.
  • Ioannou, I.; M’hiri, N.; Chaaban, H.; Boudhrioua, N. M.; Ghoul, M. Effect of the Process, Temperature, Light and Oxygen on Naringin Extraction and the Evolution of Its Antioxidant Activity. Food Sci. Technol. 2018, 53, 2754–2760. DOI: 10.1111/ijfs.13887
  • Liu, Y.; Zhang, H.; Yu, H.; Guo, S.; Chen, D. Deep Eutectic Solvent as a Green Solvent for Enhanced Extraction of Narirutin, Naringin, Hesperidin and Neohesperidin from Aurantii Fructus. Phytochem. Anal. 2019, 30, 156–163. DOI: 10.1002/pca.2801.
  • El Kantar, S.; Rajha, H. N.; Boussetta, N.; Vorobiev, E.; Maroun, R. G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. DOI: 10.1016/j.foodchem.2019.05.111.
  • Tran, N. Y. T.; Le, D. L.; Dao, P. T.; Bach, G. L.; Huynh, P. X.; Tran, Q. N. Evaluation of Different Extraction Methods on the Polyphenols Yield, Flavonoids Yield, and Antioxidant Activity of the Pomelo Flavedo Extract from Da Xanh (Citrus Maxima [Burm] Merr.) Variety. Food Sci. Technol. 2022, 42, e97021. DOI: 10.1590/fst.97021.
  • Wang, Z.; Shang, Q.; Wang, W.; Feng, X. Microwave-Assisted Extraction and Liquid Chromatography/Mass Spectrometry Analysis of Flavonoids from Grapefruit Peel. J. Food Proc. Eng. 2011, 34, 844–859. DOI: 10.1111/j.1745-4530.2009.00513.x.
  • Ciğeroğlu, Z.; Bayramoğlu, M.; Kırbaşlar, Şİ.; Şahin, S. Comparison of Microwave-Assisted Techniques for the Extraction of Antioxidants from Citrus Paradisi Macf. Biowastes. J. Food Sci. Technol. 2021, 58, 1190–1198. DOI: 10.1007/s13197-020-04632-x
  • Wang, Q.; Luo, J.; Liu, H.; Brennan, C. S.; Liu, J.; Zou, X. Protective Effects of the Flavonoid Fraction Obtained from Pomelo Fruitlets through Ultrasonic-Associated Microwave Extraction against AAPH-Induced Erythrocyte Hemolysis. RSC Adv. 2019, 9, 16007–16017. DOI: 10.1039/c9ra02523e.
  • Liu, C.; Hou, W.; Li, S.; Tsao, R. Extraction and Isolation of Acetylcholinesterase Inhibitors from Citrus Limon Peel Using an in Vitro Method. J. Sep. Sci. 2020, 43, 1531–1543. DOI: 10.1002/jssc.201901252.
  • Hung, P. V.; Nhi, N. H. Y.; Ting, L. Y.; Phi, N. T. L. Chemical Composition and Biological Activities of Extracts from Pomelo Peel by-Products under Enzyme and Ultrasound-Assisted Extractions. J. Chem. 2020, 2020, 1–7. DOI: 10.1155/2020/1043251.
  • Yan, Y.; Zhou, H.; Wu, C.; Feng, X.; Han, C.; Chen, H.; Liu, Y.; Li, Y. Ultrasound-Assisted Aqueous Two-Phase Extraction of Synephrine, Naringin, and Neohesperidin from Citrus Aurantium L. Fruitlets. Prep. Biochem. Biotechnol. 2021, 51, 780–791. DOI: 10.1080/10826068.2020.1858427.
  • Singanusong, R.; Nipornram, S.; Tochampa, W.; Rattanatraiwong, P. Low Power Ultrasound-Assisted Extraction of Phenolic Compounds from Mandarin (Citrus Reticulata Blanco cv. Sainampueng) and Lime (Citrus Aurantifolia) Peels and the Antioxidant. Food Anal. Methods 2015, 8, 1112–1123. DOI: 10.1007/s12161-014-9992-6.
  • Covarrubias-Cárdenas, A.; Patrón-Váázquez, J.; Espinosa-Andrews, H.; Ayora-Talavera, T.; García-Cruz, U.; Pacheco, N. Antioxidant Capacity and UPLC–PDA ESI–MS Polyphenolic Profile of Citrus Aurantium Extracts Obtained by Ultrasound Assisted Extraction. J. Food Sci. Technol. 2018, 55, 5106–5114. DOI: 10.1007/s13197-018-3451-0.
  • Li, T.; Li, X.; Zhang, M.; Jiang, C.; Hu, L.; Yang, X. Development and Validation of RP-HPLC Method for the Simultaneous Quantification of Seven Flavonoids in Pericarpium Citri Reticulatae. Food Anal. Methods 2014, 7, 89–99. DOI: 10.1007/s12161-013-9602-z.
  • Niu, D.; Ren, E.-F. J.; Li, J.; Zeng, X.-A.; Li, S.-L. Effects of Pulsed Electric Field-Assisted Treatment on the Extraction, Antioxidant Activity and Structure of Naringin. Sep. Purif. Technol 2021, 265, 118480. DOI: 10.1016/j.seppur.2021.118480.
  • Barrales, F. M.; Silveira, P.; Barbosa, P. P. M.; Ruviaro, A. R.; Paulino, B. N.; Pastore, G. M.; Macedo, G. A.; Martinez, J. Recovery of Phenolic Compounds from Citrus by-Products Using Pressurized Liquids — an Application to Orange Peel. Food Bioprod. Process 2018, 112, 9–21. DOI: 10.1016/j.fbp.2018.08.006.
  • Xu, J.-J.; Yang, R.; Ye, L.-H.; Cao, J.; Cao, W.; Hu, S.-S.; Peng, L.-Q. Application of Ionic Liquids for Elution of Bioactive Flavonoid Glycosides from Lime Fruit by Miniaturized Matrix Solid-Phase Dispersion. Food Chem. 2016, 204, 167–175. DOI: 10.1016/j.foodchem.2016.02.012.
  • Liu, Z.; Qiao, L.; Gu, H.; Yang, F.; Yang, L. Development of Brönsted Acidic Ionic Liquid Based Microwave Assisted Method for Simultaneous Extraction of Pectin and Naringin from Pomelo Peels. Sep. Purif. Technol. 2017, 172, 326–337. DOI: 10.1016/j.seppur.2016.08.026.
  • Ko, M.-J.; Kwon, H.-L.; Chung, M.-S. Pilot-Scale Subcritical Water Extraction of Flavonoids from Satsuma Mandarin (Citrus Unshiu Markovich) Peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181. DOI: 10.1016/j.ifset.2016.10.008.
  • Zarate-Vilet, N.; Wisniewski, C.; Gué, E.; Delalonde, M. Towards a Better Identification of Naringin and Narirutin Dispersion State in Grapefruit Peel Press Liquor. Chem. Eng. Res. Des. 2020, 159, 205–214. DOI: 10.1016/j.cherd.2020.03.023.
  • Biesaga, M. Influence of Extraction Methods on Stability of Flavonoids. J. Chromatogr. A 2011, 1218, 2505–2512. DOI: 10.1016/j.chroma.2011.02.059.
  • Hartonen, K.; Parshintsev, J.; Sandberg, K.; Bergelin, E.; Nisula, L.; Riekkola, M.-L. Isolation of Flavonoids from Aspen Knotwood by Pressurized Hot Water Extraction and Comparison with Other Extraction Techniques. Talanta 2007, 74, 32–38. DOI: 10.1016/j.talanta.2007.05.040.
  • Caccamese, S.; Chillemi, R. Racemization at C-2 of Naringin in Pummelo (Citrus Grandis) with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Chromatogr. A 2010, 1217, 1089–1093. DOI: 10.1016/j.chroma.2009.10.073.
  • Nishad, J.; Saha, S.; Kaur, C. Enzyme- and Ultrasound-Assisted Extractions of Polyphenols from Citrus Sinensis (Cv. Malta) Peel: A Comparative Study. J. Food Process Preserv. 2019, 43, 1–13. DOI: 10.1111/jfpp.14046.
  • Garcia-Castello, E. M.; Rodriguez-Lopez, A. D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of Conventional and Ultrasound Assisted Extraction of Flavonoids from Grapefruit (Citrus Paradisi L.) Solid Wastes. LWT 2015, 64, 1114–1122. DOI: 10.1016/j.lwt.2015.07.024.
  • Khan, M. K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-Assisted Extraction of Polyphenols (Flavanone Glycosides) from Orange (Citrus Sinensis L.) Peel. Food Chem. 2010, 119, 851–858. DOI: 10.1016/j.foodchem.2009.08.046.
  • Kataoka, H.; Worsfold, Poole, C.; Townshend, A. Encyclopedia of Analytical Science, 3rd ed.; P Miró, M., Eds.; Elsevier: Amsterdam, NL, 2019; pp 231–255. DOI: 10.1016/B978-0-12-409547-2.14358-6.
  • Romano, R.; De Luca, L.; Aiello, A.; Rossi, D.; Pizzolongo, F.; Masi, P. Bioactive Compounds Extracted by Liquid and Supercritical Carbon Dioxide from Citrus Peels. Int. J. Food Sci. 2022, 38, 175–181. DOI: 10.1111/ijfs.15712.
  • Guneser, B. A.; Yilmaz, E. Bioactives, Aromatics and Sensory Properties of Cold-Pressed and Hexane-Extracted Lemon (Citrus Limon L.) Seed Oils. J. Am. Oil Chem. Soc. 2017, 94, 723–731. DOI: 10.1007/s11746-017-2977-z.
  • Tong, C.; Peng, M.; Tong, R.; Ma, R.; Guo, K.; Shi, S. Use of an Online Extraction Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Method for the Characterization of Polyphenols in Citrus Paradisi Cv. Changshanhuyu Peel. J. Chromatogr. A 2018, 1533, 87–93. DOI: 10.1016/j.chroma.2017.12.022.
  • Smith, R. M. Before the Injection—Modern Methods of Sample Preparation for Separation Techniques. J. Chromatogr. A 2003, 1000, 3–27. DOI: 10.1016/S0021-9673(03)00511-9.
  • Subhi Sammani, M.; Clavijo, S.; Figuerola, A.; Cerdà, V. 3D Printed Structure Coated with C18 Particles in an Online Flow System Coupled to HPLC-DAD for the Determination of Flavonoids in Citrus External Peel. Microchem. J. 2021, 168, 106421. DOI: 10.1016/j.microc.2021.106421.
  • Aznar, R.; Rodríguez-Pérez, C.; Rai, D. K. Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus Australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. Appl. Sci. 2022, 12, 1712. DOI: 10.3390/app12031712.
  • Liu, F.; Han, S.; Ni, Y. Isolation and Purification of Four Flavanones from Peel of Citrus Changshanensis. J. Food Process Preserv. 2017, 41, 41, e13278. DOI: 10.1111/jfpp.13278.
  • Li, L.; Zhao, J.; Yang, T.; Sun, B. High-Speed Countercurrent Chromatography as an Efficient Technique for Large Separation of Plant Polyphenols: A Review. Food Res. Int. 2022, 153, 110956. DOI: 10.1016/j.foodres.2022.110956.
  • Wang, S.; Zhao, K.; Zang, W.; Zhang, Q.; Zhao, X.; Zhao, M.; He, X.; Liu, Q.; Feng, W.; Zheng, X. Highly Selective Screening of the Bioactive Compounds in Huoxue Capsule Using Immobilized β2-Adrenoceptor Affinity Chromatography. Anal. Biochem. 2014, 457, 1–7. DOI: 10.1016/j.ab.2014.04.013.
  • Mencherini, T.; Campone, L.; Piccinelli, A. L.; García Mesa, M.; Sánchez, D. M.; Aquino, R. P.; Rastrelli, L. HPLC-PDA-MS and NMR Characterization of a Hydroalcoholic Extract of Citrus Aurantium L. Var. Amara Peel with Antiedematogenic Activity. J. Agric. Food Chem. 2013, 61, 1686–1693. DOI: 10.1021/jf302815t.
  • Luo, Z.; Chen, G.; Li, X.; Wang, L.; Shu, H.; Cui, X.; Chang, C.; Zeng, A.; Fu, Q. Molecularly Imprinted Polymer Solid-Phase Microextraction Coupled with Ultra High Performance Liquid Chromatography and Tandem Mass Spectrometry for Rapid Analysis of Pyrrolizidine Alkaloids in Herbal Medicine. J. Sep. Sci. 2019, 42, 3352–3362. DOI: 10.1002/jssc.201900665.
  • Bilbao, M. L. M.; Andrés-Lacueva, C.; Jáuregui, O.; Lamuela-Raventós, R. M. Determination of Flavonoids in a Citrus Fruit Extract by LC–DAD and LC–MS. Food Chem. 2007, 101, 1742–1747. DOI: 10.1016/j.foodchem.2006.01.032.
  • Zhao, Z.; He, S.; Hu, Y.; Yang, Y.; Jiao, B.; Fang, Q.; Zhou, Z. Fruit Flavonoid Variation between and within Four Cultivated Citrus Species Evaluated by UPLC-PDA System. Sci. Hortic. 2017, 224, 93–101. DOI: 10.1016/j.scienta.2017.05.038.
  • Cao, W.; Ye, L.-H.; Cao, J.; Xu, J.-J.; Peng, L.-Q.; Zhu, Q.-Y.; Zhang, Q.-Y.; Hu, S.-S. Quantitative Analysis of Flavanones from Citrus Fruits by Using Mesoporous Molecular Sieve-Based Miniaturized Solid Phase Extraction Coupled to Ultrahigh-Performance Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2015, 1406, 68–77. DOI: 10.1016/j.chroma.2015.06.035.
  • Rao, K.; Imran, M.; Jabri, T.; Ali, I.; Perveen, S.; Shafiullah; Ahmed, S.; Shah, M. R. Gum Tragacanth Stabilized Green Gold Nanoparticles as Cargos for Naringin Loading: A Morphological Investigation through AFM. Carbohydr. Polym. 2017, 174, 243–252. DOI: 10.1016/j.carbpol.2017.06.071.
  • Gupta, A. K.; Mishra, P.; Senapati, M.; Sahu, P. P. A Novel Electrochemical Device for Naringin Quantification and Removal from Bitter Variety of Citrus Fruits. J. Food Eng. 2021, 306, 110637. DOI: 10.1016/j.jfoodeng.2021.110637.
  • Ziyatdinova, G.; Yakupova, E.; Guss, E.; Budnikov, H. The Selective Electrochemical Sensing of Naringin Using Electropolymerized Ellagic Acid Film. J. Electrochem. Soc. 2020, 167, 107502. DOI: 10.1149/1945-7111/ab9280.
  • Xia, H.; Gu, T.; Fan, R.; Zeng, J. Comparative Investigation of Bioflavonoid Electrocatalysis in 1D, 2D, and 3D Carbon Nanomaterials for Simultaneous Detection of Naringin and Hesperidin in Fruits. RSC Adv. 2022, 12, 6409–6415. DOI: 10.1039/d1ra07217j.
  • Zhupanova, A.; Guss, E.; Ziyatdinova, G.; Budnikov, H. Simultaneous Voltammetric Determination of Flavanones Using an Electrode Based on Functionalized Single-Walled Carbon Nanotubes and Polyaluminon. Anal. Lett. 2020, 53, 2170–2189. DOI: 10.1080/00032719.2020.1732402.
  • Madhurantakam, S.; Selvaraj, S.; Nesakumar, N.; Sethuraman, S.; Balaguru Rayappan, J. B.; Maheswari Krishnan, U. Electrochemical Enzymeless Detection of Superoxide Employing Naringin–Copper Decorated Electrodes. Biosens. Bioelectron. 2014, 59, 134–139. DOI: 10.1016/j.bios.2014.03.029.
  • Ensafi, A. A.; Karbalaei, S.; Heydari-Bafrooei, E.; Rezaei, B. Biosensing of Naringin in Marketed Fruits and Juices Based on Its Interaction with DNA. J. Iran Chem. Soc. 2016, 13, 19–27. DOI: 10.1007/s13738-015-0707-8.
  • Ma, F.; Zhang, W.; Wang, J.; Zhang, L.; Chen, G. Fabrication of a Carbon Nanotube-Polyurethane Composite Electrode by in Situ Polyaddition for Use in Amperometric Detection in Capillary Electrophoresis. Microchim. Acta 2016, 183, 2579–2587. DOI: 10.1007/s00604-016-1900-x.
  • Zhao, P.; Duan, L.; Guo, L.; Dou, L.-L.; Dong, X.; Zhou, P.; Li, P.; Liu, E.-H. Chemical and Biological Comparison of the Fruit Extracts of Citrus Wilsonii Tanaka and Citrus Medica L. Food Chem. 2015, 173, 54–60. DOI: 10.1016/j.foodchem.2014.10.010.
  • Van Der Werf, R.; Dal, S.; Le Grandois, J.; Aoude-Werner, D.; Digel, F.; Ennahar, S.; Sigrist, S.; Marchioni, E. Determination of Active Radical Scavenging Compounds in Polar Fruit and Vegetable Extracts by an on-Line HPLC Method. LWT 2015, 62, 152–159. DOI: 10.1016/j.lwt.2015.01.004.
  • Matsuo, Y.; Akita, K.; Taguchi, H.; Fujii, S.; Yoshie-Stark, Y.; Araki, T. Utilization and Evaluation of Citrus Natsudaidai Peel Waste as a Source of Natural Food Additives. Food Chem. 2022, 373, 131464. DOI: 10.1016/j.foodchem.2021.131464.
  • Barfi, B.; Asghari, A.; Rajabi, M.; Barfi, A.; Saeidi, I. Simplified Miniaturized Ultrasound-Assisted Matrix Solid Phase Dispersion Extraction and High Performance Liquid Chromatographic Determination of Seven Flavonoids in Citrus Fruit Juice and Human Fluid Samples: Hesperetin and Naringenin as Biomarkers. J. Chromatogr. A 2013, 1311, 30–40. DOI: 10.1016/j.chroma.2013.08.078.
  • Asghari, A.; Barfi, B.; Barfi, A.; Saeidi, I.; Ghollasi Moud, F.; Peyrovi, M.; Beig Babaei, A. Comparison between Conventional Solid Phase Extraction and Its Simplified Method for HPLC Determination of Five Flavonoids in Orange, Tangerine, and Lime Juice Samples. Acta Chromatogr. 2014, 26, 157–175. DOI: 10.1556/AChrom.26.2014.1.12.
  • Caccamese, S.; Bianca, S.; Santo, D. Racemization at C-2 of Naringin in Sour Oranges with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Agric. Food Chem. 2007, 55, 3816–3822. DOI: 10.1021/jf063355w.
  • Zhao, Y.; Nie, S.; Yi, M.; Wu, N.; Wang, W.; Zhang, Z.; Yao, Y.; Wang, D. UPLC-QTOF/MS-Based Metabolomics Analysis of Plasma Reveals an Effect of Xue-Fu-Zhu-Yu Capsules on Blood-Stasis Syndrome in CHD Rats. J. Ethnopharmacol. 2019, 241, 111908. DOI: 10.1016/j.jep.2019.111908.
  • Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Effects of the Operation Parameters on HILIC Separation of Flavonoids on Zwitterionic Column. Talanta 2013, 115, 284–290. DOI: 10.1016/j.talanta.2013.05.005.
  • Russo, M.; Cacciola, F.; Bonaccorsi, I.; Dugo, P.; Mondello, L. Determination of flavanones in citrus Juices by Means of One- and Two-Dimensional Liquid Chromatography. J. Sep. Sci. 2011, 34, 681–687. DOI: 10.1002/jssc.201000844.
  • Medina-Remón, A.; Tulipani, S.; Rotchés-Ribalta, M.; Mata-Bilbao, M. D. L.; Andres-Lacueva, C.; Lamuela-Raventos, R. M. A Fast Method Coupling Ultrahigh Performance Liquid Chromatography with Diode Array Detection for Flavonoid Quantification in Citrus Fruit Extracts. J. Agric. Food Chem. 2011, 59, 6353–6359. DOI: 10.1021/jf200625z.
  • Goulas, V.; Manganaris, G. A. Exploring the Phytochemical Content and the Antioxidant Potential of Citrus Fruits Grown in Cyprus. Food Chem. 2012, 131, 39–47. DOI: 10.1016/j.foodchem.2011.08.007.
  • Guccione, C.; Bergonzi, M.; Piazzini, V.; Bilia, A. A Simple and Rapid HPLC-PDA MS Method for the Profiling of Citrus Peels and Traditional Italian Liquors. Planta Med. 2016, 82, 1039–1045. DOI: 10.1055/s-0042-108735.
  • Tsiokanos, E.; Tsafantakis, N.; Termentzi, a.; Aligiannis, N.; Skaltsounis, L. A.; Fokialakis, N. Phytochemical Characteristics of Bergamot Oranges from the Ionian Islands of Greece: A Multi-Analytical Approach with Emphasis in the Distribution of Neohesperidose Flavanones. Food Chem. 2021, 343, 128400. DOI: 10.1016/j.foodchem.2020.128400.
  • Zhang, Q.; Feng, F. The Effects of Different Varieties of Aurantii Fructus Immaturus on the Potential Toxicity of Zhi-Zi-Hou-Po Decoction Based on Spectrum-Toxicity Correlation Analysis. Molecules 2019, 24, 4254. DOI: 10.3390/molecules24234254.
  • Singh, J.; Sood, S.; Muthuraman, A. In-Vitro Evaluation of Bioactive Compounds, anti-Oxidant, Lipid Peroxidation and Lipoxygenase Inhibitory Potential of Citrus Karna L. Peel Extract. J. Food Sci. Technol. 2014, 51, 67–74. DOI: 10.1007/s13197-011-0479-9.
  • Diaconu, C.; Vlase, L.; Cuciureanu, M.; Lorena, F. Assessment of Flavonoids Content in Citrus Juices Using a LC/MS Method. Farmacia 2017, 65, 92–96. https://www.ars.usda.gov/ARSUserFiles/34764/MABSurveyCitrus.pdf
  • Graziano, A. C. E.; Cardile, V.; Crascì, L.; Caggia, S.; Dugo, P.; Bonina, F.; Panico, A. Protective Effects of an Extract from Citrus Bergamia against Inflammatory Injury in Interferon-Gamma and Histamine Exposed Human Keratinocytes. Life Sci. 2012, 90, 968–974. DOI: 10.1016/j.lfs.2012.04.043.
  • Ribeiro, I. A.; Ribeiro, M. H. L. Naringin and Naringenin Determination and Control in Grapefruit Juice by a Validated HPLC Method. Food Control. 2008, 19, 432–438. DOI: 10.1016/j.foodcont.2007.05.007.
  • Ademosun, A. O.; Oboh, G.; Passamonti, S.; Tramer, F.; Ziberna, L.; Boligon, A. A.; Athayde, M. L. Inhibition of Metalloproteinase and Proteasome Activities in Colon Cancer Cells by Citrus Peel Extracts. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 471–477. DOI: 10.1515/jbcpp-2013-0127.
  • Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M. E.; Madrid, Y. Citrus Peels Waste as a Source of Value-Added Compounds: Extraction and Quantification of Bioactive Polyphenols. Food Chem. 2019, 295, 289–299. DOI: 10.1016/j.foodchem.2019.05.136.
  • Escarpa, A.; González, M. C. Approach to the Content of Total Extractable Phenolic Compounds from Different Food Samples by Comparison of Chromatographic and Spectrophotometric Methods. Anal. Chim. Acta 2001, 427, 119–127. DOI: 10.1016/S0003-2670(00)01188-0.
  • Gollavilli, H.; Hegde, A. R.; Renuka, S.; Managuli, R. S.; Bhaskar, K. V.; Dengale, S. J.; Reddy, M. S.; Kalthur, G.; Mutalik.; S.; Naringin. Nano-Ethosomal Novel Sunscreen Creams: Development and Performance Evaluation. Colloids Surf. 2020, 193, 111122. DOI: 10.1016/j.colsurfb.2020.111122.
  • Purewal, S. S.; Punia, S.; Kaur, P.; Sandhu, K. S.; Ilyas, R. A.; Singh, S. K.; Kaur, M. Unraveling the Efficacy of Different Treatments towards Suppressing Limonin and Naringin Content of Kinnow Juice: An Innovative Report. LWT 2021, 152, 112341. DOI: 10.1016/j.lwt.2021.112341.
  • Li, L.; Lurie, I. S. Screening of Seized Emerging Drugs by Ultra-High Performance Liquid Chromatography with Photodiode Array Ultraviolet and Mass Spectrometric Detection. Forensic. Sci. Int. 2014, 237, 100–111. DOI: 10.1016/j.forsciint.2014.01.018.
  • Sharma, K.; Mahato, N.; Lee, Y. R. Extraction, Characterization and Biological Activity of Citrus Flavonoids. Rev. Chem. Eng. 2019, 35, 265–284. DOI: 10.1515/revce-2017-0027.
  • Smith, R. W.; Siegel, J. A.; Saukko, P. J.; Houk, M. M. Mass Spectrometry. In Encyclopedia of Forensic Sciences; Academic Press: Cambridge, MA, 2013, pp 603–608. DOI: 10.1016/b978-0-12-382165-2.00250-6.
  • Wang, X.; Zhou, W.; Wang, Q.; Zhang, Y.; Ling, Y.; Zhao, T.; Zhang, H.; Li, P. A Novel and Comprehensive Strategy for Quality Control in Complex Chinese Medicine Formula Using UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS Combined with Network Pharmacology Analysis: Take Tangshen Formula as an Example. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1183, 122889. DOI: 10.1016/j.jchromb.2021.122889.
  • Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of Flavonoids in Citrus Bergamia (Bergamot) Polyphenolic Fraction by Liquid Chromatography–High Resolution Mass Spectrometry (LC/HRMS). PharmaNutrition 2016, 4, S1–S7. DOI: 10.1016/j.phanu.2015.10.001.
  • Wang, Y.; Ji, S.; Zang, W.; Wang, N.; Cao, J.; Li, X.; Sun, C. Identification of Phenolic Compounds from a Unique Citrus Species, Finger Lime (Citrus Australasica) and Their Inhibition of LPS-Induced NO-Releasing in BV-2 Cell Line. Food Chem. Toxicol. 2019, 129, 54–63. DOI: 10.1016/j.fct.2019.04.006.
  • Scurria, A.; Sciortino, M.; Albanese, L.; Nuzzo, D.; Zabini, F.; Meneguzzo, F.; Alduina, R.; Presentato, A.; Pagliaro, M.; Avellone, G.; Ciriminna, R. Ciriminna, R. Flavonoids in Lemon and Grapefruit IntegroPectin. ChemistryOpen 2021, 10, 1055–1058. DOI: 10.1002/open.202100223.
  • Tsujimoto, T.; Arai, R.; Yoshitomi, T.; Yamamoto, Y.; Ozeki, Y.; Hakamatsuka, T.; Uchiyama, N. UHPLC/MS and NMR-Based Metabolomic Analysis of Dried Water Extract of Citrus-Type Crude Drugs. Chem. Pharm. Bull. (Tokyo) 2021, 69, 741–746. DOI: 10.1248/cpb.c21-00180.
  • Perlatti, B.; Fernandes, J. B.; Silva, M. F. G. F.; Ardila, J. A.; Carneiro, R. L.; Souza, B. H. S.; Costa, E. N.; Eduardo, W. I. Boiça Junior, A. L.; Forim, M. R. Application of a Quantitative HPLC-ESI-MS/MS Method for Flavonoids in Different Vegetables Matrices. J. Braz. Chem 2016, 27(3), 475-483. DOI: 10.5935/0103-5053.20150273.
  • Liu, E.-H.; Zhao, P.; Duan, L.; Zheng, G.-D.; Guo, L.; Yang, H.; Li, P. Simultaneous Determination of Six Bioactive Flavonoids in Citri Reticulatae Pericarpium by Rapid Resolution Liquid Chromatography Coupled with Triple Quadrupole Electrospray Tandem Mass Spectrometry. Food Chem. 2013, 141, 3977–3983. DOI: 10.1016/j.foodchem.2013.06.077.
  • Duarte, R.; Duarte, A. C. Multidimensional Analytical Techniques in Environmental Research: Evolution of Concepts. In Multidimensional Analytical Techniques in Environmental Research; Duarte, R.M.B.O., Duarte, A.C., Eds.; Elsevier: Amsterdam, NL, 2020, 1–26. DOI: 10.1016/B978-0-12-818896-5.00001-6.
  • Shi, P.; He, Q.; Song, Y.; Qu, H.; Cheng, Y. Characterization and Identification of Isomeric Flavonoid O-Diglycosides from Genus Citrus in Negative Electrospray Ionization by Ion Trap Mass Spectrometry and Time-of-Flight Mass Spectrometry. Anal Chim. Acta 2007, 598, 110–118. DOI: 10.1016/j.aca.2007.07.027.
  • Liu, W.; Zheng, W.; Cheng, L.; Li, M.; Huang, J.; Bao, S.; Xu, Q.; Ma, Z. Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2. Nat. Prod. Bioprospect 2022, 12, 4. https://doi.org/10.1007/s13659-022-00325-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.