460
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments

, ORCID Icon, , , , & ORCID Icon show all
Pages 508-528 | Published online: 07 Jun 2022

References

  • Aspinall, H. C. Chiral Lanthanide Complexes: coordination Chemistry and Applications. Chem. Rev. 2002, 102, 1807–1850. DOI: 10.1021/cr010288q.
  • Hegg, E. L.; Burstyn, J. N. Toward the Development of Metal-Based Synthetic Nucleases and Peptidases: A Rationale and Progress Report in Applying the Principles of Coordination Chemistry. Coord. Chem. Rev. 1998, 173, 133–165. DOI: 10.1016/S0010-8545(98)00157-X.
  • Kumar, N.; Khullar, S.; Singh, Y.; Mandal, S. K. Hierarchical Importance of Coordination and Hydrogen Bonds in the Formation of Homochiral 2D Coordination Polymers and 2D Supramolecular Assemblies. CrystEngComm 2014, 16, 6730–6744. DOI: 10.1039/C4CE00387J.
  • Poli, R. Radical Coordination Chemistry and Its Relevance to Metal‐Mediated Radical Polymerization. Eur. J. Inorg. Chem. 2011, 2011, 1513–1530. DOI: 10.1002/ejic.201001364.
  • Haque, A.; Ilmi, R.; Al-Busaidi, I. J.; Khan, M. S. Coordination Chemistry and Application of Mono-and Oligopyridine-Based Macrocycles. Coord. Chem. Rev. 2017, 350, 320–339. DOI: 10.1016/j.ccr.2017.07.008.
  • Holliday, B. J.; Mirkin, C. A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. Angew. Chem. Int. Ed. 2001, 40, 2022–2043. DOI: 10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D.
  • Khan, E.; Ahmad, T.; Gul, Z.; Ullah, F.; Tahir, M. N.; Noor, A. Methyl-Substituted 2-Aminothiazole–Based Cobalt (II) and Silver (I) complexes: synthesis, X-Ray Structures, and Biological Activities. Turk. J. Chem. 2019, 43, 857–868. DOI: 10.3906/kim-1812-4.
  • Bernhardt, P. V.; Chin, P.; Sharpe, P. C.; Richardson, D. R. Hydrazone Chelators for the Treatment of Iron Overload Disorders: iron Coordination Chemistry and Biological Activity. Dalton Trans. 2007, 30, 3232–3244. DOI: 10.1039/b704102k.
  • Castillo-Blum, S. E.; Barba-Behrens, N. Coordination Chemistry of Some Biologically Active Ligands. Coord. Chem. Rev. 2000, 196, 3–30. DOI: 10.1016/S0010-8545(99)00153-8.
  • Donnelly, P. S. The Role of Coordination Chemistry in the Development of Copper and Rhenium Radiopharmaceuticals. Dalton Trans. 2011, 40, 999–1010. DOI: 10.1039/c0dt01075h.
  • Haas, K. L.; Franz, K. J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. DOI: 10.1021/cr900134a.
  • Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coordination Chemistry of 1, 3, 5-Triaza-7-Phosphaadamantane (PTA): Transition Metal Complexes and Related Catalytic, Medicinal and Photoluminescent Applications. Coord. Chem. Rev. 2004, 248, 955–993. DOI: 10.1016/j.ccr.2004.03.010.
  • Ronconi, L.; Sadler, P. J. Using Coordination Chemistry to Design New Medicines. Coord. Chem. Rev. 2007, 251, 1633–1648. DOI: 10.1016/j.ccr.2006.11.017.
  • Tfouni, E.; Krieger, M.; McGarvey, B. R.; Franco, D. W. Structure, Chemical and Photochemical Reactivity and Biological Activity of Some Ruthenium Amine Nitrosyl Complexes. Coord. Chem. Rev. 2003, 236, 57–69. DOI: 10.1016/S0010-8545(02)00177-7.
  • Thompson, K. H.; Orvig, C. Coordination Chemistry of Vanadium in Metallopharmaceutical Candidate Compounds. Coord. Chem. Rev. 2001, 219-221, 1033–1053. DOI: 10.1016/S0010-8545(01)00395-2.
  • Gul, Z.; Din, N. U.; Khan, E.; Ullah, F.; Tahir, M. N. Synthesis, Molecular Structure, anti-Microbial, anti-Oxidant and Enzyme Inhibition Activities of 2-Amino-6-Methylbenzothiazole and Its Cu (II) and Ag (I) complexes. J. Mol. Struct. 2020, 1199, 126956. DOI: 10.1016/j.molstruc.2019.126956.
  • Allardyce, C. S.; Dyson, P. J. Metal-Based Drugs That Break the Rules. Dalton Trans. 2016, 45, 3201–3209. DOI: 10.1039/c5dt03919c.
  • Łakomska, I.; Fandzloch, M. Application of 1, 2, 4-Triazolo [1, 5-a] Pyrimidines for the Design of Coordination Compounds with Interesting Structures and New Biological Properties. Coord. Chem. Rev. 2016, 327-328, 221–241. DOI: 10.1016/j.ccr.2016.04.014.
  • Soobramoney, L.; Bala, M. D.; Friedrich, H. B. Coordination Chemistry of Co Complexes Containing Tridentate SNS Ligands and Their Application as Catalysts for the Oxidation of n-Octane. Dalton Trans. 2014, 43, 15968–15978. DOI: 10.1039/c4dt01750a.
  • Atkinson, R. C.; Gibson, V. C.; Long, N. J.; White, A. J.; Williams, D. J. Synthesis, Coordination Chemistry, and Catalytic Application of a Novel Unsymmetrical P/O Ferrocenediyl Ligand. Organometallics 2004, 23, 2744–2751. DOI: 10.1021/om0343768.
  • Rodríguez-Lugo, R.; Chacón-Terán, M.; De León, S.; Vogt, M.; Rosenthal, A.; Landaeta, V. Synthesis, Characterization and Pd(ii)-coordination chemistry of the ligand tris(quinolin-8-yl)phosphite. Application in the catalytic aerobic oxidation of amines . Dalton Trans. 2018, 47, 2061–2072. DOI: 10.1039/c7dt04000h.
  • Willms, H.; Frank, W.; Ganter, C. Coordination Chemistry and Catalytic Application of Bidentate Phosphaferrocene − Pyrazole and − Imidazole Based P, N-Ligands. Organometallics 2009, 28, 3049–3058. DOI: 10.1021/om8012025.
  • Müller, C.; López, L. G.; Kooijman, H.; Spek, A. L.; Vogt, D. Chiral Bidentate Phosphabenzene-Based Ligands: synthesis, Coordination Chemistry, and Application in Rh-Catalyzed Asymmetric Hydrogenations. Tetrahedron Lett. 2006, 47, 2017–2020. DOI: 10.1016/j.tetlet.2006.01.049.
  • Khusnutdinova, J. R.; Milstein, D. Metal-ligand cooperation. Angew. Chem. Int. Ed. Engl. 2015, 54, 12236–12273. DOI: 10.1002/anie.201503873.
  • Gunanathan, C.; Milstein, D. Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis“”. Acc. Chem. Res. 2011, 44, 588–602. DOI: 10.1021/ar2000265.
  • Milstein, D. Discovery of Environmentally Benign Catalytic Reactions of Alcohols Catalyzed by Pyridine-Based Pincer Ru Complexes, Based on Metal–Ligand Cooperation. Top. Catal. 2010, 53, 915–923. DOI: 10.1007/s11244-010-9523-7.
  • Zell, T.; Milstein, D. Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of metal-ligand cooperation by aromatization/dearomatization. Acc. Chem. Res. 2015, 48, 1979–1994. DOI: 10.1021/acs.accounts.5b00027.
  • Bureekaew, S.; Shimomura, S.; Kitagawa, S. Chemistry and Application of Flexible Porous Coordination Polymers. Sci. Technol. Adv. Mater. 2008, 9, 014108. DOI: 10.1088/1468-6996/9/1/014108.
  • Spokoyny, A. M.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T.; Mirkin, C. A. Porosity Tuning of Carborane-Based Metal–Organic Frameworks (MOFs) via Coordination Chemistry and Ligand Design. Inorg. Chim. Acta 2010, 364, 266–271. DOI: 10.1016/j.ica.2010.08.007.
  • Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen Storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. DOI: 10.1039/b802256a.
  • Collins, D. J.; Zhou, H.-C. Hydrogen Storage in Metal–Organic Frameworks. J. Mater. Chem. 2007, 17, 3154. DOI: 10.1039/b702858j.
  • He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane Storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. DOI: 10.1039/c4cs00032c.
  • Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Metal–Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. DOI: 10.1002/adma.201705189.
  • Bao, Z.; Chang, G.; Xing, H.; Krishna, R.; Ren, Q.; Chen, B. Potential of Microporous Metal–Organic Frameworks for Separation of Hydrocarbon Mixtures. Energy Environ. Sci. 2016, 9, 3612–3641. DOI: 10.1039/C6EE01886F.
  • Krishna, R.; van Baten, J. M. In Silico Screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys. 2011, 13, 10593–10616. DOI: 10.1039/c1cp20282k.
  • Banerjee, D.; Cairns, A. J.; Liu, J.; Motkuri, R. K.; Nune, S. K.; Fernandez, C. A.; Krishna, R.; Strachan, D. M.; Thallapally, P. K. Potential of metal-organic frameworks for separation of xenon and krypton. Acc. Chem. Res. 2015, 48, 211–219. DOI: 10.1021/ar5003126.
  • Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal–Organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30, 1703663. DOI: 10.1002/adma.201703663.
  • Corma, A.; García, H.; Llabrés i Xamena, F. X. Llabrés i Xamena, F. Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chem. Rev. 2010, 110, 4606–4655. DOI: 10.1021/cr9003924.
  • Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. DOI: 10.1039/c4cs00094c.
  • Gao, Q.; Xu, J.; Bu, X.-H. Recent Advances about Metal–Organic Frameworks in the Removal of Pollutants from Wastewater. Coord. Chem. Rev. 2019, 378, 17–31. DOI: 10.1016/j.ccr.2018.03.015.
  • Liu, C.; Yu, L.-Q.; Zhao, Y.-T.; Lv, Y.-K. Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Mikrochim. Acta. 2018, 185, 342. DOI: 10.1007/s00604-018-2879-2.
  • Zhao, X.; Yu, X.; Wang, X.; Lai, S.; Sun, Y.; Yang, D. Recent Advances in Metal-Organic Frameworks for the Removal of Heavy Metal Oxoanions from Water. Chem. Eng. J. 2021, 407, 127221. DOI: 10.1016/j.cej.2020.127221.
  • Dias, E. M.; Petit, C. Towards the Use of Metal–Organic Frameworks for Water Reuse: A Review of the Recent Advances in the Field of Organic Pollutants Removal and Degradation and the Next Steps in the Field. J. Mater. Chem. A 2015, 3, 22484–22506. DOI: 10.1039/C5TA05440K.
  • Ojida, A.; Park, S-k.; Mito-Oka, Y.; Hamachi, I. Efficient Fluorescent ATP-Sensing Based on Coordination Chemistry under Aqueous Neutral Conditions. Tetrahedron Lett. 2002, 43, 6193–6195. DOI: 10.1016/S0040-4039(02)01317-5.
  • Alreja, P.; Kaur, N. Recent Advances in 1, 10-Phenanthroline Ligands for Chemosensing of Cations and Anions. RSC Adv. 2016, 6, 23169–23217. DOI: 10.1039/C6RA00150E.
  • Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Luminescent Chemosensors for Transition Metal Ions. Coord. Chem. Rev. 2000, 205, 59–83. DOI: 10.1016/S0010-8545(00)00242-3.
  • Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D. Fluorescent Chemosensors: The past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. DOI: 10.1039/c7cs00240h.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (cu, Ag, au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2020, 51, 812–834. DOI: 10.1080/10408347.2020.1777523.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq. 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution (Eur. J. Org. Chem. 30/2020). Eur. J. Org. Chem. 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Ali, S.; Altaf, A. A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2049676.
  • Ozawa, T.; Yoshimura, H.; Kim, S. B. Advances in Fluorescence and Bioluminescence Imaging. Anal. Chem. 2013, 85, 590–609. DOI: 10.1021/ac3031724.
  • Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110, 1857–1959. DOI: 10.1021/cr900327d.
  • Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Design of Fluorescent Materials for Chemical Sensing. Chem. Soc. Rev. 2007, 36, 993–1017. DOI: 10.1039/b609548h.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess. 2021, 193, 1. DOI: 10.1007/s10661-021-09432-0.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Ali, S.; Shah, M. R.; Hussain, S.; Khan, S.; Latif, A.; Ahmad, M.; Ali, M. A Facile Approach Based on Functionalized Silver Nanoparticles as a Chemosensor for the Detection of Paraquat. J. Clust. Sci. 2022, 33, 413–420. DOI: 10.1007/s10876-021-01978-w.
  • Glasgow, H. B.; Burkholder, J. M.; Reed, R. E.; Lewitus, A. J.; Kleinman, J. E. Real-Time Remote Monitoring of Water Quality: A Review of Current Applications, and Advancements in Sensor, Telemetry, and Computing Technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. DOI: 10.1016/j.jembe.2004.02.022.
  • Ma, J.; Dasgupta, P. K. Recent Developments in Cyanide Detection: A Review. Anal. Chim. Acta. 2010, 673, 117–125. DOI: 10.1016/j.aca.2010.05.042.
  • Bhalla, V.; Singh, H.; Kumar, M. Triphenylene Based Copper Ensemble for the Detection of Cyanide Ions. Dalton Trans. 2012, 41, 11413–11418. DOI: 10.1039/c2dt31244a.
  • Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Sensors for the Optical Detection of Cyanide Ion. Chem. Soc. Rev. 2010, 39, 127–137. DOI: 10.1039/b907368j.
  • Park, G. J.; You, G. R.; Choi, Y. W.; Kim, C. A Naked-Eye Chemosensor for Simultaneous Detection of Iron and Copper Ions and Its Copper Complex for Colorimetric/Fluorescent Sensing of Cyanide. Sens. Actuators, B 2016, 229, 257–271. DOI: 10.1016/j.snb.2016.01.133.
  • Mohammadi, A.; Ghasemi, Z. A Simple Pyrimidine Based Colorimetric and Fluorescent Chemosensor for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117730. DOI: 10.1016/j.saa.2019.117730.
  • Chandra, R.; Ghorai, A.; Patra, G. K. A Simple Benzildihydrazone Derived Colorimetric and Fluorescent ‘on–off-On’sensor for Sequential Detection of Copper (II) and Cyanide Ions in Aqueous Solution. Sens. Actuators, B 2018, 255, 701–711. DOI: 10.1016/j.snb.2017.08.067.
  • Khoshsoroor, S.; Mohammadi, A.; Khalili, B.; Mohammadi, S. A Novel Uracil-Based Chemosensor for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Samples. J. Photochem. Photobiol, A 2020, 388, 112208. DOI: 10.1016/j.jphotochem.2019.112208.
  • Mohammadi, A.; Zabihi, F. S.; Chaibakhsh, N. Chemical Sensor Using Metal-Organic Complex: Preparation, Characterization and Application for Highly Selective Detection of Cyanide Ions in Mixed Aqueous-Organic Media. J. Photochem. Photobiol, A 2018, 367, 384–389. DOI: 10.1016/j.jphotochem.2018.09.004.
  • Mukherjee, S.; Talukder, S. A Coumarin-Based Luminescent Chemosensor for Recognition of Cu2+ and its In-Situ Complex for CN- Sensing via Cu2+ Displacement Approach . J. Fluoresc. 2017, 27, 1567–1572. DOI: 10.1007/s10895-016-1974-1.
  • You, G. R.; Park, G. J.; Lee, J. J.; Kim, C. A Colorimetric Sensor for the Sequential Detection of Cu(2+) and CN(-) in fully aqueous media: practical performance of Cu(2+). Dalton Trans. 2015, 44, 9120–9129. DOI: 10.1039/c5dt00772k.
  • Wu, C.; Wang, J.; Shen, J.; Zhang, C.; Wu, Z.; Zhou, H. A Colorimetric Quinoline-Based Chemosensor for Sequential Detection of Copper Ion and Cyanide Anions. Tetrahedron 2017, 73, 5715–5719. DOI: 10.1016/j.tet.2017.08.010.
  • Sahu, M.; Manna, A. K.; Chowdhury, S.; Patra, G. K. A Novel Dihydro phenylquinazolinone-based two-in-one colourimetric chemosensor for nickel(ii), copper(ii) and its copper complex for the fluorescent colourimetric nanomolar detection of the cyanide anion. RSC Adv. 2020, 10, 44860–44875. DOI: 10.1039/d0ra09023a.
  • Bhardwaj, S.; Maurya, N.; Singh, A. K. Chromone Based Fluorescent Organic Nanoparticles for High-Precision in-Situ Sensing of Cu2+ and CN − Ions in 100% Aqueous Solutions. Sens. Actuators, B 2018, 260, 753–762. DOI: 10.1016/j.snb.2018.01.003.
  • Jung, K. H.; Lee, K.-H. Efficient Ensemble System Based on the Copper Binding Motif for Highly Sensitive and Selective Detection of Cyanide Ions in 100% Aqueous Solutions by Fluorescent and Colorimetric Changes. Anal. Chem. 2015, 87, 9308–9314. DOI: 10.1021/acs.analchem.5b01982.
  • Zhang, Y.-M.; Su, J.-X.; Li, Q.; Qu, W.-J.; Zhu, X.; Leng, Y.-L.; Xin, S.-F.; Yao, H.; Lin, Q.; Wei, T.-B. Novel Fluorescent Cyanide-Selective Chemosensor Based on a Functionalised Pillar [5] Arene Copper (II) Complex. Supramol. Chem. 2017, 29, 411–416. DOI: 10.1080/10610278.2016.1253843.
  • Kaushik, R.; Ghosh, A.; Singh, A.; Gupta, P.; Mittal, A.; Jose, D. A. Selective Detection of Cyanide in Water and Biological Samples by an off-the-Shelf Compound. ACS Sens. 2016, 1, 1265–1271. DOI: 10.1021/acssensors.6b00519.
  • Sebastian, A.; Prasad, E. Cyanide Sensing in Water Using a Copper Metallogel through “Turn-on” Fluorescence. Langmuir 2020, 36, 10537–10547. DOI: 10.1021/acs.langmuir.0c01803.
  • Kaushik, R.; Sakla, R.; Ghosh, A.; Dama, S.; Mittal, A.; Jose, D. A. Copper Complex-Embedded Vesicular Receptor for Selective Detection of Cyanide Ion and Colorimetric Monitoring of Enzymatic Reaction. ACS Appl. Mater. Interfaces . 2019, 11, 47587–47595. DOI: 10.1021/acsami.9b17316.
  • Hotta, H.; Kurihara, S.; Johno, K.; Kitazume, M.; Sato, K.; Tsunoda, K-i. New Determination Methods of Halides and Cyanide Ions by Electrospray Ionization Mass Spectrometry Based on Ternary Complex Formation. Anal. Sci. 2011, 27, 953–956. DOI: 10.2116/analsci.27.953.
  • Shahid, M.; Chawla, H. M.; Bhatia, P. A Calix [4] Arene Based Turn off/Turn on Molecular Receptor for Cu2+ and CN − Ions in Aqueous Medium. Sens. Actuators, B 2016, 237, 470–478. DOI: 10.1016/j.snb.2016.06.102.
  • Sharma, P.; Singh, P. A Perylene Diimide-Based near-IR Ratiometric Sensor for Detection of Cu 2+ Ions: ensemble for Discrimination of CN − and S 2− Ions. Anal. Methods 2020, 12, 758–767. DOI: 10.1039/C9AY02726B.
  • Teerasarunyanon, R.; Watchasit, S.; Suksai, C.; Tuntulani, T.; Ruangpornvisuti, V. U. Vis and Theoretical Studies on an Ensemble of Dinuclear Cu (II) Complex of Anthracene–Based Tripodal Tetramine with Pyrogallol Red for Cyanide Detection and Species Distribution in Aqueous Solution. Inorg. Chem. Commun. 2019, 108, 107502. DOI: 10.1016/j.inoche.2019.107502.
  • Mondal, P.; Parua, S. P.; Pattanayak, P.; Das, U.; Chattopadhyay, S. Synthesis and Structure of Copper (II) Complexes: Potential Cyanide Sensor and Oxidase Model. J. Chem. Sci. 2016, 128, 803–813. DOI: 10.1007/s12039-016-1063-7.
  • Wang, L.; Wei, Z.-L.; Chen, Z.-Z.; Liu, C.; Dong, W.-K.; Ding, Y.-J. A Chemical Probe Capable for Fluorescent and Colorimetric Detection to Cu2+ and CN − Based on Coordination and Nucleophilic Addition Mechanism. Microchem. J. 2020, 155, 104801. DOI: 10.1016/j.microc.2020.104801.
  • Khatua, S.; Samanta, D.; Bats, J. W.; Schmittel, M. Rapid and Highly Sensitive dual-channel detection of cyanide by bis-heteroleptic ruthenium(II) complexes. Inorg. Chem. 2012, 51, 7075–7086. DOI: 10.1021/ic2022853.
  • Li, M.-J.; Lin, Z.; Chen, X.; Chen, G. Colorimetric and Luminescent Bifunctional Ru(II) complexes for rapid and highly sensitive recognition of cyanide. Dalton Trans. 2014, 43, 11745–11751. DOI: 10.1039/c4dt00231h.
  • Bar, M.; Maity, D.; Das, K.; Baitalik, S. Asymmetric Bimetallic Ruthenium (II) Complexes Selectively Sense Cyanide in Water through Significant Modulation of Their Ground and Excited State Properties. Sens. Actuators, B 2017, 251, 208–223. DOI: 10.1016/j.snb.2017.05.025.
  • Zhu, J.-W.; Ou, H.-D.; Xu, N.; Deng, W.; Yao, Z.-J. Ruthenium-Based Phosphorescent Probe for Selective and Naked-Eye Detection of Cyanide in Aqueous Media. Dyes Pigm. 2020, 176, 108196. DOI: 10.1016/j.dyepig.2020.108196.
  • Karmakar, S.; Maity, D.; Mardanya, S.; Baitalik, S. Pyrene and Imidazole Functionalized Luminescent Bimetallic Ru(II) terpyridine complexes as efficient optical chemosensors for cyanide in aqueous, organic and solid media. Dalton Trans. 2015, 44, 18607–18623. DOI: 10.1039/c5dt02585k.
  • Lee, J. H.; Jeong, A. R.; Shin, I.-S.; Kim, H.-J.; Hong, J.-I. Fluorescence Turn-on Sensor for Cyanide Based on a cobalt(II)-coumarinylsalen complex. Org. Lett. 2010, 12, 764–767. DOI: 10.1021/ol902852g.
  • Maurya, N.; Singh, A. K. Effective Ensemble System for the Identification of CN − Based on a Cobalt (ii) Complex: A Logic Gate Mimic. New J. Chem. 2017, 41, 4814–4819. DOI: 10.1039/C6NJ03926J.
  • Bhowmick, I.; Boston, D. J.; Higgins, R. F.; Klug, C. M.; Shores, M. P.; Gupta, T. Naked Eye Detection of Cyanide in Water with CoII Bis (Terpyridine) Complexes. Sens. Actuators, B 2016, 235, 325–329. DOI: 10.1016/j.snb.2016.05.053.
  • Collins, C. C.; Regalado‐Love, S.; Portillo, R. I.; Boston, D. J.; Shores, M. P.; Bhowmick, I. Functionalized Cellulose‐Co (II)‐Bis‐Terpyridine Hybrid Material as Colorimetric Sensor for Micromolar Aqueous Cyanide. Adv. Mater. Technol. 2019, 4, 1800406. DOI: 10.1002/admt.201800406.
  • Gabr, M. T.; Pigge, F. C. A Fluorescent Turn-on Probe for Cyanide Anion Detection Based on an AIE Active cobalt(ii) complex. Dalton Trans. 2018, 47, 2079–2085. DOI: 10.1039/c7dt04242f.
  • Lvova, L.; Pomarico, G.; Mandoj, F.; Caroleo, F.; Di Natale, C.; Kadish, K. M.; Nardis, S. Smartphone Coupled with a Paper-Based Optode: Towards a Selective Cyanide Detection. J. Porphyrins Phthalocyanines 2020, 24, 964–972. DOI: 10.1142/S1088424620500091.
  • Mukherjee, S.; Pal, P.; Bar, M.; Baitalik, S. Chromogenic and Fluorogenic Detection of Selected Anions by Bis-Terpyridine Fe (II) Complex through Displacement Approach. J. Chem. Sci. 2018, 130, 1. DOI: 10.1007/s12039-018-1484-6.
  • Hu, Z.-Q.; Du, M.; Zhang, L.-F.; Guo, F.-Y.; Liu, M.-D.; Li, M. A Novel Colorimetric and Fluorescent Chemosensor for Cyanide Ion in Aqueous Media Based on a Rhodamine Derivative in the Presence of Fe3+ Ion. Sens. Actuators, B 2014, 192, 439–443. DOI: 10.1016/j.snb.2013.10.138.
  • Lozano-Torres, B.; Marcos, M. D.; Pardo, T.; Sancenón, F.; Martínez-Máñez, R.; Rurack, K. Anilinopyridine–Metal Complexes for the Selective Chromogenic Sensing of Cyanide Anion. J. Coord. Chem. 2018, 71, 786–796. DOI: 10.1080/00958972.2018.1434719.
  • Jayasudha, P.; Manivannan, R.; Elango, K. P. Simple Colorimetric Chemodosimeters for Selective Sensing of Cyanide Ion in Aqueous Solution via Termination of ICT Transition by Michael Addition. Sens. Actuators, B 2015, 221, 1441–1448. DOI: 10.1016/j.snb.2015.08.017.
  • Niu, Q.; Sun, T.; Li, T.; Guo, Z.; Pang, H. Highly Sensitive and Selective Colorimetric/Fluorescent Probe with Aggregation Induced Emission Characteristics for Multiple Targets of Copper, Zinc and Cyanide Ions Sensing and Its Practical Application in Water and Food Samples. Sens. Actuators, B 2018, 266, 730–743. DOI: 10.1016/j.snb.2018.03.089.
  • Kim, Y.; Huh, H. S.; Lee, M. H.; Lenov, I. L.; Zhao, H.; Gabbaï, F. P. Turn-on fluorescence sensing of cyanide ions in aqueous solution at parts-per-billion concentrations. Chemistry 2011, 17, 2057–2062. DOI: 10.1002/chem.201002861.
  • Li, W.-T.; Qu, W.-J.; Zhu, X.; Li, Q.; Zhang, H.-L.; Yao, H.; Lin, Q.; Zhang, Y.-M.; Wei, T.-B. A Highly Selective Colorimetric and “off-on” Fluorescence Sensor for CN − Based on Zn (Salphenazine) Complex. Sci. China Chem. 2017, 60, 754–760. DOI: 10.1007/s11426-016-0438-4.
  • Rosales-Vázquez, L. D.; Valdes-García, J.; Bazany-Rodríguez, I. J.; German-Acacio, J. M.; Martinez-Otero, D.; Vilchis-Nestor, A. R.; Morales-Luckie, R.; Sanchez-Mendieta, V.; Dorazco-Gonzalez, A. A Sensitive Photoluminescent Chemosensor for Cyanide in Water Based on a Zinc Coordination Polymer Bearing Ditert-Butyl-Bipyridine. Dalton Trans. 2019, 48, 12407–12420. DOI: 10.1039/c9dt01861a.
  • Parthiban, C.; Ciattini, S.; Chelazzi, L.; Elango, K. P. Colorimetric Sensing of Anions by Cu (II), Co (II), Ni (II) and Zn (II) Complexes of Naphthoquinone-Imidazole Hybrid—Influence of Complex Formation on Selectivity and Sensing Medium. Sens. Actuators, B 2016, 231, 768–778. DOI: 10.1016/j.snb.2016.03.106.
  • Jang, H. J.; Kang, J. H.; Lee, M.; Lim, M. H.; Kim, C. Fluorescent Sensor for Sequentially Monitoring Zinc (II) and Cyanide Anion in near-Perfect Aqueous Media. Ind. Eng. Chem. Res. 2018, 57, 54–62. DOI: 10.1021/acs.iecr.7b03826.
  • Bouhadir, K. H.; Elaridi, J.; Sonji, G. Selective and Sensitive Turn on Fluorescence Cyanide Recognition in Aqueous Medium Based on Zn(II)-hydrazone metal complex chemosensor . Luminescence 2021, 36, 1608–1620. DOI: 10.1002/bio.4102.
  • Kumar, A.; Ahmed, N. Indirect Approach for CN–Detection: Development of “Naked-Eye” Hg2+-Induced Turn-Off Fluorescence and Turn-On Cyanide Sensing by the Hg2+ Displacement Approach. Ind. Eng. Chem. Res. 2017, 56, 6358. DOI: 10.1021/acs.iecr.7b00188.
  • Gupta, R. C.; Razi, S. S.; Ali, R.; Dwivedi, S. K.; Srivastava, P.; Singh, P.; Koch, B.; Mishra, H.; Misra, A. An Efficient Hg2+ Ensemble Based on a Triazole Bridged Anthracene and Quinoline System for Selective Detection of Cyanide through Fluorescence Turn-off–on Response in Solution and Live Cell. Sens. Actuators, B 2017, 251, 729–738. DOI: 10.1016/j.snb.2017.04.096.
  • Isaad, J.; El Achari, A. Colorimetric and Fluorescent Probe Based on Coumarin for Sequential Sensing of Mercury (II) and Cyanide Ions in Aqueous Solutions. J. Lumin. 2022, 243, 118668. DOI: 10.1016/j.jlumin.2021.118668.
  • Misra, R.; Jadhav, T.; Dhokale, B.; Mobin, S. M. Colorimetric and Fluorimetric Detection of Fluoride and Cyanide Ions Using Tri and Tetra Coordinated Boron Containing Chromophores. Dalton Trans. 2015, 44, 16052–16060. DOI: 10.1039/c5dt02356d.
  • Lin, N.; Ou, H.-D.; Xu, Q.; Jin, Y.; Deng, W.; Yao, Z.-J. An Efficient Probe of Cyclometallated Phosphorescent Iridium Complex for Selective Detection of Cyanide. ACS Omega. 2020, 5, 4636–4645. DOI: 10.1021/acsomega.9b04364.
  • Kumar, R.; Chaudhri, N.; Sankar, M. Ratiometric and Colorimetric “Naked Eye” Selective Detection of CN − Ions by Electron Deficient Ni (ii) Porphyrins and Their Reversibility Studies. Dalton Trans. 2015, 44, 9149–9157. DOI: 10.1039/C5DT00937E.
  • Salomón-Flores, M. K.; Bazany-Rodriguez, I. J.; Martinez-Otero, D.; Garcia-Eleno, M. A.; Guerra-Garcia, J. J.; Morales-Morales, D.; Dorazco-Gonzalez, A. Bifunctional Colorimetric Chemosensing of Fluoride and Cyanide Ions by nickel-POCOP Pincer Receptors. Dalton Trans. 2017, 46, 4950–4959. DOI: 10.1039/c6dt04897h.
  • Wang, K.; Zhao, C.; Guo, S.; Lu, Y.; Shen, Y.; Wang, C. A Coumarin-Based near-Infrared Fluorescent Probe with a Large Stokes Shift for the Sequential Recognition of Ni2+ and CN−: Performance Research and Quantum Calculation. J. Photochem. Photobiol. A 2019, 382, 111943. DOI: 10.1016/j.jphotochem.2019.111943.
  • Holaday, M. D.; Tarafdar, G.; Adinarayana, B.; Reddy, M.; Srinivasan, A. Chemodosimetric Cyanide Sensing in a 5,15-porphodimethene Pd(II) complex . Chem. Commun. (Camb.) 2014, 50, 10834–10836. DOI: 10.1039/c4cc04775c.
  • Singh, H.; Wasi, N.; Mehra, M. Detection and Determination of cyanide-a review. Int. J. Environ. Anal. Chem. 1986, 26, 115–136. DOI: 10.1080/03067318608077109.
  • Ebadinia, L.; Darabi, H. R.; Ramazani, A. Optical Detection of Cyanide by Palladium (II)-Dithiazolopyridine Probe at the Parts per Billion Level. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 620–627. DOI: 10.1080/10426507.2019.1702987.
  • Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. Luminescent Rhenium/Palladium Square Complex Exhibiting Excited State Intramolecular Electron Transfer Reactivity and Molecular Anion Sensing Characteristics. J. Am. Chem. Soc. 1995, 117, 11813–11814. DOI: 10.1021/ja00152a027.
  • Huynh, L.; Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.; Winnik, M. A. Evaluation of Phosphorescent Rhenium and Iridium Complexes in Polythionylphosphazene Films for Oxygen Sensor Applications. Chem. Mater. 2005, 17, 4765–4773. DOI: 10.1021/cm047794r.
  • Xiao, Y.; Chu, W.-K.; Ng, C.-O.; Cheng, S.-C.; Tse, M.-K.; Yiu, S.-M.; Ko, C.-C. Design and Synthesis of Luminescent Bis (Isocyanoborato) Rhenate (I) Complexes as a Selective Sensor for Cyanide Anion. Organometallics 2020, 39, 2135–2141. DOI: 10.1021/acs.organomet.0c00204.
  • Wu, H.; Li, R.; Dong, J.; Sun, F.; Jiang, Y.; Shen, Q. Synthesis, Structure and Electrochemical H2O2-Sensing of Two Silver (I) complexes with Bisbenzimidazole Ligands. Inorg. Chim. Acta 2022, 535, 120847. DOI: 10.1016/j.ica.2022.120847.
  • Jin, J.-C.; Jiang, C.; Chang, W.-G.; Xu, G.-N.; Fu, X.-C. A Luminescent Novel Octanuclear Silver (I) cluster Framework with Potential Cr2O72− Sensing. Inorg. Chem. Commun. 2016, 70, 157–159. DOI: 10.1016/j.inoche.2016.06.009.
  • Maurya, N.; Bhardwaj, S.; Singh, A. K. Selective Colorimetric and Fluorescence 'turn-on' sensor for Ag + and in-situ sensing of CN- (off-on-off) via displacement approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 55–61. DOI: 10.1016/j.msec.2016.12.131.
  • Worlinsky, J. L.; Halepas, S.; Brückner, C. PEGylated Meso-Arylporpholactone Metal Complexes as Optical Cyanide Sensors in Water. Organic & Biomolecular Chemistry 2014, 12, 3991–4001. DOI: 10.1039/C4OB00697F.
  • Kumar, S. P.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V. Synthesis and Characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 139, 431–441. DOI: 10.1016/j.saa.2014.12.012.
  • Weerasinghe, A. J.; Oyeamalu, A. N.; Abebe, F. A.; Venter, A. R.; Sinn, E. Rhodamine Based Turn-on Sensors for Ni(2+) and Cr(3+) in Organic Media: Detecting CN(-) via the Metal Displacement Approach. J. Fluoresc. 2016, 26, 891–898. DOI: 10.1007/s10895-016-1777-4.
  • Zheng, Z.-B.; Huang, Q.-Y.; Han, Y.-F.; Zuo, J.; Ma, Y.-N. Ruthenium (II) Complex-Based Chemosensors for Highly Sensitive and Selective Sequential Recognition of Copper Ion and Cyanide. Sens. Actuators, B 2017, 253, 203–212. DOI: 10.1016/j.snb.2017.06.145.
  • Christianson, A. M.; Gabbaï, F. P. Fluoride and Cyanide Anion Sensing by an Sb (V)-Substituted Cyclometalated Ru Polypyridyl Complex. J. Organomet. Chem. 2017, 847, 154–161. DOI: 10.1016/j.jorganchem.2017.03.012.
  • Chow, C. F.; Ho, P. Y.; Wong, W. L.; Gong, C. B. A Multifunctional Bimetallic Molecular Device for Ultrasensitive Detection, Naked-Eye Recognition, and Elimination of Cyanide Ions. Chemistry 2015, 21, 12984–12990. DOI: 10.1002/chem.201501448.
  • Christianson, A. M.; Gabbaï, F. P. Anion Sensing with a Lewis Acidic BODIPY-antimony(v) derivative . Chem. Commun. (Camb.) 2017, 53, 2471–2474. DOI: 10.1039/c6cc09205e.
  • Promchat, A.; Rashatasakhon, P.; Sukwattanasinitt, M. A Novel Indolium Salt as a Highly Sensitive and Selective Fluorescent Sensor for Cyanide Detection in Water. J. Hazard. Mater. 2017, 329, 255–261. DOI: 10.1016/j.jhazmat.2017.01.024.
  • Tsui, Y.-K.; Devaraj, S.; Yen, Y.-P. Azo Dyes Featuring with Nitrobenzoxadiazole (NBD) Unit: A New Selective Chromogenic and Fluorogenic Sensor for Cyanide Ion. Sens. Actuators, B 2012, 161, 510–519. DOI: 10.1016/j.snb.2011.10.069.
  • Wu, W.-N.; Wu, H.; Wang, Y.; Zhao, X.-L.; Xu, Z.-Q.; Xu, Z.-H.; Fan, Y.-C. A NIR Sensor for Cyanide Detection and Its Application in Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 141–145. DOI: 10.1016/j.saa.2018.03.044.
  • Niu, Q.; Lan, L.; Li, T.; Guo, Z.; Jiang, T.; Zhao, Z.; Feng, Z.; Xi, J. A Highly Selective Turn-on Fluorescent and Naked-Eye Colorimetric Sensor for Cyanide Detection in Food Samples and Its Application in Imaging of Living Cells. Sens. Actuators, B 2018, 276, 13–22. DOI: 10.1016/j.snb.2018.08.066.
  • Cheng, S.; Pan, X.; Shi, M.; Su, T.; Zhang, C.; Zhao, W.; Dong, W. A Coumarin-Connected Carboxylic Indolinium Sensor for Cyanide Detection in Absolute Aqueous Medium and Its Application in Biological Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117710. DOI: 10.1016/j.saa.2019.117710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.