487
Views
9
CrossRef citations to date
0
Altmetric
Review Article

A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr3+/6+Ions

Pages 487-507 | Published online: 26 Jun 2022

References

  • Barnhart, J. Occurrences, Uses, and Properties of Chromium. Regul. Toxicol. Pharmacol. 1997, 26, S3–S7. DOI: 10.1006/rtph.1997.1132.
  • Elahi, A.; Arooj, I.; Bukhari, D. A.; Rehman, A. Successive Use of Microorganisms to Remove Chromium from Wastewater. Appl. Microbiol. Biotechnol. 2020, 104, 3729–3743. DOI: 10.1007/s00253-020-10533-y.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metals Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4_6.
  • Sharma, N.; Sodhi, K. K.; Kumar, M.; Singh, D. K. Heavy Metal Pollution: Insights into Chromium Eco-Toxicity and Recent Advancement in Its Remediation. Environ. Nanotechnol, Monit. Manag 2021, 15, 100388. DOI: 10.1016/j.enmm.2020.100388.
  • Vincent, J. B. Chromium: Is It Essential, Pharmacologically Relevant, or Toxic? Met. Ions Life Sci. 2013, 13, 171–198. DOI: 10.1007/978-94-007-7500-8_6.
  • Cefalu, W. T.; Hu, F. B. Role of Chromium in Human Health and in Diabetes. Diabetes Care. 2004, 27, 2741–2751. DOI: 10.2337/diacare.27.11.2741.
  • Pechova, A.; Pavlata, L. Chromium as an Essential Nutrient: A Review. Vet. Med. (Praha) 2007, 52, 1–18.
  • Rudolf, E.; Červinka, M. The Role of Biomembranes in Chromium (III)-Induced Toxicity in Vitro. Altern. Lab. Anim. 2005, 33, 249–259. DOI: 10.1177/026119290503300311.
  • Costa, M.; Klein, C. B. Toxicity and Carcinogenicity of Chromium Compounds in Humans. Crit. Rev. Toxicol. 2006, 36, 155–163. DOI: 10.1080/10408440500534032.
  • Dubey, R.; Verma, P.; Kumar, S. Cr (III) Genotoxicity and Oxidative Stress: An Occupational Health Risk for Leather Tannery Workers of South Asian Developing Countries. Toxicol. Ind. Health. 2022, 38, 112–126. DOI: 10.1177/07482337211055131.
  • Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. DOI: 10.1080/00958972.2011.583646.
  • den Braver-Sewradj, S. P.; van Benthem, J.; Staal, Y. C. M.; Ezendam, J.; Piersma, A. H.; Hessel, E. V. S. Occupational Exposure to Hexavalent Chromium. Part II. Hazard Assessment of Carcinogenic Effects. Regul. Toxicol. Pharmacol. 2021, 126, 105045. DOI: 10.1016/j.yrtph.2021.105045.
  • Welling, R.; Beaumont, J. J.; Petersen, S. J.; Alexeeff, G. V.; Steinmaus, C. Chromium VI and Stomach Cancer: A Meta-Analysis of the Current Epidemiological Evidence. Occup. Environ. Med. 2015, 72, 151–159. DOI: 10.1136/oemed-2014-102178.
  • Seidler, A.; Jähnichen, S.; Hegewald, J.; Fishta, A.; Krug, O.; Rüter, L.; Strik, C.; Hallier, E.; Straube, S. Systematic Review and Quantification of Respiratory Cancer Risk for Occupational Exposure to Hexavalent Chromium. Int. Arch. Occup. Environ. Health. 2013, 86, 943–955. DOI: 10.1007/s00420-012-0822-0.
  • Crump, C.; Crump, K.; Hack, E.; Luippold, R.; Mundt, K.; Liebig, E.; Panko, J.; Paustenbach, D.; Proctor, D. Dose-Response and Risk Assessment of Airborne Hexavalent Chromium and Lung Cancer Mortality. Risk Anal. 2003, 23, 1147–1163. DOI: 10.1111/j.0272-4332.2003.00388.x.
  • Karagiannis, D.; Deliveliotis, C.; Papadimitriou, E.; Riza, E.; Lykou, A.; Petralias, A.; Papatsoris, A.; Linos, A. Oral Exposure to Hexavalent Chromium through Drinking Water and Urologic Morbidity in an Industrial Area of Greece. J. Public Health 2015, 23, 249–255. DOI: 10.1007/s10389-015-0681-8.
  • Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V. F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. IJERPH. 2020, 17 (15), 5438. DOI: 10.3390/ijerph17155438.
  • Hausladen, D. M.; Alexander-Ozinskas, A.; McClain, C.; Fendorf, S. Hexavalent Chromium Sources and Distribution in California Groundwater. Environ. Sci. Technol. 2018, 52, 8242–8251. DOI: 10.1021/ACS.EST.7B06627/SUPPL_FILE/ES7B06627_SI_001.PDF.
  • Gan, Y.; Huang, X.; Li, S.; Liu, N.; Li, Y. C.; Freidenreich, A.; Wang, W.; Wang, R.; Dai, J. Source Quantification and Potential Risk of Mercury, Cadmium, Arsenic, Lead, and Chromium in Farmland Soils of Yellow River Delta. J. Clean. Prod 2019, 221, 98–107. DOI: 10.1016/j.jclepro.2019.02.157.
  • Quantin, C.; Ettler, V.; Garnier, J.; Šebek, O. Sources and Extractibility of Chromium and Nickel in Soil Profiles Developed on Czech Serpentinites. Comptes Rendus Geosci. 2008, 340, 872–882. DOI: 10.1016/j.crte.2008.07.013.
  • Li, S.; Wei, T.; Ren, G.; Chai, F.; Wu, H.; Qu, F. Gold Nanoparticles Based Colorimetric Probe for Cr(III) and Cr(VI) Detection. Colloids Surfaces A Physicochem. Eng. Asp 2017, 535, 215–224. DOI: 10.1016/j.colsurfa.2017.09.028.
  • Cathum, S.; Brown, C.; Wong, W. Determination of Cr3+, CrO42-, and Cr2O72- in Environmental Matrixes by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Anal. Bioanal. Chem. 2002, 373, 103–110. DOI: 10.1007/s00216-002-1292-0.
  • Wang, L. L.; Wang, J. Q.; Zheng, Z. X.; Xiao, P. Cloud Point Extraction Combined with High-Performance Liquid Chromatography for Speciation of Chromium(III) and Chromium(VI) in Environmental Sediment Samples. J. Hazard. Mater. 2010, 177, 114–118. DOI: 10.1016/j.jhazmat.2009.12.003.
  • Ma, J.; Wang, Z.; Li, Q.; Gai, R.; Li, X. On-Line Separation and Preconcentration of Hexavalent Chromium on a Novel Mesoporous Silica Adsorbent with Determination by Solution-Cathode Glow Discharge-Atomic Emission Spectrometry. J. Anal. At. Spectrom. 2014, 29, 2315–2322. DOI: 10.1039/C4JA00273C.
  • Sadeghi, S.; Moghaddam, A. Z. Solid-Phase Extraction and HPLC-UV Detection of Cr(III) and Cr(VI) Using Ionic Liquid-Functionalized Silica as a Hydrophobic Sorbent. Anal. Methods 2014, 6, 4867–4877. DOI: 10.1039/c4ay00493k.
  • Chen, B. H.; Jiang, S. J.; Sahayam, A. C. Determination of Cr(VI) in Rice Using Ion Chromatography Inductively Coupled Plasma Mass Spectrometry. Food Chem. 2020, 324, 126698. DOI: 10.1016/j.foodchem.2020.126698.
  • Sel, S.; Erulaş, F. A.; Turak, F.; Bakırdere, S. Simultaneous Determination of Chromium Species in Water and Plant Samples at Trace Levels by Ion Chromatography–Inductively Coupled Plasma-Mass Spectrometry. Anal. Lett. 2019, 52, 761–771. . DOI: 10.1080/00032719.2018.1494738.
  • Dokpikul, N.; Chaiyasith, W. C.; Sananmuang, R.; Ampiah-Bonney, R. J. Surfactant-Assisted Emulsification Dispersive Liquid-Liquid Microextraction Using 2-Thenoyltrifluoroacetone as a Chelating Agent Coupled with Electrothermal Atomic Absorption Spectrometry for the Speciation of Chromium in Water and Rice Samples. Food Chem. 2018, 246, 379–385. DOI: 10.1016/j.foodchem.2017.11.050.
  • Gao, Y.; Feng, B.; Miao, L.; Chen, Y.; Di, J. Determination of Cr(III) Ions Based on Plasmonic Sensing and Anodic Stripping Voltammetry with Amplification of Ag Nanoparticles. Microchem. J 2020, 157, 104995. DOI: 10.1016/j.microc.2020.104995.
  • Stojanović, Z.; Koudelkova, Z.; Sedlackova, E.; Hynek, D.; Richtera, L.; Adam, V. Determination of Chromium(VI) by Anodic Stripping Voltammetry Using a Silver-Plated Glassy Carbon Electrode. Anal. Methods 2018, 10, 2917–2923. DOI: 10.1039/C8AY01047A.
  • Yang, W. P.; Zhang, Z. J.; Deng, W. Simultaneous, Sensitive and Selective on-Line Chemiluminescence Determination of Cr(III) and Cr(VI) by Capillary Electrophoresis. Anal. Chim. Acta 2003, 485, 169–177. DOI: 10.1016/S0003-2670(03)00421-5.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2063017.
  • Alharbi, K. H. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit. Rev. Anal. Chem 2022. DOI: 10.1080/10408347.2022.2033611.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2020, 51, 812–834. DOI: 10.1080/10408347.2020.1777523.
  • Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Ali, S.; Altaf, A. A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2049676.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess 2021, 193, 681.DOI: 10.1007/S10661-021-09432-0.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution. Eur. J. Org. Chem. 2020, 2020, 4681–4692. DOI: 10.1002/ejoc.202000342.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Kim, M. S.; Lee, S. Y.; Jung, J. M.; Kim, C. A New Schiff-Base Chemosensor for Selective Detection of Cu2+ and Co2+ and Its Copper Complex for Colorimetric Sensing of S2- in Aqueous Solution. Photochem. Photobiol. Sci. 2017, 16, 1677–1689. DOI: 10.1039/c7pp00229g.
  • Li, S.; Cao, X.; Chen, C.; Ke, S. Novel Salicylic Acid-Oriented Thiourea-Type Receptors as Colorimetric Chemosensor: Synthesis, Characterizations and Selective Naked-Eye Recognition Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 96, 18–23. DOI: 10.1016/j.saa.2012.04.102.
  • Okudan, A.; Erdemir, S.; Kocyigit, O. Naked-Eye” Detection of Fluoride and Acetate Anions by Using Simple and Efficient Urea and Thiourea Based Colorimetric Sensors. J. Mol. Struct 2013, 1048, 392–398. DOI: 10.1016/j.molstruc.2013.04.077.
  • Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. DOI: 10.1039/b910560n.
  • Udhayakumari, D.; Naha, S.; Velmathi, S. Colorimetric and Fluorescent Chemosensors for Cu2+. a Comprehensive Review from the Years 2013–15. Anal. Methods 2017, 9, 552–578. DOI: 10.1039/C6AY02416E.
  • Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the past, Present and Future Prospect. J. Mol. Struct 2019, 1193, 89–102. DOI: 10.1016/j.molstruc.2019.05.007.
  • Suganya, S.; Naha, S.; Velmathi, S. A Critical Review on Colorimetric and Fluorescent Probes for the Sensing of Analytes via Relay Recognition from the Year 2012–17. ChemistrySelect 2018, 3, 7231–7268. DOI: 10.1002/slct.201801222.
  • Alrooqi, M.; Khan, S.; Alhumaydhi, F. A.; Asiri, S. A.; Alshamrani, M.; Mashraqi, M. M.; Alzamami, A.; Alshahrani, A. M.; Aldahish, A. A. A Therapeutic Journey of Pyridine-Based Heterocyclic Compounds as Potent Anticancer Agents: A Review (from 2017 to 2021). Anticancer. Agents Med. Chem. 2022. DOI: 10.2174/1871520622666220324102849.
  • Udhayakumari, D.; Inbaraj, V. A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J. Fluoresc. 2020, 30, 1203–1223. DOI: 10.1007/s10895-020-02570-7.
  • Jebastin Andrews, S. G.; Benita Jeba Silviya, S.; Jeyanthi, D.; Sathya Devi, E.; Winfred Jebaraj, J.; Balakrishnan, C. Biocompatible Alkyne Arms Containing Schiff Base Fluorescence Indicator for Dual Detection of CdII and PbII at Physiological pH and its Application to Live Cell Imaging. Analyst 2020, 145, 4576–4586. DOI: 10.1039/d0an00862a.
  • Li, Y.; Li, K.; He, J. A “turn-On” Fluorescent Chemosensor for the Detection of Zn(II) in Aqueous Solution at Neutral pH and Its Application in Live Cells imaging. Talanta 2016, 153, 381–385. DOI: 10.1016/j.talanta.2016.03.040.
  • Wang, X.; Li, H.; Lin, J.; Wang, C.; Wang, X. L. Capped Keggin Type Polyoxometalate-Based Inorganic-Organic Hybrids Involving in Situ Ligand Transformation as Supercapacitors and Efficient Electrochemical Sensors for Detecting Cr(VI). Inorg Chem 2021, 60, 19287–19296. DOI: 10.1021/ACS.INORGCHEM.1C03097/SUPPL_FILE/IC1C03097_SI_001.PDF.
  • Parmar, B.; Bisht, K. K.; Rachuri, Y.; Suresh, E. Zn (Ii) /Cd (Ii) Based Mixed Ligand Coordination Polymers as Fluorosensors for Aqueous Phase Detection of Hazardous Pollutants. Inorg. Chem. Front. 2020, 7, 1082–1107. DOI: 10.1039/C9QI01549C.
  • Manoj, D.; Saravanan, R.; Ponce, L. C. Recent Strategies on Hybrid Inorganic-Graphene Materials for Enhancing the Electrocatalytic Activity towards Heavy Metal Detection. Top. Catal 2021, 65, 1–11. DOI: 10.1007/S11244-021-01475-4.
  • Yan, Z.; Yuen, M. F.; Hu, L.; Sun, P.; Lee, C. S. Advances for the Colorimetric Detection of Hg2+ in Aqueous Solution. RSC Adv. 2014, 4, 48373–48388. DOI: 10.1039/C4RA07930B.
  • Rasheed, T.; Bilal, M.; Nabeel, F.; Iqbal, H. M. N.; Li, C.; Zhou, Y. Fluorescent Sensor Based Models for the Detection of Environmentally-Related Toxic Heavy Metals. Sci. Total Environ. 2018, 615, 476–485. DOI: 10.1016/j.scitotenv.2017.09.126.
  • Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A Mini-Review on Functional Nucleic Acids-Based Heavy Metal Ion Detection. Biosens. Bioelectron. 2016, 86, 353–368. DOI: 10.1016/j.bios.2016.06.075.
  • Zhu, H.; Fan, J.; Wang, B.; Peng, X. Fluorescent, MRI, and Colorimetric Chemical Sensors for the First-Row D-Block Metal Ions. Chem. Soc. Rev. 2015, 44, 4337–4366. DOI: 10.1039/c4cs00285g.
  • Dongare, P. R.; Gore, A. H. Recent Advances in Colorimetric and Fluorescent Chemosensors for Ionic Species: Design, Principle and Optical Signalling Mechanism. ChemistrySelect 2021, 6, 5657–5669. DOI: 10.1002/slct.202101090.
  • Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A New Trend in Rhodamine-Based Chemosensors: Application of Spirolactam Ring-Opening to Sensing Ions. Chem. Soc. Rev. 2008, 37, 1465–1472. DOI: 10.1039/b802497a.
  • Zhang, R.; Yan, F.; Huang, Y.; Kong, D.; Ye, Q.; Xu, J.; Chen, L. Rhodamine-Based Ratiometric Fluorescent Probes Based on Excitation Energy Transfer Mechanisms: Construction and Applications in Ratiometric Sensing. RSC Adv. 2016, 6, 50732–50760. DOI: 10.1039/C6RA06956H.
  • Yang, Y.; Gao, C. Y.; Liu, J.; Dong, D. Recent Developments in Rhodamine Salicylidene Hydrazone Chemosensors. Anal. Methods 2016, 8, 2863–2871. DOI: 10.1039/C6AY00135A.
  • Hazra, A.; Roy, P. A Rhodamine Based Dye for Sensing of Group 13 Metal Ions. Anal. Chim. Acta. 2022, 1193, 339378. DOI: 10.1016/j.aca.2021.339378.
  • Gupta, V. K.; Mergu, N.; Singh, A. K. Rhodamine-Derived Highly Sensitive and Selective Colorimetric and off–on Optical Chemosensors for Cr3+. Sensors Actuators B Chem. 2015, 220, 420–432. DOI: 10.1016/j.snb.2015.05.075.
  • Zhou, Y.; Zhang, J.; Zhang, L.; Zhang, Q.; Ma, T.; Niu, J. A Rhodamine-Based Fluorescent Enhancement Chemosensor for the Detection of Cr3+ in Aqueous Media. Dye. Pigment 2013, 97, 148–154. DOI: 10.1016/j.dyepig.2012.12.006.
  • Li, X. M.; Zhao, R. R.; Yang, Y.; Lv, X. W.; Wei, Y. L.; Tan, R.; Zhang, J. F.; Zhou, Y. A Rhodamine-Based Fluorescent Sensor for Chromium Ions and Its Application in Bioimaging. Chinese Chem. Lett 2017, 28, 1258–1261. DOI: 10.1016/j.cclet.2016.12.029.
  • Liu, H.; Wan, X.; Liu, T.; Li, Y.; Yao, Y. Cascade Sensitive and Selective Fluorescence off–on–off Sensor for Cr3+ Cation and F − Anion. Sensors Actuators B Chem. 2014, 200, 191–197. DOI: 10.1016/j.snb.2014.04.027.
  • Nayab, P. S.; Shkir, M. Rapid and Simultaneous Detection of Cr (III) and Fe (III) Ions by a New Naked Eye and Fluorescent Probe and Its Application in Real Samples. Sensors Actuators B Chem 2017, 251, 951–957. DOI: 10.1016/j.snb.2017.05.102.
  • Adhikari, S.; Ta, S.; Ghosh, A.; Guria, S.; Pal, A.; Ahir, M.; Adhikary, A.; Hira, S. K.; Manna, P. P.; Das, D. A 1,8 Naphthalimide Anchor Rhodamine B Based FRET Probe for Ratiometric Detection of Cr3 + Ion in Living Cells. J. Photochem. Photobiol. A Chem 2019, 372, 49–58. DOI: 10.1016/j.jphotochem.2018.12.010.
  • Kursunlu, A. N.; Bastug, E.; Guler, E. Importance of BODIPY-Based Chemosensors for Cations and Anions in Bio-Imaging Applications. CAC. 2022, 18, 163–175. DOI: 10.2174/1573411017666201215105055.
  • Lee, C. H.; Yoon, H. J.; Shim, J. S.; Jang, W. D. A Boradiazaindacene-Based Turn-On Fluorescent Probe for Cyanide Detection in Aqueous Media. Chemistry 2012, 18, 4513–4516. DOI: 10.1002/chem.201200008.
  • Bayrakci, M.; Kursunlu, A. N.; Güler, E.; Ertul, Ş. A New Calix[4]Azacrown Ether Based Boradiazaindacene (Bodipy): Selective Fluorescence Changes towards Trivalent Lanthanide Ions. Dye. Pigment. 2013, 99, 268–274. DOI: 10.1016/j.dyepig.2013.05.025.
  • Boens, N.; Leen, V.; Dehaen, W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. DOI: 10.1039/c1cs15132k.
  • Wang, D.; Shiraishi, Y.; Hirai, T. A Distyryl BODIPY Derivative as a Fluorescent Probe for Selective Detection of Chromium(III). Tetrahedron Lett. 2010, 51, 2545–2549. DOI: 10.1016/j.tetlet.2010.03.013.
  • Liu, K.; Zhao, X.; Liu, Q.; Huo, J.; Li, Z.; Wang, X. A Novel Multifunctional BODIPY-Derived Probe for the Sequential Recognition of Hg2+ and I−, and the Fluorometric Detection of Cr3+. Sensors Actuators B Chem. 2017, 239, 883–889. DOI: 10.1016/j.snb.2016.08.109.
  • Chereddy, N. R.; Raju, M. V. N.; Reddy, B. M.; Krishnaswamy, V. R.; Korrapati, P. S.; Reddy, B. J. M.; Rao, V. J. A TBET Based BODIPY-Rhodamine Dyad for the Ratiometric Detection of Trivalent Metal Ions and Its Application in Live Cell Imaging. Sensors Actuators B Chem. 2016, 237, 605–612. DOI: 10.1016/j.snb.2016.06.131.
  • Kaur, N.; Kaur, P.; Singh, K. Ferrocene-BODIPY Push–Pull Dyad: A Common Platform for the Sensing of Hg2+ and Cr3. +Sensors Actuators B Chem. 2016, 229, 499–505. DOI: 10.1016/j.snb.2016.01.134.
  • Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. DOI: 10.1021/ACS.CHEMREV.9B00145/ASSET/IMAGES/MEDIUM/CR-2019-00145U_0291.GIF.
  • Saravana Mani, K.; Rajamanikandan, R.; Ravikumar, G.; Vijaya Pandiyan, B.; Kolandaivel, P.; Ilanchelian, M.; Rajendran, S. P. Highly Sensitive Coumarin-Pyrazolone Probe for the Detection of Cr3+ and the Application in Living Cells. ACS Omega 2018, 3, 17212–17219. DOI: 10.1021/acsomega.8b01907.
  • Mahata, S.; Janani, G.; Mandal, B. B.; Manivannan, V. A Coumarin Based Visual and Fluorometric Probe for Selective Detection of Al(III), Cr(III) and Fe(III) Ions through “turn-On” Response and Its Biological Application. J. Photochem. Photobiol. A Chem. 2021, 417, 113340. DOI: 10.1016/j.jphotochem.2021.113340.
  • Jia, H.; Feng, C.; Tian, C. A Simple and Rapid Fluorescent Probe for Detection of Cr3+ Based on a Coumarin Schiff Base in Aqueous Solution. Anal. Sci. 2018, 34, 1079–1083. DOI: 10.2116/analsci.18P036.
  • Guha, S.; Lohar, S.; Banerjee, A.; Sahana, A.; Mukhopadhyay, S. K.; Matalobos, J. S.; Das, D. Anthracene Appended Coumarin Derivative as a Cr(III) Selective Turn-on Fluorescent Probe for Living Cell Imaging: A Green Approach towards Speciation Studies. Anal. Methods 2012, 4, 3163–3168. DOI: 10.1039/c2ay25693b.
  • Mukherjee, S.; Betal, S.; Chattopadhyay, A. P. Luminescence Sensing, DFT, Extraction and Monitoring of Cr3+ and Al3 + via the Application of First Derivative Fluorescence Spectroscopy. New J. Chem. 2020, 44, 12692–12703. DOI: 10.1039/D0NJ01029D.
  • Kolcu, F.; Erdener, D.; Kaya, İ. A Schiff Base Based on Triphenylamine and Thiophene Moieties as a Fluorescent Sensor for Cr (III) Ions: Synthesis, Characterization and Fluorescent Applications. Inorganica Chim. Acta 2020, 509, 119676. DOI: 10.1016/j.ica.2020.119676.
  • Guha, S.; Lohar, S.; Banerjee, A.; Sahana, A.; Hauli, I.; Mukherjee, S. K.; Matalobos, J. S.; Das, D. Thiophene Anchored Coumarin Derivative as a Turn-on Fluorescent Probe for Cr3+: Cell Imaging and Speciation Studies. Talanta 2012, 91, 18–25. DOI: 10.1016/j.talanta.2011.12.014.
  • Zhu, W.; Yang, L.; Fang, M.; Wu, Z.; Zhang, Q.; Yin, F.; Huang, Q.; Li, C. New Carbazole-Based Schiff Base: Colorimetric Chemosensor for Fe3+ and Fluorescent Turn-on Chemosensor for Fe3+ and Cr3+. J. Lumin. 2015, 158, 38–43. DOI: 10.1016/j.jlumin.2014.09.020.
  • Helal, A.; Kim, H. S. Thiazole-Based Chemosensor: Synthesis and Ratiometric Fluorescence Sensing of Zinc. Tetrahedron Lett. 2009, 50, 5510–5515. DOI: 10.1016/j.tetlet.2009.07.078.
  • Moradi, S. E.; Molavipordanjani, S.; Hosseinimehr, S. J.; Emami, S. Benzo[d]Imidazo[2,1-B]thiazole-Based Fluorescent Sensor for Zn2+ Ion Detection. J. Photochem. Photobiol. A Chem. 2020, 389, 112184. DOI: 10.1016/j.jphotochem.2019.112184.
  • Lv, R. G.; Chen, S. W.; Gao, Y. A Selective Fluorescence Probe Based on Benzothiazole for the Detection of Cr3+. Heterocycl. Commun. 2017, 23, 389–394. DOI: 10.1515/HC-2017-0120/DOWNLOADASSET/SUPPL/HC-2017-0120_SUPPL.DOC.
  • Zhang, D.; Jia, B.; Li, M.; Guo, J.; Wang, T.; Cao, C.; Wang, Y.; Liu, J. A Ratiometric Fluorescent Probe for Sensitive and Selective Detection of Chromium (VI) in Aqueous Solutions. Microchem. J. 2020, 159, 105337. DOI: 10.1016/j.microc.2020.105337.
  • Sudheer; Kumar, V.; Kumar, P.; Gupta, R. Detection of Al3+ and Fe3+ Ions by Nitrobenzoxadiazole Bearing Pyridine-2,6-Dicarboxamide Based Chemosensors: Effect of Solvents on Detection. New J. Chem. 2020, 44, 13285–13294. DOI: 10.1039/D0NJ00517G.
  • Rahimi, H.; Hosseinzadeh, R.; Tajbakhsh, M. A New and Efficient Pyridine-2,6-Dicarboxamide-Based Fluorescent and Colorimetric Chemosensor for Sensitive and Selective Recognition of Pb2+ and Cu2+. J. Photochem. Photobiol. A Chem 2021, 407, 113049. DOI: 10.1016/j.jphotochem.2020.113049.
  • Seenan, S.; Manickam, S.; Kulathu Iyer, S. A New Furan Based Fluorescent Chemosensor for the Recognition of Cr3+ Ion and Its Application in Real Sample Analysis. J. Photochem. Photobiol. A Chem 2021, 418, 113441. DOI: 10.1016/j.jphotochem.2021.113441.
  • Kursunlu, A. N.; Şahin, E.; Güler, E. Bodipy/dipyridylamino-Based “turn-On” Fluorescent Chemosensor for Trivalent Chromium Cations: Characterization and Photophysical Properties. RSC Adv. 2015, 5, 5951–5957. DOI: 10.1039/C4RA12874E.
  • He, X.; Wu, C.; Qian, Y.; Li, Y.; Zhang, L.; Ding, F.; Chen, H.; Shen, J. Highly Sensitive and Selective Light-up Fluorescent Probe for Monitoring Gallium and Chromium Ions in Vitro and in Vivo. Analyst 2019, 144, 3807–3816. DOI: 10.1039/c9an00625g.
  • Tharmaraj, V.; Pitchumani, K. An Acyclic, Dansyl Based Colorimetric and Fluorescent Chemosensor for Hg(II) via Twisted Intramolecular Charge Transfer (TICT). Anal. Chim. Acta. 2012, 751, 171–175. DOI: 10.1016/j.aca.2012.09.016.
  • Chae, J. B.; Yun, D.; Lee, H.; Lee, H.; Kim, K. T.; Kim, C. Highly Sensitive Dansyl-Based Chemosensor for Detection of Cu2+ in Aqueous Solution and Zebrafish. ACS Omega. 2019, 4, 12537–12543. DOI: 10.1021/ACSOMEGA.9B00970/ASSET/IMAGES/MEDIUM/AO-2019-00970T_M001.GIF.
  • Wu, H.; Zhou, P.; Wang, J.; Zhao, L.; Duan, C. Dansyl-Based Fluorescent Chemosensors for Selective Responses of Cr(III). New J. Chem. 2009, 33, 653–658. DOI: 10.1039/B815207A.
  • Ma, L. J.; Cao, W.; Liu, J.; Zhang, M.; Yang, L. Chromium (III) Ion-Selective “turn-On” and Ratiometric Probe Based on the Asparagine Bearing Dansyl Group in Aqueous Solutions. Sensors Actuators B Chem. 2013, 181, 782–786. DOI: 10.1016/j.snb.2013.01.095.
  • Di Stefano, S.; Capocasa, G.; Mandolini, L. Supramolecular Catalysts Featuring Crown Ethers as Recognition Units. Eur. J. Org. Chem. 2020, 2020, 3340–3350. DOI: 10.1002/ejoc.201901914.
  • Li, J.; Yim, D.; Jang, W. D.; Yoon, J. Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers. Chem. Soc. Rev. 2017, 46, 2437–2458. DOI: 10.1039/c6cs00619a.
  • Kralj, M.; Tušek-Božić, L.; Frkanec, L. Biomedical Potentials of Crown Ethers: Prospective Antitumor Agents. ChemMedChem 2008, 3, 1478–1492. DOI: 10.1002/cmdc.200800118.
  • Diao, Q.; Ma, P.; Lv, L.; Li, T.; Wang, X.; Song, D. A Novel Fluorescent Probe for Cr(3+) Based on Rhodamine-Crown Ether Conjugate and its Application to Drinking Water Examination and Bioimaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016, 156, 15–21. DOI: 10.1016/j.saa.2015.11.025.
  • Simon, T.; Shellaiah, M.; Srinivasadesikan, V.; Lin, C. C.; Ko, F. H.; Sun, K. W.; Lin, M. C. A Simple Pyrene Based AIEE Active Schiff Base Probe for Selective Naked Eye and Fluoresence off–on Detection of Trivalent Cations with Live Cell Application. Sensors Actuators B Chem. 2016, 231, 18–29. DOI: 10.1016/j.snb.2016.02.136.
  • Kaur, M.; Kaur, P.; Dhuna, V.; Singh, S.; Singh, K. A Ferrocene-Pyrene Based 'Turn-On' Chemodosimeter for Cr(3+)- Application in Bioimaging“” . Dalton Trans. 2014, 43, 5707–5712. DOI: 10.1039/c3dt53536c.
  • Feng, E.; Fan, C.; Wang, N.; Liu, G.; Pu, S. A Highly Selective Diarylethene Chemosensor for Colorimetric Detection of CN − and Fluorescent Relay-Detection of Al3+/Cr3+. Dye. Pigment 2018, 151, 22–27. DOI: 10.1016/j.dyepig.2017.12.041.
  • Xu, H.; Ding, H.; Fan, C.; Liu, G.; Pu, S. A Multi-Responsive Diarylethene-Rhodamine 6G Derivative for Sequential Detection of Cr3+ and CO32−. Tetrahedron 2018, 74, 3489–3497. DOI: 10.1016/j.tet.2018.02.032.
  • Kumawat, L. K.; Mergu, N.; Asif, M.; Gupta, V. K. Novel Synthesized Antipyrine Derivative Based “Naked Eye” Colorimetric Chemosensors for Al3+ and Cr3+. Sensors Actuators, B Chem 2016, 231, 847–859. DOI: 10.1016/j.snb.2016.03.062.
  • Zhao, M.; Ma, L.; Zhang, M.; Cao, W.; Yang, L.; Ma, L. J. Glutamine-Containing “turn-On” Fluorescence Sensor for the Highly Sensitive and Selective Detection of Chromium (III) Ion in Water. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 116, 460–465. DOI: 10.1016/j.saa.2013.07.069.
  • Zhu, A.; Pan, J.; Liu, Y.; Chen, F.; Ban, X.; Qiu, S.; Luo, Y.; Zhu, Q.; Yu, J.; Liu, W. A Novel Dibenzimidazole-Based Fluorescent Organic Molecule as a Turn-off Fluorescent Probe for Cr3+ Ion with High Sensitivity and Quick Response. J. Mol. Struct 2020, 1206, 127696. DOI: 10.1016/j.molstruc.2020.127696.
  • Seenan, S.; Iyer, S. K. Colorimetric Metal Sensing of Fe3+ and Cr3+ and Photophysical and Electrochemical Studies Based on Benzo[4,5]Thiazolo[3,2- A[Pyrimidine-3-Carboxylate and Its Derivatives. J. Org. Chem. 2020, 85, 1871–1881. DOI: 10.1021/ACS.JOC.9B02297/SUPPL_FILE/JO9B02297_SI_001.PDF.
  • Liu, D.; Pang, T.; Ma, K.; Jiang, W.; Bao, X. A New Highly Sensitive and Selective Fluorescence Chemosensor for Cr3+ Based on Rhodamine B and a 4,13-Diaza-18-Crown 6-Ether Conjugate. RSC Adv. 2014, 4, 2563–2567. DOI: 10.1039/C3RA46237D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.