377
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Cocaine in Different Matrices: Recent Updates on Pretreatment and Detection Techniques

, ORCID Icon, , , , ORCID Icon & show all
Pages 529-548 | Published online: 16 Jun 2022

References

  • Abnous, K.; Danesh, N. M.; Ramezani, M.; Taghdisi, S. M.; Emrani, A. S. A Novel Electrochemical Aptasensor Based on H-Shape Structure of Aptamer-Complimentary Strands Conjugate for Ultrasensitive Detection of Cocaine. Sens. Actuator. B. 2016, 224, 351–355. DOI: 10.1016/j.snb.2015.10.039.
  • United Nations Office on Drugs and Crime (UNODC). World Drug Report 2021. https://www.unodc.org/res/wdr2021/field/WDR21_Booklet_1.pdf. Accessed April 10, 2022.
  • Fu, S. A Review of Methodology for Testing Hair for Cocaine. J. Forensic Investig. 2014, 2, 8. DOI: 10.13188/2330-0396.1000007.
  • Janicka, M.; Kot-Wasik, A.; Namieśnik, J. Analytical Procedures for Determination of Cocaine and Its Metabolites in Biological Samples. TrAC, Trends Anal. Chem. 2010, 29, 209–224. DOI: 10.1016/j.trac.2009.12.005.
  • Barroso, M.; Gallardo, E. Assessing Cocaine Abuse Using LC-MS/MS Measurements in Biological Specimens. Bioanalysis 2015, 7, 1497–1525. DOI: 10.4155/bio.15.72.
  • Mokhtarzadeh, A.; Ezzati Nazhad Dolatabadi, J.; Abnous, K.; de la Guardia, M.; Ramezani, M. Nanomaterial-Based Cocaine Aptasensors. Biosens. Bioelectron. 2015, 68, 95–106. DOI: 10.1016/j.bios.2014.12.052.
  • de Oliveira Penido, C. A. F.; Pacheco, M. T. T.; Lednev, I. K.; Silveira, L. Raman Spectroscopy in Forensic Analysis: identification of Cocaine and Other Illegal Drugs of Abuse. J. Raman Spectrosc. 2016, 47, 28–38. DOI: 10.1002/jrs.4864.
  • Dziadosz, M.; Teske, J.; Henning, K.; Klintschar, M.; Nordmeier, F. LC–MS/MS Screening Strategy for Cannabinoids, Opiates, Amphetamines, Cocaine, Benzodiazepines and Methadone in Human Serum, Urine and Post-Mortem Blood as an Effective Alternative to Immunoassay Based Methods Applied in Forensic Toxicology for Preliminary Examination. Forensic Chem. 2018, 7, 33–37. DOI: 10.1016/j.forc.2017.12.007.
  • Takitane, J.; Leyton, V.; Andreuccetti, G.; Gjerde, H.; Vindenes, V.; Berg, T. Determination of Cocaine, Metabolites and a Crack Cocaine Biomarker in Whole Blood by Liquid-Liquid Extraction and UHPLC-MS/MS. Forensic Sci. Int. 2018, 289, 165–174. DOI: 10.1016/j.forsciint.2018.05.030.
  • Mandrioli, R.; Mercolini, L.; Protti, M. Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules 2020, 25, 1046. DOI: 10.3390/molecules25051046.
  • Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-Throughput Dispersive Liquid/Liquid Microextraction (DLLME) Method for the Rapid Determination of Drugs of Abuse, Benzodiazepines and Other Psychotropic Medications in Blood Samples by Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) and Application to Forensic Cases. Microchem. J. 2015, 123, 33–41. DOI: 10.1016/j.microc.2015.05.009.
  • Bonchev, G. An Optimized Gc-Ms Method for Identification of Cocaine and Its Major Metabolites. JofIMAB 2017, 23, 1523–1526. DOI: 10.5272/jimab.2017232.1523.
  • Chen, X.; Zheng, X.; Ding, K.; Zhou, Z.; Zhan, C.-G.; Zheng, F. A Quantitative LC-MS/MS Method for Simultaneous Determination of Cocaine and Its Metabolites in Whole Blood. J. Pharm. Biomed. Anal. 2017, 134, 243–251. DOI: 10.1016/j.jpba.2016.11.024.
  • Dulaurent, S.; El Balkhi, S.; Poncelet, L.; Gaulier, J.-M.; Marquet, P.; Saint-Marcoux, F. QuEChERS Sample Preparation Prior to LC-MS/MS Determination of Opiates, Amphetamines, and Cocaine Metabolites in Whole Blood. Anal. Bioanal. Chem. 2016, 408, 1467–1474. DOI: 10.1007/s00216-015-9248-3.
  • Orfanidis, A.; Gika, H. G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. A UHPLC-MS-MS Method for the Determination of 84 Drugs of Abuse and Pharmaceuticals in Blood. J. Anal. Toxicol. 2021, 45, 28–43. DOI: 10.1093/jat/bkaa032.
  • Vasiljevic, T.; Singh, V.; Pawliszyn, J. Miniaturized SPME Tips Directly Coupled to Mass Spectrometry for Targeted Determination and Untargeted Profiling of Small Samples. Talanta 2019, 199, 689–697. DOI: 10.1016/j.talanta.2019.03.025.
  • Roushani, M.; Shahdost-Fard, F. A Highly Selective and Sensitive Cocaine Aptasensor Based on Covalent Attachment of the Aptamer-Functionalized AuNPs onto Nanocomposite as the Support Platform. Anal. Chim. Acta 2015, 853, 214–221. DOI: 10.1016/j.aca.2014.09.031.
  • Bouvarel, T.; Delaunay, N.; Pichon, V. Selective Extraction of Cocaine from Biological Samples with a Miniaturized Monolithic Molecularly Imprinted Polymer and on-Line Analysis in Nano-Liquid Chromatography. Anal. Chim. Acta 2020, 1096, 89–99. DOI: 10.1016/j.aca.2019.10.046.
  • Zhang, Y.; Sun, Z.; Tang, L.; Zhang, H.; Zhang, G.-J. Aptamer Based Fluorescent Cocaine Assay Based on the Use of Graphene Oxide and Exonuclease III-Assisted Signal Amplification. Microchim. Acta 2016, 183, 2791–2797. DOI: 10.1007/s00604-016-1923-3.
  • Lizot, LdLF.; da Silva, A. C. C.; Bastiani, M. F.; Maurer, T. F.; Hahn, R. Z.; Perassolo, M. S.; Antunes, M. V.; Linden, R. Simultaneous Determination of Cocaine and Metabolites in Human Plasma Using Solid Phase Micro-Extraction Fiber Tips C18 and UPLC-MS/MS. J. Anal. Toxicol. 2020, 44, 49–56. DOI: 10.1093/jat/bkz042.
  • Sánchez-González, J.; García-Carballal, S.; Cabarcos, P.; Tabernero, M. J.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Determination of Cocaine and Its Metabolites in Plasma by Porous Membrane-Protected Molecularly Imprinted Polymer Micro-Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2016, 1451, 15–22. DOI: 10.1016/j.chroma.2016.05.003.
  • Sánchez-González, J.; Barreiro-Grille, T.; Cabarcos, P.; Tabernero, M. J.; Bermejo–Barrera, P.; Moreda–Piñeiro, A. Magnetic Molecularly Imprinted Polymer Based – Micro-Solid Phase Extraction of Cocaine and Metabolites in Plasma Followed by High Performance Liquid Chromatography – Tandem Mass Spectrometry. Microchem. J. 2016, 127, 206–212. DOI: 10.1016/j.microc.2016.03.014.
  • Dempsey, S. K.; Moeller, F. G.; Poklis, J. L. Rapid Separation and Quantitation of Cocaine and Its Metabolites in Human Serum by Differential Mobility Spectrometry-Tandem Mass Spectrometry (DMS-MS-MS). J. Anal. Toxicol. 2018, 42, 518–524. DOI: 10.1093/jat/bky055.
  • Daems, D.; van Nuijs, A. L.; Covaci, A.; Hamidi-Asl, E.; Van Camp, G.; Nagels, L. J. Potentiometric Detection in UPLC as an Easy Alternative to Determine Cocaine in Biological Samples. Biomed. Chromatogr. 2015, 29, 1124–1129. DOI: 10.1002/bmc.3400.
  • Chen, Z.; Tan, Y.; Xu, K.; Zhang, L.; Qiu, B.; Guo, L.; Lin, Z.; Chen, G. Stimulus-Response Mesoporous Silica Nanoparticle-Based Chemiluminescence Biosensor for Cocaine Determination. Biosens. Bioelectron. 2016, 75, 8–14. DOI: 10.1016/j.bios.2015.08.006.
  • Emrani, A. S.; Danesh, N. M.; Ramezani, M.; Taghdisi, S. M.; Abnous, K. A Novel Fluorescent Aptasensor Based on Hairpin Structure of Complementary Strand of Aptamer and Nanoparticles as a Signal Amplification Approach for Ultrasensitive Detection of Cocaine. Biosens. Bioelectron. 2016, 79, 288–293. DOI: 10.1016/j.bios.2015.12.025.
  • Roushani, M.; Shahdost-fard, F. An Aptasensor for Voltammetric and Impedimetric Determination of Cocaine Based on a Glassy Carbon Electrode Modified with Platinum Nanoparticles and Using Rutin as a Redox Probe. Microchim. Acta 2016, 183, 185–193. DOI: 10.1007/s00604-015-1604-7.
  • Roushani, M.; Shahdost-Fard, F. Fabrication of an Electrochemical Nanoaptasensor Based on AuNPs for Ultrasensitive Determination of Cocaine in Serum Sample. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 61, 599–607. DOI: 10.1016/j.msec.2016.01.002.
  • Tang, Y.; Long, F.; Gu, C.; Wang, C.; Han, S.; He, M. Reusable Split-Aptamer-Based Biosensor for Rapid Detection of Cocaine in Serum by Using an All-Fiber Evanescent Wave Optical Biosensing Platform. Anal. Chim. Acta 2016, 933, 182–188. DOI: 10.1016/j.aca.2016.05.021.
  • da Cunha, K. F.; Lanaro, R.; Martins, A. F.; Oliveira, K. D.; Costa, J. L. Use of Injection-Port Derivatization for the Analysis of Cocaine and Its Metabolites in Urine by Gas Chromatography–Tandem Mass Spectrometry. Forensic. Toxicol. 2021, 39, 222–229. DOI: 10.1007/s11419-020-00545-8.
  • Meng, J.; Tang, X.; Zhou, B.; Xie, Q.; Yang, L. Designing of Ordered Two-Dimensional Gold Nanoparticles Film for Cocaine Detection in Human Urine Using Surface-Enhanced Raman Spectroscopy. Talanta 2017, 164, 693–699. DOI: 10.1016/j.talanta.2016.10.101.
  • Xu, F.; Li, Q.; Wei, W.; Liu, L.; Li, H. Development of a Liquid–Liquid Microextraction Method Based on a Switchable Hydrophilicity Solvent for the Simultaneous Determination of 11 Drugs in Urine by GC–MS. Chromatographia 2018, 81, 1695–1703. DOI: 10.1007/s10337-018-3643-9.
  • Fernández, N.; Cabanillas, L. M.; Olivera, N. M.; Quiroga, P. N. Optimization and Validation of Simultaneous Analyses of Ecgonine, Cocaine, and Seven Metabolites in Human Urine by Gas Chromatography-Mass Spectrometry Using a One-Step Solid-Phase Extraction. Drug Test Anal. 2019, 11, 361–373. DOI: 10.1002/dta.2547.
  • Chantada-Vazquez, M. P.; Sanchez-Gonzalez, J.; Pena-Vazquez, E.; Tabernero, M. J.; Bermejo, A. M.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine. Anal Chem. 2016, 88, 2734–2741. DOI: 10.1021/acs.analchem.5b04250.
  • Fujii, H.; Waters, B.; Hara, K.; Ikematsu, N.; Takayama, M.; Matsusue, A.; Kashiwagi, M.; Kubo, S-i. A Modified Direct-Heating Headspace Solid-Phase Microextraction Method for Drug Screening with Urine Samples. Forensic. Toxicol. 2018, 36, 225–228. DOI: 10.1007/s11419-017-0396-3.
  • Sanchez-Gonzalez, J.; Tabernero, M. J.; Bermejo, A. M.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Porous Membrane-Protected Molecularly Imprinted Polymer Micro-Solid-Phase Extraction for Analysis of Urinary Cocaine and Its Metabolites Using Liquid chromatography - Tandem Mass Spectrometry. Anal. Chim. Acta 2015, 898, 50–59. DOI: 10.1016/j.aca.2015.10.002.
  • Gómez-Ríos, G. A.; Reyes-Garcés, N.; Bojko, B.; Pawliszyn, J. Biocompatible Solid-Phase Microextraction Nanoelectrospray Ionization: An Unexploited Tool in Bioanalysis. Anal. Chem. 2016, 88, 1259–1265. DOI: 10.1021/acs.analchem.5b03668.
  • Sanchez-Gonzalez, J.; Jesus Tabernero, M.; Bermejo, A. M.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Development of Magnetic Molecularly Imprinted Polymers for Solid Phase Extraction of Cocaine and Metabolites in Urine before High Performance Liquid Chromatography - Tandem Mass Spectrometry. Talanta 2016, 147, 641–649. DOI: 10.1016/j.talanta.2015.10.034.
  • Yang, F.; Zou, Y.; Ni, C.; Wang, R.; Wu, M.; Liang, C.; Zhang, J.; Yuan, X.; Liu, W. Magnetic Dispersive Solid-Phase Extraction Based on Modified Magnetic Nanoparticles for the Detection of Cocaine and Cocaine Metabolites in Human Urine by High-Performance Liquid Chromatography-Mass Spectrometry. J. Sep. Sci. 2017, 40, 4234–4245. DOI: 10.1002/jssc.201700457.
  • GUMUS, Z. P.; Celenk, V. U.; Guler, E.; Demir, B.; Coskunol, H.; Timur, S. Determination of Cocaine and Benzoylecgonine in Biological Matrices by Hplc and Lc-Ms/Ms. J. Turk. Chem. Soc., Sect. A: Chem. 2016, 3, 535. DOI: 10.18596/jotcsa.82665.
  • Mao, K.; Yang, Z.; Li, J.; Zhou, X.; Li, X.; Hu, J. A Novel Colorimetric Biosensor Based on Non-Aggregated Au@Ag Core-Shell Nanoparticles for Methamphetamine and Cocaine Detection. Talanta 2017, 175, 338–346. DOI: 10.1016/j.talanta.2017.07.011.
  • Wu, Z.; Zhou, H.; Han, Q.; Lin, X.; Han, D.; Li, X. A Cost-Effective Fluorescence Biosensor for Cocaine Based on a “Mix-and-Detect” Strategy. Analyst 2020, 145, 4664–4670. DOI: 10.1039/d0an00675k.
  • Valen, A.; Leere Øiestad, Å. M.; Strand, D. H.; Skari, R.; Berg, T. Determination of 21 Drugs in Oral Fluid Using Fully Automated Supported Liquid Extraction and UHPLC-MS/MS. Drug Test. Anal. 2017, 9, 808–823. DOI: 10.1002/dta.2045.
  • Di Fazio, V.; Wille, S. M.; Toennes, S. W.; van Wel, J. H.; Ramaekers, J. G.; Samyn, N. Driving under the Influence of Cocaine: Quantitative Determination of Basic Drugs in Oral Fluid Obtained during Roadside Controls and a Controlled Study with Cocaine Users. Drug Test. Anal. 2018, 10, 1285–1296. DOI 1002/dta.2379. DOI: 10.1002/dta.2379.
  • Sorribes-Soriano, A.; Herrero-Martinez, J. M.; Esteve-Turrillas, F. A.; Armenta, S. Molecularly Imprinted Polymer-Based Device for Field Collection of Oral Fluid Samples for Cocaine Identification. J. Chromatogr. A. 2020, 1633, 461629. DOI: 10.1016/j.chroma.2020.461629.
  • Chantada-Vazquez, M. P.; de-Becerra-Sanchez, C.; Fernandez-Del-Rio, A.; Sanchez-Gonzalez, J.; Bermejo, A. M.; Bermejo-Barrera, P.; Moreda-Pineiro, A. Development and Application of Molecularly Imprinted polymer - Mn-Doped ZnS Quantum Dot Fluorescent Optosensing for Cocaine Screening in Oral Fluid and Serum. Talanta 2018, 181, 232–238. DOI: 10.1016/j.talanta.2018.01.017.
  • Cocovi-Solberg, D. J.; Esteve-Turrillas, F. A.; Armenta, S.; de la Guardia, M.; Miro, M. Towards an Automatic Lab-on-Valve-Ion Mobility Spectrometric System for Detection of Cocaine Abuse. J. Chromatogr. A. 2017, 1512, 43–50. DOI: 10.1016/j.chroma.2017.06.074.
  • Montesano, C.; Simeoni, M. C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of Illicit Drugs and Metabolites in Oral Fluid by Microextraction on Packed Sorbent Coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. DOI: 10.1007/s00216-015-8583-8.
  • Tavares, L. S.; Carvalho, T. C.; Romão, W.; Vaz, B. G.; Chaves, A. R. Paper Spray Tandem Mass Spectrometry Based on Molecularly Imprinted Polymer Substrate for Cocaine Analysis in Oral Fluid. J. Am. Soc. Mass. Spectrom. 2018, 29, 566–572. DOI: 10.1007/s13361-017-1853-2.
  • Vasiljevic, T.; Pawliszyn, J. Direct Analysis in Real Time (DART) and Solid-Phase Microextraction (SPME) Transmission Mode (TM): A Suitable Platform for Analysis of Prohibited Substances in Small Volumes. Anal. Methods 2019, 11, 3882–3889. DOI: 10.1039/C9AY00797K.
  • D’Elia, V.; Rubio-Retama, J.; Ortega-Ojeda, F. E.; García-Ruiz, C.; Montalvo, G. Gold Nanorods as SERS Substrate for the Ultratrace Detection of Cocaine in Non-Pretreated Oral Fluid Samples. Colloids Surf. A. 2018, 557, 43–50. DOI: 10.1016/j.colsurfa.2018.05.068.
  • D'Avila, F. B.; Pereira, A. G.; Salazar, F. R.; Ferreira, P. L.; Salazar, C. R.; Limberger, R. P.; Fröehlich, P. E. Determination of Cocaine/Crack Biomarkers in Colostrum by LC-MS following Protein Precipitation. J. Pharm. Biomed. Anal. 2015, 103, 67–72. DOI: 10.1016/j.jpba.2014.10.026.
  • Silveira, GdO.; Belitsky, Í. T.; Loddi, S.; Rodrigues de Oliveira, C. D.; Zucoloto, A. D.; Fruchtengarten, L. V. G.; Yonamine, M. Development of a Method for the Determination of Cocaine, Cocaethylene and Norcocaine in Human Breast Milk Using Liquid Phase Microextraction and Gas Chromatography-Mass Spectrometry. Forensic Sci. Int. 2016, 265, 22–28. DOI: 10.1016/j.forsciint.2016.01.007.
  • Dos Santos, R. R.; Nunes Paiva, M. J.; Veloso, J. C.; Serp, P.; Lourdes Cardeal, Z.; Menezes, H. C. Efficient Extraction Method Using Magnetic Carbon Nanotubes to Analyze Cocaine and Benzoylecgonine in Breast Milk by GC/MS. Bioanalysis 2017, 9, 1655–1666. DOI: 10.4155/bio-2017-0140.
  • Sorribes-Soriano, A.; Esteve-Turrillas, F. A.; Armenta, S.; de la Guardia, M.; Herrero-Martinez, J. M. Cocaine Abuse Determination by Ion Mobility Spectrometry Using Molecular Imprinting. J. Chromatogr. A. 2017, 1481, 23–30. DOI: 10.1016/j.chroma.2016.12.041.
  • Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy. J. Anal. Bioanal. Tech. 2015, 6, 1–5. DOI: 10.4172/2155-9872.1000289.
  • Sousa, D. V. M.; Pereira, F. V.; Nascentes, C. C.; Moreira, J. S.; Boratto, V. H. M.; Orlando, R. M. Cellulose Cone Tip as a Sorbent Material for Multiphase Electrical Field-Assisted Extraction of Cocaine from Saliva and Determination by LC-MS/MS. Talanta 2020, 208, 120353. DOI: 10.1016/j.talanta.2019.120353.
  • Sorribes-Soriano, A.; Esteve-Turrillas, F. A.; Armenta, S.; Montoya, A.; Herrero-Martinez, J. M.; de la Guardia, M. Magnetic Molecularly Imprinted Polymers for the Selective Determination of Cocaine by Ion Mobility Spectrometry. J. Chromatogr. A. 2018, 1545, 22–31. DOI: 10.1016/j.chroma.2018.02.055.
  • Nakhla, D. S.; Hussein, L. A.; Magdy, N.; Abdallah, I. A.; Hassan, H. E. Precise Simultaneous Quantification of Methadone and Cocaine in Rat Serum and Brain Tissue Samples following Their Successive i.p. administration. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2017, 1048, 19–29. DOI: 10.1016/j.jchromb.2017.01.048.
  • Orfanidis, A.; Gika, H.; Mastrogianni, O.; Krokos, A.; Theodoridis, G.; Zaggelidou, E.; Raikos, N. Determination of Drugs of Abuse and Pharmaceuticals in Skeletal Tissue by UHPLC-MS/MS. Forensic Sci. Int. 2018, 290, 137–145. DOI: 10.1016/j.forsciint.2018.07.004.
  • Ambach, L.; Menzies, E.; Parkin, M. C.; Kicman, A.; Archer, J. R. H.; Wood, D. M.; Dargan, P. I.; Stove, C. Quantification of Cocaine and Cocaine Metabolites in Dried Blood Spots from a Controlled Administration Study Using Liquid Chromatography-Tandem Mass Spectrometry. Drug Test Anal. 2019, 11, 709–720. DOI: 10.1002/dta.2537.
  • Sadler Simões, S.; Castañera Ajenjo, A.; Dias, M. J. Dried Blood Spots Combined to an UPLC-MS/MS Method for the Simultaneous Determination of Drugs of Abuse in Forensic Toxicology. J. Pharm. Biomed. Anal. 2018, 147, 634–644. DOI: 10.1016/j.jpba.2017.02.046.
  • Kernalléguen, A.; Steinhoff, R.; Bachler, S.; Dittrich, P. S.; Saint-Marcoux, F.; El Bakhi, S.; Vorspan, F.; Léonetti, G.; Lafitte, D.; Pélissier-Alicot, A.-L.; Zenobi, R. High-Throughput Monitoring of Cocaine and Its Metabolites in Hair Using Microarrays for Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization-Tandem Mass Spectrometry. Anal. Chem. 2018, 90, 2302–2309. DOI: 10.1021/acs.analchem.7b04693.
  • Baciu, T.; Borrull, F.; Aguilar, C.; Calull, M. Findings in the Hair of Drug Abusers Using Pressurized Liquid Extraction and Solid-Phase Extraction Coupled in-Line with Capillary Electrophoresis. J. Pharm. Biomed. Anal. 2016, 131, 420–428. DOI: 10.1016/j.jpba.2016.09.017.
  • Vincenti, F.; Montesano, C.; Cellucci, L.; Gregori, A.; Fanti, F.; Compagnone, D.; Curini, R.; Sergi, M. Combination of Pressurized Liquid Extraction with Dispersive Liquid Liquid Micro Extraction for the Determination of Sixty Drugs of Abuse in Hair. J. Chromatogr. A. 2019, 1605, 360348. DOI: 10.1016/j.chroma.2019.07.002.
  • Pego, A. M. F.; Roveri, F. L.; Kuninari, R. Y.; Leyton, V.; Miziara, I. D.; Yonamine, M. Determination of Cocaine and Its Derivatives in Hair Samples by Liquid Phase Microextraction (LPME) and Gas Chromatography-Mass Spectrometry (GC-MS). Forensic Sci. Int. 2017, 274, 83–90. DOI: 10.1016/j.forsciint.2016.12.024.
  • Rosado, T.; Gallardo, E.; Vieira, D. N.; Barroso, M. New Miniaturized Clean-up procedure for Hair Samples by Means of Microextraction by Packed Sorbent: determination of Cocaine and Metabolites. Anal. Bioanal. Chem. 2020, 412, 7963–7976. DOI: 10.1007/s00216-020-02929-6.
  • Alves, E.; Agonia Ferreira, A. S.; Afonso, C. M.; Cravo, S. M.; Duarte Pereira Netto, A.; Carvalho, F.; Dinis-Oliveira, R. J. Validation of a Modified QuEChERS Extraction/GC–MS Methodology for Quantification of Drugs of Abuse in Human Samples. Toxicol. Lett. 2015, 238, S376. DOI: 10.1016/j.toxlet.2015.08.1073.
  • López-García, E.; Postigo, C.; López de Alda, M. Psychoactive Substances in Mussels: Analysis and Occurrence Assessment. Mar. Pollut. Bull. 2019, 146, 985–992. DOI: 10.1016/j.marpolbul.2019.07.042.
  • Montemurro, N.; Joedicke, J.; Pérez, S. Development and Application of a QuEChERS Method with Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry for the Determination of 50 Wastewater-Borne Pollutants in Earthworms Exposed through Treated Wastewater. Chemosphere 2021, 263, 128222. DOI: 10.1016/j.chemosphere.2020.128222.
  • Scroggin, T. L.; McMillin, G. A. Quantitation of Cocaine and Metabolites, Phencyclidine, Butalbital and Phenobarbital in Meconium by Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2018, 42, 177–182. DOI: 10.1093/jat/bkx097.
  • D'Avila, F. B.; Ferreira, P. C. L.; Salazar, F. R.; Pereira, A. G.; Santos, M. K. D.; Pechansky, F.; Limberger, R. P.; Fröehlich, P. E. Analysis of Cocaine/Crack Biomarkers in Meconium by LC-MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1012–1013, 113–117. DOI: 10.1016/j.jchromb.2016.01.019.
  • Asimakopoulos, A. G.; Kannan, P.; Higgins, S.; Kannan, K. Determination of 89 Drugs and Other Micropollutants in Unfiltered Wastewater and Freshwater by LC-MS/MS: An Alternative Sample Preparation Approach. Anal. Bioanal. Chem. 2017, 409, 6205–6225. DOI: 10.1007/s00216-017-0561-x.
  • Martins, A. F.; Dos Santos, J. B.; Todeschini, B. H.; Saldanha, L. F.; da Silva, D. S.; Reichert, J. F.; Souza, D. M. Occurrence of Cocaine and Metabolites in Hospital effluent - A Risk Evaluation and Development of a HPLC Method Using DLLME. Chemosphere 2017, 170, 176–182. DOI: 10.1016/j.chemosphere.2016.12.019.
  • Centazzo, N.; Frederick, B.-M.; Jacox, A.; Cheng, S.-Y.; Concheiro-Guisan, M. Wastewater Analysis for Nicotine, Cocaine, Amphetamines, Opioids and Cannabis in New York City. Forensic. Sci. Res. 2019, 4, 152–167. DOI: 10.1080/20961790.2019.1609388.
  • González-Mariño, I.; Estévez-Danta, A.; Rodil, R.; Da Silva, K. M.; Sodré, F. F.; Cela, R.; Quintana, J. B. Profiling Cocaine Residues and Pyrolytic Products in Wastewater by Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry. Drug Test. Anal. 2019, 11, 1018–1027. DOI: 10.1002/dta.2590.
  • Boix, C.; Ibáñez, M.; Sancho, J. V.; Rambla, J.; Aranda, J. L.; Ballester, S.; Hernández, F. Fast Determination of 40 Drugs in Water Using Large Volume Direct Injection Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2015, 131, 719–727. DOI: 10.1016/j.talanta.2014.08.005.
  • Gago-Ferrero, P.; Borova, V.; Dasenaki, M. E.; Τhomaidis, ΝS. Simultaneous Determination of 148 Pharmaceuticals and Illicit Drugs in Sewage Sludge Based on Ultrasound-Assisted Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 4287–4297. DOI: 10.1007/s00216-015-8540-6.
  • Celma, A.; Sancho, J. V.; Salgueiro-González, N.; Castiglioni, S.; Zuccato, E.; Hernández, F.; Bijlsma, L. Simultaneous Determination of New Psychoactive Substances and Illicit Drugs in Sewage: Potential of Micro-Liquid Chromatography Tandem Mass Spectrometry in Wastewater-Based Epidemiology. J. Chromatogr. A. 2019, 1602, 300–309. DOI: 10.1016/j.chroma.2019.05.051.
  • Lapachinske, S. F.; Okai, G. G.; dos Santos, A.; de Bairros, A. V.; Yonamine, M. Analysis of Cocaine and Its Adulterants in Drugs for International Trafficking Seized by the Brazilian Federal Police. Forensic Sci. Int. 2015, 247, 48–53. DOI: 10.1016/j.forsciint.2014.11.028.
  • Monfreda, M.; Varani, F.; Cattaruzza, F.; Ciambrone, S.; Proposito, A. Fast Profiling of Cocaine Seizures by FTIR Spectroscopy and GC-MS Analysis of Minor Alkaloids and Residual Solvents. Sci. Justice 2015, 55, 456–466. DOI: 10.1016/j.scijus.2015.06.002.
  • Gómez-Ríos, G. A.; Vasiljevic, T.; Gionfriddo, E.; Yu, M.; Pawliszyn, J. Towards on-Site Analysis of Complex Matrices by Solid-Phase Microextraction-Transmission Mode Coupled to a Portable Mass Spectrometer via Direct Analysis in Real Time. Analyst 2017, 142, 2928–2935. DOI: 10.1039/c7an00718c.
  • Watt, L.; Sisco, E. Detection of Trace Drugs of Abuse in Baby Formula Using Solid-Phase Microextraction Direct Analysis in Real-Time Mass Spectrometry (SPME-DART-MS). J. Forensic Sci. 2021, 66, 172–178. DOI: 10.1111/1556-4029.14568.
  • A, Amirav. Fast Heroin and Cocaine Analysis by GC–MS with Cold EI: The Important Role of Flow Programming. Chromatographia 2017, 80, 295–300. DOI: 10.1007/s10337-017-3249-7.
  • Santos, H.; Lima, A. S.; Mazega, A.; Domingos, E.; Thompson, C. J.; Maldaner, A. O.; Filgueiras, P. R.; Vaz, B. G.; Romão, W. Quantification of Cocaine and Its Adulterants (Lidocaine and Levamisole) Using the Dragendorff Reagent Allied to Paper Spray Ionization Mass Spectrometry. Anal. Methods 2017, 9, 3662–3668. DOI: 10.1039/C7AY00588A.
  • Marcelo, M. C. A.; Fiorentin, T. R.; Mariotti, K. C.; Ortiz, R. S.; Limberger, R. P.; Ferrão, M. F. Determination of Cocaine and Its Main Adulterants in Seized Drugs from Rio Grande Do Sul, Brazil, by a Doehlert Optimized LC-DAD Method. Anal. Methods 2016, 8, 5212–5217. DOI: 10.1039/C6AY01157H.
  • Barreto, D. N.; Ribeiro, M. M. A. C.; Sudo, J. T. C.; Richter, E. M.; Muñoz, R. A. A.; Silva, S. G. High-Throughput Screening of Cocaine, Adulterants, and Diluents in Seized Samples Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Talanta 2020, 217, 120987. DOI: 10.1016/j.talanta.2020.120987.
  • Marra, M. C.; de Castro Costa, B. M.; Munoz, R. A. A.; Santana, M. H. P.; Maldaner, A. O.; Botelho, É. D.; Coltro, W. K. T.; Richter, E. M. Fast Determination of Cocaine and Some Common Adulterants in Seized Cocaine Samples by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Anal. Methods 2018, 10, 2875–2880. DOI: 10.1039/C8AY00795K.
  • Sharma, R.; Kumar, J. Development and Validation of a High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Levamisole and Cocaine in Seized Cocaine Sample. J. Planar Chromatogr. 2018, 31, 383–388. DOI: 10.1556/1006.2018.31.5.6.
  • Stojanovska, N.; Tahtouh, M.; Kelly, T.; Beavis, A.; Fu, S. Qualitative Analysis of Seized Cocaine Samples Using Desorption Electrospray Ionization- Mass Spectrometry (DESI-MS). Drug Test Anal. 2015, 7, 393–400. DOI: 10.1002/dta.1684.
  • Eliaerts, J.; Meert, N.; Van Durme, F.; Samyn, N.; De Wael, K.; Dardenne, P. Practical Tool for Sampling and Fast Analysis of Large Cocaine Seizures. Drug Test Anal. 2018, 10, 1039–1042. DOI: 10.1002/dta.2364.
  • da Silva, A. F.; Grobério, T. S.; Zacca, J. J.; Maldaner, A. O.; Braga, J. W. B. Cocaine and Adulterants Analysis in Seized Drug Samples by Infrared Spectroscopy and MCR-ALS. Forensic Sci. Int. 2018, 290, 169–177. DOI: 10.1016/j.forsciint.2018.07.006.
  • Grobério, T. S.; Zacca, J. J.; Botelho, É. D.; Talhavini, M.; Braga, J. W. B. Discrimination and Quantification of Cocaine and Adulterants in Seized Drug Samples by Infrared Spectroscopy and PLSR. Forensic Sci. Int. 2015, 257, 297–306. DOI: 10.1016/j.forsciint.2015.09.012.
  • Liu, C.-M.; Han, Y.; Min, S.-G.; Jia, W.; Meng, X.; Liu, P.-P. Rapid Qualitative and Quantitative Analysis of Methamphetamine, Ketamine, Heroin, and Cocaine by near-Infrared Spectroscopy. Forensic Sci. Int. 2018, 290, 162–168. DOI: 10.1016/j.forsciint.2018.07.008.
  • Almeida de Paula, C. C.; Lordeiro, R. A.; Piccin, E.; Augusti, R. Paper Spray Mass Spectrometry Applied to the Detection of Cocaine in Simulated Samples. Anal. Methods 2015, 7, 9145–9149. DOI: 10.1039/C5AY02263K.
  • Beigloo, F.; Noori, A.; Mehrgardi, M. A.; Mousavi, M. F. Label-Free and Sensitive Impedimetric Nanosensor for the Detection of Cocaine Based on a Supramolecular Complexation with β-Cyclodextrin, Immobilized on a Nanostructured Polymer Film. J. Iran Chem. Soc. 2016, 13, 659–669. DOI: 10.1007/s13738-015-0778-6.
  • Muzetti Ribeiro, M. F.; da Cruz Júnior, J. W.; Dockal, E. R.; McCord, B. R.; de Oliveira, M. F. Voltammetric Determination of Cocaine Using Carbon Screen Printed Electrodes Chemically Modified with Uranyl Schiff Base Films. Electroanalysis 2016, 28, 320–326. DOI: 10.1002/elan.201500372.
  • Neves, M. A. D.; Blaszykowski, C.; Bokhari, S.; Thompson, M. Ultra-High Frequency Piezoelectric Aptasensor for the Label-Free Detection of Cocaine. Biosens. Bioelectron. 2015, 72, 383–392. DOI: 10.1016/j.bios.2015.05.038.
  • Pinto, C. G.; Laespada, M. E. F.; Martín, S. H.; Ferreira, A. M. C.; Pavón, J. L. P.; Cordero, B. M. Simplified QuEChERS Approach for the Extraction of Chlorinated Compounds from Soil Samples. Talanta 2010, 81, 385–391. DOI: 10.1016/j.talanta.2009.12.013.
  • Cheng, Z.; Jiang, H. Supported Liquid Extraction (SLE) in LC-MS Bioanalysis. In Sample Preparation in LC‐MS Bioanalysis; Wiley: Hoboken, NJ, 2019; pp 76–84.
  • Alves, G.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Queiroz, J. A Critical Review of Microextraction by Packed Sorbent as a Sample Preparation Approach in Drug Bioanalysis. Bioanalysis 2013, 5, 1409–1442. DOI: 10.4155/bio.13.92.
  • Dadfarnia, S.; Haji Shabani, A. M. Recent Development in Liquid Phase Microextraction for Determination of Trace Level Concentration of Metals—A Review. Anal. Chim. Acta 2010, 658, 107–119. DOI: 10.1016/j.aca.2009.11.022.
  • Ng, T. T. Rapid Determination of Drugs-of-Abuse in Urine and Oral Fluid and Rapid Authentication of Edible Oils by Mass Spectrometry. Dissertations, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.