1,140
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review

, , ORCID Icon, , , ORCID Icon & show all
Pages 599-616 | Published online: 20 Jun 2022

References

  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Nural, Y.; Ozdemir, S.; Yalcin, M. S.; Demir, B.; Atabey, H.; Seferoglu, Z.; Ece, A. New Bis- and Tetrakis-1,2,3-Triazole Derivatives: Synthesis, DNA Cleavage, Molecular Docking, Antimicrobial, Antioxidant Activity and Acid Dissociation Constants. Bioorg. Med. Chem. Lett. 2022, 55, 128453. DOI: 10.1016/J.BMCL.2021.128453.
  • Doğan, A.; Özdemir, S.; Yalçin, M. S.; Sari, H.; Nural, Y. Naphthoquinone-Thiazole Hybrids Bearing Adamantane: Synthesis, Antimicrobial, DNA Cleavage, Antioxidant Activity, Acid Dissociation Constant, and Drug-Likeness. J. Res. Pharm 2021, 25, 292–304. DOI: 10.29228/JRP.20.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution (Eur. J. Org. Chem. 30/2020). Eur. J. Org. Chem. 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Ince, T.; Serttas, R.; Demir, B.; Atabey, H.; Seferoglu, N.; Erdogan, S.; Sahin, E.; Erat, S.; Nural, Y. Polysubstituted Pyrrolidines Linked to 1,2,3-Triazoles: Synthesis, Crystal Structure, DFT Studies, Acid Dissociation Constant, Drug-Likeness, and anti-Proliferative Activity. J. Mol. Struct 2020, 1217, 128400. DOI: 10.1016/j.molstruc.2020.128400.
  • Gemili, M.; Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Ülger, M.; Şahin, E.; Erat, S.; Seferoğlu, Z. Novel Highly Functionalized 1,4-Naphthoquinone 2-Iminothiazole Hybrids: Synthesis, Photophysical Properties, Crystal Structure, DFT Studies, and anti(Myco)Bacterial/Antifungal Activity. J. Mol. Struct 2019, 1196, 536–546. DOI: 10.1016/j.molstruc.2019.06.087.
  • Nural, Y. Synthesis, Antimycobacterial Activity, and Acid Dissociation Constants of Polyfunctionalized 3-[2-(Pyrrolidin-1-Yl)Thiazole-5-Carbonyl]-2H-Chromen-2-One Derivatives. Monatsh. Chem. 2018, 149, 1905–1918. DOI: 10.1007/s00706-018-2250-7.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit Rev Anal Chem. 2020, 21, 1–23. DOI: 10.1080/10408347.2020.1777523.
  • Alizadeh, S. R.; Ebrahimzadeh, M. A. Antiviral Activities of Pyridine Fused and Pyridine Containing Heterocycles, a Review (from 2000 to 2020). Mini Rev Med Chem. 2021, 21, 2584–2611. DOI: 10.2174/1389557521666210126143558.
  • Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. New Page to Access Pyridine Derivatives: Synthesis from: N -Propargylamines. RSC Adv. 2016, 6, 71662–71675. DOI: 10.1039/C6RA08720E.
  • Lin, S. X.; Curtis, M. A.; Sperry, J. Pyridine Alkaloids with Activity in the Central Nervous System. Bioorg. Med. Chem. 2020, 28, 115820. DOI: 10.1016/J.BMC.2020.115820.
  • Kadhim, M. I.; Husein, I. Pharmaceutical and Biological Application of New Synthetic Compounds of Pyranone, Pyridine, Pyrmidine, Pyrazole and Isoxazole Incorporating on 2-Flouroquinoline Moieties. Syst. Rev. Pharm 2020, 11, 679–684. DOI: 10.5530/SRP.2020.2.98.
  • Peloquin, D. M.; Schmedake, T. A. Recent Advances in Hexacoordinate Silicon with Pyridine-Containing Ligands: Chemistry and Emerging Applications. Coord. Chem. Rev 2016, 323, 107–119. DOI: 10.1016/j.ccr.2016.02.005.
  • Mishra, A.; Gupta, R. Supramolecular Architectures with Pyridine-Amide Based Ligands: Discrete Molecular Assemblies and Their Applications. Dalton Trans. 2014, 43, 7668–7682. DOI: 10.1039/C4DT00277F.
  • Tahir, T.; Ashfaq, M.; Saleem, M.; Rafiq, M.; Shahzad, M. I.; Kotwica-Mojzych, K.; Mojzych, M. Pyridine Scaffolds, Phenols and Derivatives of Azo Moiety: Current Therapeutic Perspectives. Molecules 2021, 26, 4872. DOI: 10.3390/molecules26164872.
  • Alrooqi, M.; Khan, S.; Alhumaydhi, F. A.; Asiri, S. A.; Alshamrani, M.; Mashraqi, M. M.; Alzamami, A.; Alshahrani, A. M.; Aldahish, A. A. A Therapeutic Journey of Pyridine-Based Heterocyclic Compounds as Potent Anticancer Agents: A Review (from 2017 to 2021). Anticancer. Agents Med. Chem 2022, 22, 2775–2787. DOI: 10.2174/1871520622666220324102849.
  • Feng, X. J.; Tian, P. Z.; Xu, Z.; Chen, S. F.; Wong, M. S. Fluorescence-Enhanced Chemosensor for Metal Cation Detection Based on Pyridine and Carbazole. J. Org. Chem. 2013, 78, 11318–11325. DOI: 10.1021/JO401808C/SUPPL_FILE/JO401808C_SI_001.PDF.
  • Sarkar, B.; Prabakaran, P.; Prasad, E.; Gardas, R. L. Pyridine Appended Poly(Alkyl Ether) Based Ionogels for Naked Eye Detection of Cyanide Ions: A Metal-Free Approach. ACS Sustainable Chem. Eng. 2020, 8, 8327–8337. DOI: 10.1021/ACSSUSCHEMENG.0C02074/SUPPL_FILE/SC0C02074_SI_002.ZIP.
  • Khairul, W. M.; Zuki, H. M.; Hasan, M. F. A.; Daud, A. I. Pyridine Acyl Thiourea as Ionophore for the Detection of Copper(II) in Aqueous Phase. Procedia Chem 2016, 20, 105–114. DOI: 10.1016/j.proche.2016.07.019.
  • Bhuvanesh, N.; Suresh, S.; Kannan, K.; Rajesh Kannan, V.; Maroli, N.; Kolandaivel, P.; Nandhakumar, R. Bis-Anthracene Derived Bis-Pyridine: Selective Fluorescence Sensing of Al3+ Ions. New J. Chem. 2019, 43, 2519–2528. DOI: 10.1039/C8NJ04789H.
  • Mohanasundaram, D.; Bhaskar, R.; Sankarganesh, M.; Nehru, K.; Gangatharan Vinoth Kumar, G.; Rajesh, J. A Simple Pyridine Based Fluorescent Chemosensor for Selective Detection of Copper Ion. Spectrochim Acta A Mol Biomol Spectrosc . 2022, 265, 120395. DOI: 10.1016/J.SAA.2021.120395.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2063017. doi:10.1080/10408347.2022.2063017.
  • Alharbi, K. H. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit. Rev. Anal. Chem 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2033611.
  • Biswal, B.; Mallick, D.; Thirunavoukkarasu, M.; Mohanty, R.; Bag, B. A Pyridine and Pyrrole Coupled Rhodamine Derivative for Co(II) Ion Detection and Its Imaging Application in Plant Tissues. Sensors Actuators B Chem 2016, 232, 410–419. DOI: 10.1016/j.snb.2016.03.160.
  • Cao, Z.; Li, W.; Wan, H.; Zhou, J.; Jia, X.; Ding, Y. Rotating the C-N Bond in a Coumarin-Pyridine-Based Sensor for Pattern Recognition of Versatile Metal Ions. Anal. Chem. 2021, 93, 14256–14262. DOI: 10.1021/ACS.ANALCHEM.1C03302/SUPPL_FILE/AC1C03302_SI_001.PDF.
  • Aragoni, M. C.; Arca, M.; Bencini, A.; Blake, A. J.; Caltagirone, C.; De Filippo, G.; Devillanova, F. A.; Garau, A.; Gelbrich, T.; Hursthouse, M. B.; et al. Tuning the Selectivity/Specificity of Fluorescent Metal Ion Sensors Based on N2S2 Pyridine-Containing Macrocyclic Ligands by Changing the Fluorogenic Subunit: Spectrofluorimetric and Metal Ion Binding Studies. Inorg. Chem. 2007, 46, 4548–4559. DOI: 10.1021/IC070169E/SUPPL_FILE/IC070169ESI20070130_010044.CIF.
  • Kumar, R.; Jain, H.; Gahlyan, P.; Joshi, A.; Ramachandran, C. N. A Highly Sensitive Pyridine-Dicarbohydrazide Based Chemosensor for Colorimetric Recognition of Cu2+, AMP2−, F − and AcO − Ions. New J. Chem. 2018, 42, 8567–8576. DOI: 10.1039/C8NJ00918J.
  • Koca, B.; Akgul, D.; Aviyente, V. Organocatalysts in Ring-Opening Polymerization: Revealing Their Effect on Stereochemistry. Eur. Polym. J 2019, 121, 109291. DOI: 10.1016/j.eurpolymj.2019.109291.
  • Knijnenburg, Q.; Horton, A. D.; Van Der Heijden, H.; Kooistra, T. M.; Hetterscheid, D. G. H.; Smits, J. M. M.; De Bruin, B.; Budzelaar, P. H. M.; Gal, A. W. Olefin Hydrogenation Using Diimine Pyridine Complexes of Co and Rh. J. Mol. Catal. A Chem 2005, 232, 151–159. DOI: 10.1016/j.molcata.2004.12.039.
  • Toriumi, N.; Asano, N.; Miyamoto, K.; Muranaka, A.; Uchiyama, M. N -Alkynylpyridinium Salts: Highly Electrophilic Alkyne-Pyridine Conjugates as Precursors of Cationic Nitrogen-Embedded Polycyclic Aromatic Hydrocarbons. J. Am. Chem. Soc. 2018, 140, 3858–3862. DOI: 10.1021/JACS.8B00356/SUPPL_FILE/JA8B00356_SI_003.CIF.
  • Fukazawa, Y.; Vaganov, V. Y.; Shipilovskikh, S. A.; Rubtsov, A. E.; Malkov, A. V. Stereoselective Synthesis of Atropisomeric Bipyridine N,N′-Dioxides by Oxidative Coupling. Org. Lett. 2019, 21, 4798–4802. DOI: 10.1021/ACS.ORGLETT.9B01687/SUPPL_FILE/OL9B01687_SI_001.PDF.
  • Tamer, Ö.; Tamer, S. A.; İdil, Ö.; Avcı, D.; Vural, H.; Atalay, Y. Antimicrobial Activities, DNA Interactions, Spectroscopic (FT-IR and UV-Vis) Characterizations, and DFT Calculations for Pyridine-2-Carboxylic Acid and Its Derivates. J. Mol. Struct 2018, 1152, 399–408. DOI: 10.1016/j.molstruc.2017.09.100.
  • Liu, X.; Ma, S.; Ding, Y.; Gao, J.; Liu, X.; Yao, J.; Dai, S. Molecular Engineering of Simple Carbazole-Triphenylamine Hole Transporting Materials by Replacing Benzene with Pyridine Unit for Pero Solar Cells. Sol. RRL 2019, 3, 1800337. DOI: 10.1002/solr.201800337.
  • Jian, N.; Gu, H.; Zhang, S.; Liu, H.; Qu, K.; Chen, S.; Liu, X.; He, Y.; Niu, G.; Tai, S.; et al. Synthesis and Electrochromic Performances of Donor-Acceptor-Type Polymers from Chalcogenodiazolo [3,4-c]Pyridine and Alkyl ProDOTs. Electrochim. Acta 2018, 266, 263–275. DOI: 10.1016/j.electacta.2018.01.099.
  • Budhiraja, M.; Kondabala, R.; Ali, A.; Tyagi, V. First Biocatalytic Groebke-Blackburn-Bienaymé Reaction to Synthesize Imidazo[1,2-a]Pyridine Derivatives Using Lipase Enzyme. Tetrahedron 2020, 76, 131643. DOI: 10.1016/j.tet.2020.131643.
  • Mou, H. C.; Ying, J.; Tian, A. X.; Cui, H. T.; Wang, X. L. Four Keggin-Based Compounds Constructed by a Series of Pyridine Derivatives: Synthesis, and Electrochemical, Photocatalytic and Fluorescence Sensing Properties. New J. Chem. 2020, 44, 15122–15130. DOI: 10.1039/D0NJ00103A.
  • Rasouli, N. Application of a Novel, Efficient and Recyclable Photo Redox Catalyst (Zn–Al Layered Double Hydroxide/Eosin) for the Synthesis of Substituted Pyridine Derivatives under Visible Light Irradiation. Appl. Organometal. Chem. 2018, 32, e4585. DOI: 10.1002/aoc.4585.
  • Mızrak, B.; Altındal, A.; Abdurrahmanoğlu, Ş. Synthesis, Characterization and Partition Coefficients for VOC Vapor Adsorption onto Novel Pyridine Derivatives Co(II) Phthalocyanines. Prog. Org. Coatings 2017, 109, 92–96. DOI: 10.1016/j.porgcoat.2017.04.025.
  • Santhy, K. R.; Sweetlin, M. D.; Muthu, S.; Abraham, C. S.; Raja, M. Molecular Structure, Spectroscopic (FT-IR, FT-Raman) Studies, Homo–Lumo and Fukui Function Calculations of 2-Acetyl Amino-5-Bromo- 4 Methyl Pyridine by Density Functional Theory. Chem. Data Collect 2019, 24, 100291. DOI: 10.1016/j.cdc.2019.100291.
  • Jamale, D. K.; Vibhute, S. S.; Undare, S. S.; Valekar, N. J.; Patil, K. T.; Warekar, P. P.; Patil, P. T.; Kolekar, G. B.; Anbhule, P. V. Unexpected Formation of 4,5-Dihydro-1H-Pyrazolo[3,4-b]Pyridine Derivatives as a Potent Antitubercular Agent and Its Evaluation by Green Chemistry Metrics. Synth. Commun. 2018, 48, 2750–2760. DOI: 10.1080/00397911.2018.1524491. doi:10.1080/00397911.2018.1524491.
  • Kundu, A.; Inoue, M.; Nagae, H.; Tsurugi, H.; Mashima, K. Direct Ortho-C-H Aminoalkylation of 2-Substituted Pyridine Derivatives Catalyzed by Yttrium Complexes with N,N′-Diarylethylenediamido Ligands. J. Am. Chem. Soc. 2018, 140, 7332–7342. DOI: 10.1021/JACS.8B03998/SUPPL_FILE/JA8B03998_SI_002.CIF.
  • Katsuma, Y.; Asakawa, H.; Yamashita, M. Reactivity of Highly Lewis Acidic Diborane(4) towards Pyridine and Isocyanide: Formation of boraalkene-pyridine complex and ortho-functionalized pyridine derivatives . Chem. Sci. 2018, 9, 1301–1310. DOI: 10.1039/C7SC04759B.
  • Nechipadappu, S. K.; Trivedi, D. R. Structural and Physicochemical Characterization of Pyridine Derivative Salts of anti-Inflammatory Drugs. J. Mol. Struct 2017, 1141, 64–74. DOI: 10.1016/j.molstruc.2017.03.086.[Mismatch](44)Günnaz, S.; Gökçe, A. G.; Türkmen, H. Synthesis of Bimetallic Complexes Bridged by 2,6-Bis(Benzimidazol-2-Yl) Pyridine Derivatives and Their Catalytic Properties in Transfer Hydrogenation. Dalton Trans. 2018, 47, 17317–17328. doi: 10.1039/C8DT03178A.
  • Radwan, M. A. A.; Alshubramy, M. A.; Abdel-Motaal, M.; Hemdan, B. A.; El-Kady, D. S. Synthesis, Molecular Docking and Antimicrobial Activity of New Fused Pyrimidine and Pyridine Derivatives. Bioorg. Chem. 2020, 96, 103516. DOI: 10.1016/J.BIOORG.2019.103516.
  • Ibrahim, N. A.; El-Kaed, S. A.; Rizk, S. A.; Ali, A. K. Regioselective Synthesis, Spectroscopic Characterization, and Computational Chemical Study of Spiro[Indoline-3,4’-Pyrazolo[3,4-b] Pyridine Derivatives as Agrochemical Agents. Polycycl Aromat Compd. 2021, 15, 1–8. DOI: 10.1080/10406638.2021.1942083.
  • Othman, I. M. M.; Gad-Elkareem, M. A. M.; Anouar, E. H.; Snoussi, M.; Aouadi, K.; Kadri, A. Novel Fused Pyridine Derivatives Containing Pyrimidine Moiety as Prospective Tyrosyl-TRNA Synthetase Inhibitors: Design, Synthesis, Pharmacokinetics and Molecular Docking Studies. J. Mol. Struct 2020, 1219, 128651. DOI: 10.1016/j.molstruc.2020.128651.
  • Ahmed, M. H.; El-Hashash, M. A.; Marzouk, M. I.; El-Naggar, A. M. Design, Synthesis, and Biological Evaluation of Novel Pyrazole, Oxazole, and Pyridine Derivatives as Potential Anticancer Agents Using Mixed Chalcone. J. Heterocyclic Chem. 2019, 56, 114–123. DOI: 10.1002/jhet.3380.
  • Tydlitát, J.; Achelle, S.; Rodríguez-López, J.; Pytela, O.; Mikýsek, T.; Cabon, N.; Robin-le Guen, F.; Miklík, D.; Růžičková, Z.; Bureš, F. Photophysical Properties of Acid-Responsive Triphenylamine Derivatives Bearing Pyridine Fragments: Towards White Light Emission. Dye. Pigment 2017, 146, 467–478. DOI: 10.1016/j.dyepig.2017.07.043.
  • Grigor’ev, A. A.; Karpov, S. V.; Kayukov, Y. S.; Gracheva, I. A.; Tafeenko, V. A. Cascade Regioselective Heterocyclization of 2-Acyl-1,1,3,3-Tetracyanopropenides: Synthesis of Pyrrolo[3,4- c] Pyridine and Pyrrolo[3,4- d] Thieno[2,3- b] Pyridine Derivatives. Synlett 2017, 28, 1592–1595. DOI: 10.1055/S-0036-1588823/ID/JR000-6003.
  • Fedorov, M. S.; Giricheva, N. I.; Shpilevaya, K. E.; Lapykina, E. A.; Syrbu, S. A. Potential Mesogens Based on Pyridine Derivatives: The Geometric Structure, Conformational Properties and Characteristics of Intermolecular Hydrogen Bonds. J. Mol. Struct 2017, 1132, 50–55. DOI: 10.1016/j.molstruc.2016.10.094.
  • Farzaliyev, V.; Shuriberko, A.; Sujayev, A.; Osmanova, S.; Gojayeva, S.; Gahramanova, K. Synthesis, Computational and Biological Activity of Heteroatomic Compounds Based on Phenylthiourea and Acetophenone. J. Mol. Struct 2020, 1221, 128844. DOI: 10.1016/j.molstruc.2020.128844.
  • Haribabu, J.; Garisetti, V.; Malekshah, R. E.; Srividya, S.; Gayathri, D.; Bhuvanesh, N.; Mangalaraja, R. V.; Echeverria, C.; Karvembu, R. Design and Synthesis of Heterocyclic Azole Based Bioactive Compounds: Molecular Structures, Quantum Simulation, and Mechanistic Studies through Docking as Multi-Target Inhibitors of SARS-CoV-2 and Cytotoxicity. J. Mol. Struct. 2022, 1250, 131782. DOI: 10.1016/J.MOLSTRUC.2021.131782. PMC [34697505]
  • Carradori, S.; Secci, D.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Guglielmi, P.; Campestre, C.; Rivanera, D.; Bordón, C.; Jones-Brando, L. Synthesis and Biological Evaluation of anti-Toxoplasma Gondii Activity of a Novel Scaffold of Thiazolidinone Derivatives. J Enzyme Inhib Med Chem . 2017, 32, 746–758. DOI: 10.1080/14756.2017.1316494.
  • Guglielmi, P.; Carradori, S.; Poli, G.; Secci, D.; Cirilli, R.; Rotondi, G.; Chimenti, P.; Petzer, A.; Petzer, J. P. Design, Synthesis, Docking Studies and Monoamine Oxidase Inhibition of a Small Library of 1-Acetyl- and 1-Thiocarbamoyl-3,5-Diphenyl-4,5-Dihydro-(1h)-Pyrazoles. Molecules 2019, 24, 484. DOI: 10.3390/molecules24030484.
  • Rotondi, G.; Guglielmi, P.; Carradori, S.; Secci, D.; De Monte, C.; De Filippis, B.; Maccallini, C.; Amoroso, R.; Cirilli, R.; Akdemir, A.; et al. Design, Synthesis and Biological Activity of Selective HCAs Inhibitors Based on 2-(Benzylsulfinyl)Benzoic Acid Scaffold. J Enzyme Inhib Med Chem . 2019, 34, 1400–1413. DOI: 10.1080/14756366.2019.1651315.
  • Özdemir, Z.; Utku, S.; Mathew, B.; Carradori, S.; Orlando, G.; Di Simone, S.; Alagöz, M. A.; Özçelik, A. B.; Uysal, M.; Ferrante, C. Synthesis and Biological Evaluation of New 3(2H)-Pyridazinone Derivatives as Non-Toxic anti-Proliferative Compounds against Human Colon Carcinoma HCT116 Cells. J Enzyme Inhib Med Chem. 2020, 35, 1100–1109. DOI: 10.1080/14756366.2020.1755670.
  • Alagöz, M. A.; Özdemir, Z.; Uysal, M.; Carradori, S.; Gallorini, M.; Ricci, A.; Zara, S.; Mathew, B. Synthesis, Cytotoxicity and anti − Proliferative Activity against Ags Cells of New 3(2h)−Pyridazinone Derivatives Endowed with a Piperazinyl Linker. Pharmaceuticals 2021, 14, 183–127. DOI: 10.3390/ph14030183.
  • Abele, E.; Abele, R.; Lukevics, E, 2003 397 Pyridine Oximes: Synthesis, Reactions, and Biological Activity. (Review). Chem. Heterocycl. Compd 2003, 39, 825–865. DOI: 10.1023/A:1026181918567.
  • Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V. V.; Ruchirawat, S.; Prachayasittikul, V. V. Roles of Pyridine and Pyrimidine Derivatives as Privileged Scaffolds in Anticancer Agents. Mini-Reviews Med. Chem 2016, 17, 869–901. DOI: 10.2174/1389557516666160923125801.
  • Veselov, M. S.; Ivanenkov, Y. A.; Yamidanov, R. S.; Osterman, I. A.; Sergiev, P. V.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Ayginin, A. A.; Skvortsov, D. A.; et al. Identification of Pyrrolo-Pyridine Derivatives as Novel Class of Antibacterials. Mol. Divers. 2020, 24, 233–239. DOI: 10.1007/S11030-019-09946-3.
  • Ebenezer, O.; Awolade, P.; Koorbanally, N.; Singh, P. New Library of pyrazole-imidazo[1,2-α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem Biol Drug Des . 2020, 95, 162–173. DOI: 10.1111/CBDD.13632.
  • Mishra, N. P.; Mohapatra, S.; Sahoo, C. R.; Raiguru, B. P.; Nayak, S.; Jena, S.; Padhy, R. N. Design, One-Pot Synthesis, Molecular Docking Study, and Antibacterial Evaluation of Novel 2H-Chromene Based Imidazo[1,2-a]Pyridine Derivatives as Potent Peptide Deformylase Inhibitors. J. Mol. Struct 2021, 1246, 131183. DOI: 10.1016/j.molstruc.2021.131183.
  • Malani, A.; Makwana, A.; Monapara, J.; Ahmad, I.; Patel, H.; Desai, N. Synthesis, Molecular Docking, DFT Study, and in Vitro Antimicrobial Activity of Some 4-(Biphenyl-4-Yl)-1,4-Dihydropyridine and 4-(Biphenyl-4-Yl)Pyridine Derivatives. J. Biochem. Mol. Toxicol 2021, 35, 1–12. DOI: 10.1002/JBT.22903.
  • Elkanzi, N. A. A.; Bakr, R. B.; Ghoneim, A. A. Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano[2,3-b]Pyridine and Pyrrolo[2,3-b]Pyrano[2.3-d]Pyridine Derivatives. J. Heterocycl. Chem 2019, 56, 406–416. DOI: 10.1002/JHET.3412.
  • Murthy, I. S.; Sreenivasulu, R.; Alluraiah, G.; Ramesh Raju, R. Design, Synthesis, and Anticancer Activity of 1,2,3-Triazole Linked 1,2-Isoxazole-Imidazo[4,5-b]Pyridine Derivatives. Russ. J. Gen. Chem. 2019, 89, 1718–1723. DOI: 10.1134/S1070363219080279.
  • Gomha, S. M.; Muhammad, Z. A.; Abdel-aziz, M. R.; Abdel-aziz, H. M.; Gaber, H. M.; Elaasser, M. M. One-Pot Synthesis of New Thiadiazolyl-Pyridines as Anticancer and Antioxidant Agents. J. Heterocyclic Chem. 2018, 55, 530–536. DOI: 10.1002/jhet.3088.
  • V, R.; B, I.; T, M.; B, G. V.; S, G. G. In Silico Studies, Synthesis and Anticancer Activity of Novel Diphenyl Ether-Based Pyridine Derivatives. Mol. Divers 2018, 23, 541–554. DOI: 10.1007/S11030-018-9889-1.
  • Wang, R.; Chen, Y.; Yang, B.; Yu, S.; Zhao, X.; Zhang, C.; Hao, C.; Zhao, D.; Cheng, M. Design, Synthesis, Biological Evaluation and Molecular Modeling of Novel 1H-Pyrrolo[2,3-b]Pyridine Derivatives as Potential anti-Tumor Agents. Bioorg. Chem 2020, 94, 103474–103480. DOI: 10.1016/J.BIOORG.2019.103474.
  • Marijan, S.; Markotić, A.; Mastelić, A.; Režić-Mužinić, N.; Pilkington, L. I.; Reynisson, J.; Čulić, V. Č. Glycosphingolipid Expression at Breast Cancer Stem Cells after Novel Thieno[2,3-b]Pyridine Anticancer Compound Treatment. Sci. Reports 2020 101 2020, 10, 1–12. DOI: 10.1038/s41598-020-68516-y.
  • Wang, X.; Chen, M.; Li, Q.; Zhang, J.; Ruan, X.; Xie, Y.; Xue, W. Synthesis and Antiviral Activities of Novel Penta-1,4-Diene-3-One Oxime Derivatives Bearing a Pyridine Moiety. Chem. Pap. 2017, 71, 1225–1233. DOI: 10.1007/s11696-016-0116-1.
  • Li, T.; Zhang, J.; Pan, J.; Wu, Z.; Hu, D.; Song, B. Design, Synthesis, and Antiviral Activities of 1,5-Benzothiazepine Derivatives Containing Pyridine Moiety. Eur. J. Med. Chem. 2017, 125, 657–662. DOI: 10.1016/J.EJMECH.2016.09.069.
  • Abdelgawad, M. A.; Bakr, R. B.; Azouz, A. A. Novel Pyrimidine-Pyridine Hybrids: Synthesis, Cyclooxygenase Inhibition, anti-Inflammatory Activity and Ulcerogenic Liability. Bioorg. Chem. 2018, 77, 339–348. DOI: 10.1016/J.BIOORG.2018.01.028.
  • Ghattas, A. E. B. A. G.; Khodairy, A.; Moustafa, H. M.; Hussein, B. R. M. New Heterocyclic Compounds Derived from 4,6-Diamino-3-Cyano-2-Methylthiopyridine and Their Biological Activity. J. Heterocyclic Chem. 2017, 54, 879–888. DOI: 10.1002/jhet.2649.
  • El-Dash, Y.; Khalil, N. A.; Ahmed, E. M.; Hassan, M. S. A. Synthesis and Biological Evaluation of New Nicotinate Derivatives as Potential anti-Inflammatory Agents Targeting COX-2 Enzyme. Bioorg. Chem. 2021, 107, 104610. DOI: 10.1016/J.BIOORG.2020104610.
  • Kumar, M.; Akbar, Z. A Review on Analgesic: From Natural Sources. 2010.
  • Nigade, G.; Chavan, P.; Deodhar, M, 2010 211 Synthesis and Analgesic Activity of New Pyridine-Based Heterocyclic Derivatives. Med. Chem. Res. 2012, 21, 27–37. DOI: 10.1007/s00044-010-9489-9.
  • Al-Omar, M. A.; Amr, A. E. G. E.; Al-Salahi, R. A. Anti-Inflammatory, Analgesic, Anticonvulsant and Antiparkinsonian Activities of Some Pyridine Derivatives Using 2,6-Disubstituted Isonicotinic Acid Hydrazides. Arch Pharm (Weinheim) 2010, 343, 648–656. DOI: 10.1002/ARDP.201000088.
  • Abdel Salam, O. I.; Al-Omar, M. A.; Khalifa, N. M.; Amr, A. E. G. E.; Abdallah, M. M. Analgesic and Anticonvulsant Activities of Some Newly Synthesized Trisubstituted Pyridine Derivatives. Zeitschrift Fur Naturforsch. - Sect. C 2013, 68 C, 264–268. J. Biosci. DOI: 10.1515/ZNC-2013-7-802/MACHINEREADABLECITATION/RIS.
  • Taha, M.; Ismail, N. H.; Imran, S.; Rashwan, H.; Jamil, W.; Ali, S.; Kashif, S. M.; Rahim, F.; Salar, U.; Khan, K. M. Synthesis of 6-Chloro-2-Aryl-1H-Imidazo[4,5-b]Pyridine Derivatives: Antidiabetic, Antioxidant, β-Glucuronidase Inhibiton and Their Molecular Docking Studies. Bioorg. Chem. 2016, 65, 48–56. DOI: 10.1016/J.BIOORG.2016.01.007.
  • Hu, Y.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Guo, Z. Synthesis, Characterization, and Antioxidant Properties of Novel Inulin Derivatives with Amino-Pyridine Group. Int. J. Biol. Macromol. 2014, 70, 44–49. DOI: 10.1016/J.IJBIOMAC.2014.06.024.
  • Hu, Y.; Kye, M.; Jung, J. Y.; Lim, Y.; Beom.; Yoon, J. Design for a Small Molecule Based Chemosensor Containing Boron and Pyridine Moieties to Detect HF. Sensors Actuators B Chem 2018, 255, 2621–2627. DOI: 10.1016/j.snb.2017.09.072.
  • Pan, J. T.; Zhu, F.; Kong, L.; Yang, L. M.; Tao, X. T.; Tian, Y. P.; Lu, H. B.; Yang, J. X. A Simple Pyridine-Based Colorimetric Chemosensor for Highly Sensitive and Selective Mercury(II) Detection with the Naked Eye. Chem. Pap 2014 6942017, 69, 527–535. DOI: 10.1515/CHEMPAP-2015-0061.
  • Roy, S. G.; Mondal, S.; Ghosh, K. Anthracene Labeled Poly(Pyridine Methacrylamide) as a Polymer-Based Chemosensor for Detection of Pyrophosphate (P2O74-) in semi-aqueous media. Anal Methods 2020, 12, 5699–5708. DOI: 10.1039/D0AY01540G.
  • Maity, P.; Naskar, B.; Goswami, S.; Prodhan, C.; Chaudhuri, T.; Chaudhuri, K.; Mukhopadhyay, C. Pyrrolo[3,4- c]Pyridine-Based Fluorescent Chemosensor for Fe3+/Fe2+ Sensitivity and Their Application in Living HepG2 Cells. ACS Omega 2018, 3, 18646–18655. DOI: 10.1021/ACSOMEGA.8B02110/SUPPL_FILE/AO8B02110_SI_002.CIF.
  • Li, Z. X.; Zhang, L. F.; Zhao, W. Y.; Li, X. Y.; Guo, Y. K.; Yu, M. M.; Liu, J. X. Fluoranthene-Based Pyridine as Fluorescent Chemosensor for Fe3+. Inorg. Chem. Commun 2011, 14, 1656–1658. DOI: 10.1016/j.inoche.2011.06.032.
  • Yang, Y.; Ni, X. L.; Sun, T.; Cong, H.; Wei, G. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+ Based on a Pyridine-Appended π-Conjugated Ligand. RSC Adv. 2014, 4, 47000–47004. DOI: 10.1039/C4RA07448C.
  • Sahu, M.; Kumar Manna, A.; Rout, K.; Mondal, J.; Patra, G. K. A Highly Selective Thiosemicarbazone Based Schiff Base Chemosensor for Colorimetric Detection of Cu2+ and Ag + Ions and Turn-on Fluorometric Detection of Ag + Ions. Inorganica Chim. Acta 2020, 508, 119633. DOI: 10.1016/j.ica.2020.119633.
  • Alamgir, S.; Mhahabubur Rhaman, M.; Basaran, I.; Powell, D. R.; Alamgir Hossain, M. Colorimetric and Spectroscopic Cobalt(II) Sensing by a Simple Schiff Base. Polyhedron 2020, 187, 114681. DOI: 10.1016/j.poly.2020.114681.
  • Sadaphal, Y. R.; Gholap, S. S. A Highly Selective Colorimetric Chemosensor for Copper(II) Based on N-Phenyl-N’-(Pyridin-2-Yl)Thiourea(HPyPT). Sensors Actuators, B Chem 2017, 253, 173–179. DOI: 10.1016/j.snb.2017.05.187.
  • Saleem, M.; Khang, C. H.; Kim, M.-H.; Lee, K. H. Chromo/Fluorogenic Detection of Co(2+), Hg(2+) and Cu(2+) by the Simple Schiff Base Sensor Development of Fluorescent Sensor for Trace Metal Detection View Project Synthesis of Fluorescent Materials for the Sensing and Drug Delivery Applications View Proj. J. Fluoresc. 2016, 26, 11–22. DOI: 10.1007/s10895-015-1723-x.
  • Wu, G.; Li, M.; Zhu, J.; Lai, K. W. C.; Tong, Q.; Lu, F. A Highly Sensitive and Selective Turn-on Fluorescent Probe for Pb(II) Ions Based on a Coumarin-Quinoline Platform. RSC Adv. 2016, 6, 100696–100699. DOI: 10.1039/C6RA19734E.
  • Li, B.; Tian, J.; Zhang, D.; Tian, F. A Novel Colorimetric Fluorescence Sensor for Fe3+ based on quinoline Schiff base. Luminescence 2017, 32, 1567–1573. DOI: 10.1002/bio.3361.
  • Guo, Y. S.; Zhao, M.; Wang, Q.; Chen, Y. Q.; Guo, D. S. New Pyridine-Bridged Ferrocene-Rhodamine Receptor for the Multifeature Detection of Hg2+ in Water and Living Cells . ACS Omega. 2020, 5, 17672–17678. DOI: 10.1021/ACSOMEGA.0C02197.
  • Gunnlaugsson, T.; Glynn, M.; Tocci (née Hussey), G. M.; Kruger, P. E.; Pfeffer, F. M. Anion Recognition and Sensing in Organic and Aqueous Media Using Luminescent and Colorimetric Sensors. Coord. Chem. Rev 2006, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017.
  • Suganya, S.; Naha, S.; Velmathi, S. A Critical Review on Colorimetric and Fluorescent Probes for the Sensing of Analytes via Relay Recognition from the Year 2012–17. ChemistrySelect 2018, 3, 7231–7268. DOI: 10.1002/slct.201801222.
  • Bazany-Rodríguez, I. J.; Martínez-Otero, D.; Barroso-Flores, J.; Yatsimirsky, A. K.; Dorazco-González, A. Sensitive Water-Soluble Fluorescent Chemosensor for Chloride Based on a Bisquinolinium Pyridine-Dicarboxamide Compound. Sensors Actuators, B Chem 2015, 221, 1348–1355. DOI: 10.1016/j.snb.2015.07.031.
  • Huang, X.; Lu, Z.; Wang, Z.; Fan, C.; Fan, W.; Shi, X.; Zhang, H.; Pei, M. A Colorimetric and Turn-on Fluorescent Chemosensor for Selectively Sensing Hg2+ and Its Resultant Complex for Fast Detection of I- over S2. Dye. Pigment 2016, 128, 33–40. DOI: 10.1016/J.DYEPIG.206.01.008.
  • Hwang, S. M.; Yun, D.; Kim, C. An Imidazo[1,5-α]Pyridine-Based Fluorometric Chemodosimeter for the Highly Selective Detection of Hypochlorite in Aqueous Media. J. Fluoresc. 2019, 29, 451–459. DOI: 10.1007/s10895-019-02355-7.
  • Shi, B.; Zhang, Y.; Wei, T.; Lin, Q.; Yao, H.; Zhang, P.; You, X. A Fluorescent and Colorimetric Chemosensor for Dihydrogen Phosphate Ions Based on 2-Pyridine-1H-Imidazo[4,5-b]Phenazine-Zinc Ensemble. Sensors Actuators, B Chem 2014, 190, 555–561. DOI: 10.1016/j.snb.2013.09.043.
  • Hai, Z.; Bao, Y.; Miao, Q.; Yi, X.; Liang, G. Pyridine-Biquinoline-Metal Complexes for Sensing Pyrophosphate and Hydrogen Sulfide in Aqueous Buffer and in Cells. Anal. Chem. 2015, 87, 2678–2684. DOI: 10.1021/AC504536Q.
  • Fu, Z. H.; Wang, Y. W.; Peng, Y. Two Fluorescein-Based Chemosensors for the Fast Detection of 2,4,6-Trinitrophenol (TNP) in Water. Chem Commun (Camb) 2017, 53, 10524–10527. DOI: 10.1039/C7CC05966C.
  • Yu, X.; Wang, K.; Cao, D.; Liu, Z.; Guan, R.; Wu, Q.; Xu, Y.; Sun, Y.; Zhao, X. A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biological Thiols. Sensors Actuators, B Chem 2017, 250, 132–138. DOI: 10.1016/j.snb.2017.04.147.
  • Sarkar, H. S.; Das, S.; Rissanen, K.; Sahoo, P. First Chemosensor for Selective Detection and Quantification of L-4-Hydroxyproline in Collagen and Other Bio Samples. Anal. Chem. 2017, 89, 13054–13057. DOI: 10.1021/ACS.ANALCHEM.7B04430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.