483
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson’s Disease Biomarkers

, , , , , , , & show all
Pages 617-632 | Published online: 26 Jun 2022

References

  • Stoker, T. B.; Greenland, J. C. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. 2018.
  • Bloem, B. R.; Marks, W. J.; Silva de Lima, A. L.; Kuijf, M. L.; van Laar, T.; Jacobs, B. P. F.; Verbeek, M. M.; Helmich, R. C.; van de Warrenburg, B. P.; Evers, L. J. W.; et al. The Personalized Parkinson Project: Examining Disease Progression through Broad Biomarkers in Early Parkinson’s Disease. BMC Neurol. 2019, 19, 1. DOI: 10.1186/s12883-019-1394-3.
  • Horsager, J.; Andersen, K. B.; Knudsen, K.; Skjaerbaek, C.; Fedorova, T. D.; Okkels, N.; Schaeffer, E.; Bonkat, S. K.; Geday, J.; Otto, M.; et al. Brain-First versus Body-First Parkinson’s Disease: A Multimodal Imaging Case-Control Study. Brain 2020, 143, 3077–3088. DOI: 10.1093/brain/awaa238.
  • Oh, S. E.; Park, H.-J.; He, L.; Skibiel, C.; Junn, E.; Mouradian, M. M. The Parkinson's Disease Gene Product DJ-1 Modulates miR-221 to Promote Neuronal Survival against Oxidative Stress. Redox Biol. 2018, 19, 62–73. DOI: 10.1016/j.redox.2018.07.021.
  • Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J. J.; Singleton, A. B. Genetics of Parkinson's Disease: An Introspection of Its Journey towards Precision Medicine. Neurobiol. Dis. 2020, 137, 104782. DOI: 10.1016/j.nbd.2020.104782.
  • Hou, L.; Li, Q.; Jiang, L.; Qiu, H.; Geng, C.; Hong, J.-S.; Li, H.; Wang, Q. Hypertension and Diagnosis of Parkinson’s Disease: A Meta-Analysis of Cohort Studies. Front. Neurol. 2018, 9, 162. DOI: 10.3389/fneur.2018.00162.
  • Postuma, R. B.; Poewe, W.; Litvan, I.; Lewis, S.; Lang, A. E.; Halliday, G.; Goetz, C. G.; Chan, P.; Slow, E.; Seppi, K.; et al. Validation of the MDS Clinical Diagnostic Criteria for Parkinson's Disease. Mov. Disord. 2018, 33, 1601–1608. DOI: 10.1002/mds.27362.
  • Iwaki, H.; Blauwendraat, C.; Leonard, H. L.; Kim, J. J.; Liu, G.; Maple-Grødem, J.; Corvol, J.-C.; Pihlstrøm, L.; van Nimwegen, M.; Hutten, S. J.; International Parkinson's Disease Genomics Consortium.; et al. Genomewide Association Study of Parkinson's Disease Clinical Biomarkers in 12 Longitudinal Patients' Cohorts. Mov. Disord. 2019, 34, 1839–1850. DOI: 10.1002/mds.27845.
  • Fayyad, M.; Salim, S.; Majbour, N.; Erskine, D.; Stoops, E.; Mollenhauer, B.; El‐Agnaf, O. M. Parkinson’s Disease Biomarkers Based on α‐Synuclein. J. Neurochem. 2019, 150, 626–636. DOI: 10.1111/jnc.14809.
  • Behyar, M. B.; Kholafazad‐kordasht, H.; Hassanpour, S.; Hasanzadeh, M. An Innovative Electrically Conductive Biopolymer Based on Poly (β‐Cyclodextrin) towards Recognition of Ascorbic Acid in Real Sample: Utilization of Biocompatible Advanced Materials in Biomedical Analysis. J. of Molecular Recognition 2022, 35, e2953. DOI: 10.1002/jmr.2953.
  • Kholafazad kordasht, H.; Mirzaie, A.; Seidi, F.; Hasanzadeh, M. Low Fouling and Ultra-Sensitive Electrochemical Screening of Ractopamine Using Mixed Self-Assembly of PEG and Aptamer Immobilized on the Interface of Poly (Dopamine)/GCE: A New Apta-Platform towards Point of Care (POC) Analysis. Microchem. J. 2021, 171, 106853. DOI: 10.1016/j.microc.2021.106853.
  • Yang, Z.; Li, T.; Li, S.; Wei, M.; Qi, H.; Shen, B.; Chang, R. C.-C.; Le, W.; Piao, F. Altered Expression Levels of microRNA-132 and Nurr1 in Peripheral Blood of Parkinson’s Disease: Potential Disease Biomarkers. ACS Chem. Neurosci. 2019, 10, 2243–2249. DOI: 10.1021/acschemneuro.8b00460.
  • F. B.; Tofighi, A.; Saadati, H.; Kholafazad, kordasht, F.; Farshchi, M.; Hasanzadeh.; M.; Samiei. Electrochemical Immunoplatform to Assist in the Diagnosis of Oral Cancer through the Determination of CYFRA 21.1 Biomarker in Human Saliva Samples: Preparation of a Novel Portable Biosensor toward Non‐Invasive Diagnosis of Oral Cancer. J. Mol. Recognit. 2021, 34, e2932. ‐ DOI: 10.1002/jmr.2932.
  • Atik, A.; Stewart, T.; Zhang, J. Alpha‐Synuclein as a Biomarker for Parkinson's Disease. Brain Pathol. 2016, 26, 410–418. DOI: 10.1111/bpa.12370.
  • Khan, A. R.; Hiebert, N. M.; Vo, A.; Wang, B. T.; Owen, A. M.; Seergobin, K. N.; MacDonald, P. A. Biomarkers of Parkinson's Disease: Striatal Sub-Regional Structural Morphometry and Diffusion MRI. NeuroImage: Clin. 2019, 21, 101597. DOI: 10.1016/j.nicl.2018.11.007.
  • Hirayama, M.; Ito, M.; Minato, T.; Yoritaka, A.; LeBaron, T. W.; Ohno, K. Inhalation of Hydrogen Gas Elevates Urinary 8-Hydroxy-2′-Deoxyguanine in Parkinson’s Disease. Med. Gas Res. 2018, 8, 144–149. DOI: 10.4103/2045-9912.248264.
  • Lekchand Dasriya, V.; Samtiya, M.; Dhewa, T.; Puniya, M.; Kumar, S.; Ranveer, S.; Chaudhary, V.; Vij, S.; Behare, P.; Singh, N.; et al. Etiology and Management of Alzheimer’s Disease: Potential Role of Gut Microbiota Modulation with Probiotics Supplementation. J. Food Biochem. 2022, 46, e14043. DOI: 10.1111/jfbc.14043.
  • Dawson, J.; Jeemon, P.; Hetherington, L.; Judd, C.; Hastie, C.; Schulz, C.; Sloan, W.; Muir, S.; Jardine, A.; McInnes, G.; et al. Serum Uric Acid Level, Longitudinal Blood Pressure, Renal Function, and Long-Term Mortality in Treated Hypertensive Patients. Hypertension 2013, 62, 105–111. DOI: 10.1161/HYPERTENSIONAHA.113.00859.
  • Koehler, N. K. U.; Stransky, E.; Meyer, M.; Gaertner, S.; Shing, M.; Schnaidt, M.; Celej, M. S.; Jovin, T. M.; Leyhe, T.; Laske, C.; et al. Alpha-Synuclein Levels in Blood Plasma Decline with Healthy Aging. PLoS One 2015, 10, e0123444. DOI: 10.1371/journal.pone.0123444.
  • Hagel, A. F.; Albrecht, H.; Dauth, W.; Hagel, W.; Vitali, F.; Ganzleben, I.; Schultis, H. W.; Konturek, P. C.; Stein, J.; Neurath, M. F.; Raithel, M. Plasma Concentrations of Ascorbic Acid in a Cross Section of the German Population. J. Int. Med. Res. 2018, 46, 168–174. DOI: 10.1177/0300060517714387.
  • Gao, Y.; Wang, P.; Wang, Z.; Han, L.; Li, J.; Tian, C.; Zhao, F.; Wang, J.; Zhao, F.; Zhang, Q.; Lyu, Y. Serum 8-Hydroxy-2′-Deoxyguanosine Level as a Potential Biomarker of Oxidative DNA Damage Induced by Ionizing Radiation in Human Peripheral Blood. Dose. Response 2019, 17, 1559325818820649. DOI: 10.1177/1559325818820649.
  • Kuchel, O.; Racz, K. Dopamine in the Adrenal Medulla and Its Possible Role in Stress. In Peripheral Dopamine Pathophysiology; CRC Press: Boca Raton, FL, 2019, pp 185.
  • Ohmichi, T.; Kasai, T.; Shinomoto, M.; Matsuura, J.; Koizumi, T.; Kitani-Morii, F.; Tatebe, H.; Sasaki, H.; Mizuno, T.; Tokuda, T. Quantification of Blood Caffeine Levels in Patients with Parkinson's Disease and Multiple System Atrophy by Caffeine ELISA. Front. Neurol. 2020, 11, 1774. DOI: 10.3389/fneur.2020.580127.
  • Flønes, I. H.; Fernandez-Vizarra, E.; Lykouri, M.; Brakedal, B.; Skeie, G. O.; Miletic, H.; Lilleng, P. K.; Alves, G.; Tysnes, O.-B.; Haugarvoll, K.; et al. Neuronal Complex I Deficiency Occurs throughout the Parkinson’s Disease Brain, but is Not Associated with Neurodegeneration or Mitochondrial DNA Damage. Acta Neuropathol. 2018, 135, 409–425. DOI: 10.1007/s00401-017-1794-7.
  • Choi, M.; Kim, T.-K.; Ahn, J.; Lee, J. S.; Jung, B. C.; An, S.; Kim, D.; Lee, M. J.; Mook-Jung, I.; Lee, S. H.; Lee, S.-J. Conformation-Specific Antibodies Targeting Aggregated Forms of α-Synuclein Block the Propagation of Synucleinopathy. Exp. Neurobiol. 2022, 31, 29–41. DOI: 10.5607/en21039.
  • Lee, B. i.; Park, M.-H.; Shin, S.-H.; Byeon, J.-J.; Park, Y.; Kim, N.; Choi, J.; Shin, Y. G. Quantitative Analysis of Tozadenant Using Liquid Chromatography-Mass Spectrometric Method in Rat Plasma and Its Human Pharmacokinetics Prediction Using Physiologically Based Pharmacokinetic Modeling. Molecules 2019, 24, 1295. DOI: 10.3390/molecules24071295.
  • Cilento, E. M.; Jin, L.; Stewart, T.; Shi, M.; Sheng, L.; Zhang, J. Mass Spectrometry: A Platform for Biomarker Discovery and Validation for Alzheimer's and Parkinson's Diseases. J. Neurochem. 2019, 151, 397–416. DOI: 10.1111/jnc.14635.
  • Kordasht, H. K.; Hasanzadeh, M. Specific Monitoring of Aflatoxin M1 in Real Samples Using Aptamer Binding to DNFS Based on Turn‐on Method: A Novel Biosensor. J. Mol. Recognit. 2020, 33, e2832. DOI: 10.1002/jmr.2832.
  • Kordasht, H. K.; Hasanzadeh, M. Aptamer Based Recognition of Cancer Cells: Recent Progress and Challenges in Bioanalysis. Talanta 2020, 220, 121436. DOI: 10.1016/j.talanta.2020.121436.
  • Kim, S. M.; Kim, J.; Noh, S.; Sohn, H.; Lee, T. Recent Development of Aptasensor for Influenza Virus Detection. Biochip J. 2020, 14, 327–339. DOI: 10.1007/s13206-020-4401-2.
  • Mahmoudpour, M.; Kholafazad-Kordasht, H.; Dolatabadi, J. E. N.; Hasanzadeh, M.; Rad, A. H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly (Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta. 2021, 1174, 338736. DOI: 10.1016/j.aca.2021.338736.
  • Kordasht, H. K.; Pazhuhi, M.; Pashazadeh-Panahi, P.; Hasanzadeh, M.; Shadjou, N. Multifunctional Aptasensors Based on Mesoporous Silica Nanoparticles as an Efficient Platform for Bioanalytical Applications: Recent Advances. TrAC, Trends Anal. Chem. 2020, 124, 115778. DOI: 10.1016/j.trac.2019.115778.
  • Kordasht, H. K.; Hasanzadeh, M.; Seidi, F.; Alizadeh, P. M. Poly (Amino Acids) towards Sensing: Recent Progress and Challenges. TrAC, Trends Anal. Chem. 2021, 140, 116279. DOI: 10.1016/j.trac.2021.116279.
  • Roushani, M.; Hosseini, H.; Pakzad, B.; Rahmati, Z. Two-Dimensional Mesoporous Copper Hydroxide Nanosheets Shelled on Hollow Nitrogen-Doped Carbon Nanoboxes as a High Performance Aptasensing Platform. ACS Sustainable Chem. Eng. 2021, 9, 11080–11090. DOI: 10.1021/acssuschemeng.1c02822.
  • Sarabaegi, M.; Roushani, M.; Hosseini, H. Hollow Carbon Nanocapsules-Based Nitrogen-Doped Carbon Nanofibers with Rosary-like Structure as a High Surface Substrate for Impedimetric Detection of Pseudomonas aeruginosa. Talanta 2021, 223, 121700. DOI: 10.1016/j.talanta.2020.121700.
  • Roushani, M.; Farokhi, S.; Rahmati, Z. Development of a Dual-Recognition Strategy for the Aflatoxin B1 Detection Based on a Hybrid of aptamer-MIP Using a Cu2O NCs/GCE. Microchem. J. 2022, 178, 107328. DOI: 10.1016/j.microc.2022.107328.
  • Sarabaegi, M.; Roushani, M.; Hosseini, H.; Saedi, Z.; Lemraski, E. G. A Novel Ultrasensitive Biosensor Based on NiCo-MOF Nanostructure and Confined to Flexible Carbon Nanofibers with High-Surface Skeleton to Rapidly Detect Helicobacter pylori. Mater. Sci. Semicond. Process. 2022, 139, 106351. DOI: 10.1016/j.mssp.2021.106351.
  • Roushani, M.; Karazan, Z. M. Novel Electrochemical Sensor Based on Electropolymerized Dopamine Molecularly Imprinted Polymer for Selective Detection of Pantoprazole. IEEE Sensors J. 2022, 22, 6263–6269. DOI: 10.1109/JSEN.2022.3150222.
  • Roushani, M.; Zalpour, N. Impedimetric Ultrasensitive Detection of Trypsin Based on Hybrid Aptamer-2DMIP Using a Glassy Carbon Electrode Modified by Nickel Oxide Nanoparticle. Microchem. J. 2022, 172, 106955. DOI: 10.1016/j.microc.2021.106955.
  • Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. DOI: 10.1021/acs.analchem.9b04199.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Pei, X.; Zhang, B.; Tang, J.; Liu, B.; Lai, W.; Tang, D. Sandwich-Type Immunosensors and Immunoassays Exploiting Nanostructure Labels: A Review. Anal. Chim. Acta. 2013, 758, 1–18. DOI: 10.1016/j.aca.2012.10.060.
  • Ng, S. S.; Lee, H. L.; Pandian, B. R.; Doong, R-A. Recent Developments on Nanomaterial‐Based Optical Biosensor as Potential Point‐of‐Care Testing (PoCT) Probe in Carcinoembryonic Antigen Detection: A Review. Chemistry 2022.
  • Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in Aptamer Screening and Aptasensors’ Detection of Heavy Metal Ions. J. Nanobiotechnol. 2021, 19, DOI: 10.1186/s12951-021-00914-4.
  • Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R. D.; Ben Ali, M.; Al-Hamry, A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors 2021, 21, 4131. DOI: 10.3390/s21124131.
  • Nakhlband, A.; Kholafazad-Kordasht, H.; Rahimi, M.; Mokhtarzadeh, A.; Soleymani, J. Applications of Magnetic Materials in the Fabrication of Microfluidic-Based Sensing Systems: Recent Advances. Microchem. J. 2022, 173, 107042. DOI: 10.1016/j.microc.2021.107042.
  • Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-Assisted NaYF4: Yb, Tm@ ZnO Converter with Exonuclease III-Powered DNA Walker for near-Infrared Light Responsive Biosensor. Anal. Chem. 2020, 92, 1470–1476. DOI: 10.1021/acs.analchem.9b04710.
  • Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. DOI: 10.1021/acs.analchem.7b00989.
  • Zeng, R.; Luo, Z.; Su, L.; Zhang, L.; Tang, D.; Niessner, R.; Knopp, D. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Anal. Chem. 2019, 91, 2447–2454. DOI: 10.1021/acs.analchem.8b05265.
  • Rahmati, Z.; Roushani, M.; Hosseini, H. Hierarchical Nickel Hydroxide Nanosheets Grown on Hollow Nitrogen Doped Carbon Nanoboxes as a High-Performance Surface Substrate for Alpha-Fetoprotein Cancer Biomarkers Electrochemical Aptasensing. Talanta 2022, 237, 122924. DOI: 10.1016/j.talanta.2021.122924.
  • Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. Aptamer-Functionalized Metal-Organic Frameworks (MOFs) for Biosensing. Biosens. Bioelectron. 2021, 176, 112947. DOI: 10.1016/j.bios.2020.112947.
  • Lv, S.; Zhang, K.; Zhou, Q.; Tang, D. Plasmonic Enhanced Photoelectrochemical Aptasensor with DA F8BT/g-C3N4 Heterojunction and AuNPs on a 3D-Printed Device. Sens. Actuators, B 2020, 310, 127874. DOI: 10.1016/j.snb.2020.127874.
  • Qiu, Z.; Shu, J.; Liu, J.; Tang, D. Dual-Channel Photoelectrochemical Ratiometric Aptasensor with up-Converting Nanocrystals Using Spatial-Resolved Technique on Homemade 3D Printed Device. Anal. Chem. 2019, 91, 1260–1268. DOI: 10.1021/acs.analchem.8b05455.
  • Zeng, R.; Su, L.; Luo, Z.; Zhang, L.; Lu, M.; Tang, D. Ultrasensitive and Label-Free Electrochemical Aptasensor of Kanamycin Coupling with Hybridization Chain Reaction and Strand-Displacement Amplification. Anal. Chim. Acta. 2018, 1038, 21–28. DOI: 10.1016/j.aca.2018.07.010.
  • Qiu, Z.; Shu, J.; Tang, D. Plasmonic Resonance Enhanced Photoelectrochemical Aptasensors Based on gC3N4/Bi2 MoO6. Chem. Commun. (Camb.) 2018, 54, 7199–7202. DOI: 10.1039/c8cc04211j.
  • Omage, J. I.; Easterday, E.; Rumph, J. T.; Brula, I.; Hill, B.; Kristensen, J.; Ha, D. T.; Galindo, C. L.; Danquah, M. K.; Sims, N.; Nguyen, V. T. Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors. Micromachines 2022, 13, 522. DOI: 10.3390/mi13040522.
  • Rahman, M. M.; Lopa, N. S.; Lee, J. J. Advances in Electrochemical Aptasensing for Cardiac Biomarkers. Bulletin Korean Chem. Soc. 2022, 43, 51–68. DOI: 10.1002/bkcs.12434.
  • Gong, H.; Wu, Y.; Zeng, R.; Zeng, Y.; Liu, X.; Tang, D. CRISPR/Cas12a-Mediated Liposome-Amplified Strategy for the Photoelectrochemical Detection of Nucleic Acid. Chem. Commun. (Camb.) 2021, 57, 8977–8980. DOI: 10.1039/d1cc03743a.
  • Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB1 to Enhance Photocurrent of Mn2+-Doped Zn3 (OH) 2V2O7 Nanobelts. Anal. Chem. 2017, 89, 11803–11810. DOI: 10.1021/acs.analchem.7b03451.
  • Chen, Y.; Li, X.; Cai, G.; Li, M.; Tang, D. In Situ Formation of (0 0 1) TiO2/Ti3C2 Heterojunctions for Enhanced Photoelectrochemical Detection of Dopamine. Electrochem. Commun. 2021, 125, 106987. DOI: 10.1016/j.elecom.2021.106987.
  • Berke, J. D. What Does Dopamine Mean? Nat. Neurosci. 2018, 21, 787–793. DOI: 10.1038/s41593-018-0152-y.
  • Wise, R. A.; Robble, M. A. Dopamine and Addiction. Annu. Rev. Psychol. 2020, 71, 79–106. DOI: 10.1146/annurev-psych-010418-103337.
  • Abu-Ali, H.; Ozkaya, C.; Davis, F.; Walch, N.; Nabok, A. Electrochemical Aptasensor for Detection of Dopamine. Chemosensors 2020, 8, 28. DOI: 10.3390/chemosensors8020028.
  • Kordasht, H. K.; Saadati, A.; Hasanzadeh, M. A Flexible Paper Based Electrochemical Portable Biosensor towards Recognition of Ractopamine as Animal Feed Additive: Low Cost Diagnostic Tool towards Food Analysis Using Aptasensor Technology. Food Chem. 2022, 373, 131411. DOI: 10.1016/j.foodchem.2021.131411.
  • Joshi, P.; Mishra, R.; Narayan, R. J. Biosensing Applications of Carbon-Based Materials. Curr. Opin. Biomed. Eng. 2021, 18, 100274. DOI: 10.1016/j.cobme.2021.100274.
  • Kirchner, E.-M.; Hirsch, T. Recent Developments in Carbon-Based Two-Dimensional Materials: Synthesis and Modification Aspects for Electrochemical Sensors. Mikrochim. Acta. 2020, 187, 441. 1. DOI: 10.1007/s00604-020-04415-3.
  • Wang, W.; Wang, W.; Davis, J. J.; Luo, X. Ultrasensitive and Selective Voltammetric Aptasensor for Dopamine Based on a Conducting Polymer Nanocomposite Doped with Graphene Oxide. Microchim. Acta 2015, 182, 1123–1129. DOI: 10.1007/s00604-014-1418-z.
  • Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A Novel Label-Free Electrochemical Aptasensor Based on Graphene–Polyaniline Composite Film for Dopamine Determination. Biosens. Bioelectron. 2012, 36, 186–191. DOI: 10.1016/j.bios.2012.04.011.
  • Talemi, R. P.; Mousavi, S. M.; Afruzi, H. Using Gold Nanostars Modified Pencil Graphite Electrode as a Novel Substrate for Design a Sensitive and Selective Dopamine Aptasensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 700–708. DOI: 10.1016/j.msec.2016.12.119.
  • Omprakash, P.; Kuruveri, U. B.; Panemangalore, D. B. Carbon and Metallic-Based Nanomaterials for Strain Sensors—A Review. CNM 2021, 6, 172–184. DOI: 10.2174/2405461506666210112151221.
  • Thambirajoo, M.; Maarof, M.; Lokanathan, Y.; Katas, H.; Ghazalli, N. F.; Tabata, Y.; Fauzi, M. B. Potential of Nanoparticles Integrated with Antibacterial Properties in Preventing Biofilm and Antibiotic Resistance. Antibiotics 2021, 10, 1338. DOI: 10.3390/antibiotics10111338.
  • Bahrami, S.; Abbasi, A. R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. An Electrochemical Dopamine Aptasensor Incorporating Silver Nanoparticle, Functionalized Carbon Nanotubes and Graphene Oxide for Signal Amplification. Talanta 2016, 159, 307–316. DOI: 10.1016/j.talanta.2016.05.060.
  • Jin, H.; Zhao, C.; Gui, R.; Gao, X.; Wang, Z. Reduced Graphene Oxide/Nile Blue/Gold Nanoparticles Complex-Modified Glassy Carbon Electrode Used as a Sensitive and Label-Free Aptasensor for Ratiometric Electrochemical Sensing of Dopamine. Anal. Chim. Acta. 2018, 1025, 154–162. DOI: 10.1016/j.aca.2018.03.036.
  • Liu, L.; Xia, N.; Meng, J.-J.; Zhou, B.-B.; Li, S.-J. An Electrochemical Aptasensor for Sensitive and Selective Detection of Dopamine Based on Signal Amplification of Electrochemical-Chemical Redox Cycling. Electroanal. Chem. 2016, 775, 58–63. DOI: 10.1016/j.jelechem.2016.05.028.
  • Shen, M.; Kan, X. Aptamer and Molecularly Imprinted Polymer: Synergistic Recognition and Sensing of Dopamine. Electrochim. Acta 2021, 367, 137433. DOI: 10.1016/j.electacta.2020.137433.
  • Pujols, J.; Peña-Díaz, S.; Conde-Giménez, M.; Pinheiro, F.; Navarro, S.; Sancho, J.; Ventura, S. High-Throughput Screening Methodology to Identify Alpha-Synuclein Aggregation Inhibitors. IJMS 2017, 18, 478. DOI: 10.3390/ijms18030478.
  • Cao, Z.; Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Feng, T. α-Synuclein in Salivary Extracellular Vesicles as a Potential Biomarker of Parkinson’s Disease. Neurosci. Lett. 2019, 696, 114–120. DOI: 10.1016/j.neulet.2018.12.030.
  • Jang, S. J.; Lee, C.-S.; Kim, T. H. α-Synuclein Oligomer Detection with Aptamer Switch on Reduced Graphene Oxide Electrode. Nanomaterials 2020, 10, 832. DOI: 10.3390/nano10050832.
  • Wu, Q.; Tan, R.; Mi, X.; Tu, Y. Electrochemiluminescent Aptamer-Sensor for Alpha Synuclein Oligomer Based on a Metal–Organic Framework. Analyst 2020, 145, 2159–2167. DOI: 10.1039/d0an00169d.
  • Tao, D.; Wang, J.; Song, S.; Cai, K.; Jiang, M.; Cheng, J.; Hu, L.; Jaffrezic-Renault, N.; Guo, Z.; Pan, H. Polythionine and Gold Nanostar-Based Impedimetric Aptasensor for Label-Free Detection of α-Synuclein Oligomers. J. Appl. Electrochem. 2021, 51, 1523–1533. DOI: 10.1007/s10800-021-01589-3.
  • Guo, C.; Hu, M.; Li, Z.; Duan, F.; He, L.; Zhang, Z.; Marchetti, F.; Du, M. Structural Hybridization of Bimetallic Zeolitic Imidazolate Framework (ZIF) Nanosheets and Carbon Nanofibers for Efficiently Sensing α-Synuclein Oligomers. Sens. Actuators, B 2020, 309, 127821. DOI: 10.1016/j.snb.2020.127821.
  • Urbaniak, S. K.; Boguszewska, K.; Szewczuk, M.; Kaźmierczak-Barańska, J.; Karwowski, B. T. 8-Oxo-7, 8-Dihydro-2′-Deoxyguanosine (8-oxodG) and 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) as a Potential Biomarker for Gestational Diabetes Mellitus (GDM) Development. Molecules 2020, 25, 202. DOI: 10.3390/molecules25010202.
  • Omari Shekaftik, S.; Nasirzadeh, N. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) as a Biomarker of Oxidative DNA Damage Induced by Occupational Exposure to Nanomaterials: A Systematic Review. Nanotoxicology 2021, 15, 850–864. DOI: 10.1080/17435390.2021.1936254.
  • Fan, J.; Liu, Y.; Xu, E.; Zhang, Y.; Wei, W.; Yin, L.; Pu, Y.; Liu, S. A Label-Free Ultrasensitive Assay of 8-Hydroxy-2′-Deoxyguanosine in Human Serum and Urine Samples via Polyaniline Deposition and Tetrahedral DNA Nanostructure. Anal. Chim. Acta. 2016, 946, 48–55. DOI: 10.1016/j.aca.2016.10.022.
  • Jia, L.-P.; Wang, L.-J.; Ma, R.-N.; Shang, L.; Zhang, W.; Xue, Q.-W.; Wang, H.-S. An Electrochemical Aptasensor for the Highly Sensitive Detection of 8-Hydroxy-2′-Deoxyguanosine Based on the Hybridization Chain Reaction. Talanta 2018, 179, 414–419. DOI: 10.1016/j.talanta.2017.11.036.
  • Straat, M. E.; Martinez-Tellez, B.; Nahon, K. J.; Janssen, L. G.; Verhoeven, A.; van der Zee, L.; Mulder, M. T.; Kooijman, S.; Boon, M. R.; van Lennep, J. E. R.; et al. nComprehensive (Apo) Lipoprotein Profiling in Patients with Genetic Hypertriglyceridemia Using LC-MS and NMR Spectroscopy. J. Clin. Lipidol. 2022. DOI: 10.1016/j.jacl.2022.04.004.
  • Wang, H.; Wang, X.; Zhao, J.; Jiao, H.; Lin, H. Low Protein Diet Supplemented with Crystalline Amino Acids Suppressing Appetite and Apo-Lipoprotein Synthesis in Laying Hens. Anim. Feed Sci. Technol. 2020, 266, 114533. DOI: 10.1016/j.anifeedsci.2020.114533.
  • kholafazad Kordasht, H.; Hassanpour, S.; Baradaran, B.; Nosrati, R.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Biosensing of Microcystins in Water Samples; Recent Advances. Biosens. Bioelectron. 2020, 165, 112403. DOI: 10.1016/j.bios.2020.112403.
  • Wang, J.; Wang, Q.; Zhong, Y.; Wu, D.; Gan, N. A Sandwich-Type Aptasensor for Point-of-Care Measurements of Low-Density Lipoprotein in Plasma Based on Aptamer-Modified MOF and Magnetic Silica Composite Probes. Microchem. J. 2020, 158, 105288. DOI: 10.1016/j.microc.2020.105288.
  • Tsai, C.-Y.; Huang, D.-Y.; Ho, J-aA.; Wu, L.-C. Evaluation of the Apolipoprotein E (apoE)-HDL-Associated Risk Factors for Coronary Heart Disease Using Duo-Functional Electrochemical Aptasensor. Anal. Bioanal. Chem. 2022. DOI: 10.1007/s00216-022-04008-4.
  • Rudewicz-Kowalczyk, D.; Grabowska, I. Detection of Low Density Lipoprotein—Comparison of Electrochemical Immuno-and Aptasensor. Sensors 2021, 21, 7733. DOI: 10.3390/s21227733.
  • Yin, Z.; Zhu, L.; Lv, Z.; Li, M.; Tang, D. Persistent Luminescence Nanorods-Based Autofluorescence-Free Biosensor for Prostate-Specific Antigen Detection. Talanta 2021, 233, 122563. DOI: 10.1016/j.talanta.2021.122563.
  • Lv, S.; Tang, Y.; Zhang, K.; Tang, D. Wet NH3-Triggered NH2-MIL-125 (Ti) Structural Switch for Visible Fluorescence Immunoassay Impregnated on Paper. Anal. Chem. 2018, 90, 14121–14125. DOI: 10.1021/acs.analchem.8b04981.
  • Qiu, Z.; Shu, J.; He, Y.; Lin, Z.; Zhang, K.; Lv, S.; Tang, D. CdTe/CdSe Quantum Dot-Based Fluorescent Aptasensor with Hemin/G-Quadruplex DNzyme for Sensitive Detection of Lysozyme Using Rolling Circle Amplification and Strand Hybridization. Biosens. Bioelectron. 2017, 87, 18–24. DOI: 10.1016/j.bios.2016.08.003.
  • Xu, M.; Gao, Z.; Zhou, Q.; Lin, Y.; Lu, M.; Tang, D. Terbium Ion-Coordinated Carbon Dots for Fluorescent Aptasensing of Adenosine 5′-Triphosphate with Unmodified Gold Nanoparticles. Biosens. Bioelectron. 2016, 86, 978–984. DOI: 10.1016/j.bios.2016.07.105.
  • Khansili, N.; Rattu, G.; Krishna, P. M. Label-Free Optical Biosensors for Food and Biological Sensor Applications. Sens. Actuators, B 2018, 265, 35–49. DOI: 10.1016/j.snb.2018.03.004.
  • Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic Chip Coupled with Optical Biosensors for Simultaneous Detection of Multiple Analytes: A Review. Biosens. Bioelectron. 2019, 126, 697–706. DOI: 10.1016/j.bios.2018.11.032.
  • Teniou, A.; Rhouati, A.; Catanante, G. A Simple Fluorescent Aptasensing Platform Based on Graphene Oxide for Dopamine Determination. Appl. Biochem. Biotechnol. 2022.
  • Sabzehmeidani, M. M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V. A. Carbon Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Mater. Adv. 2021, 2, 598–627. DOI: 10.1039/D0MA00087F.
  • Chen, J.; Li, Y.; Huang, Y.; Zhang, H.; Chen, X.; Qiu, H. Fluorometric Dopamine Assay Based on an Energy Transfer System Composed of Aptamer-Functionalized MoS2 Quantum Dots and MoS2 Nanosheets. Microchim. Acta 2019, 186, 1. DOI: 10.1007/s00604-018-3143-5.
  • Ren, L.; Hang, X.; Qin, Z.; Zhang, P.; Wang, W.; Zhang, Y.; Jiang, L. Determination of Dopamine by a Label-Free Fluorescent Aptasensor Based on AuNPs and Carbon Quantum Dots. Optik 2020, 208, 163560. DOI: 10.1016/j.ijleo.2019.163560.
  • Sun, Y.; Lin, Y.; Ding, C.; Sun, W.; Dai, Y.; Zhu, X.; Liu, H.; Luo, C. An Ultrasensitive and Ultraselective Chemiluminescence Aptasensor for Dopamine Detection Based on Aptamers Modified Magnetic Mesoporous Silica@ Graphite Oxide Polymers. Sens. Actuators, B 2018, 257, 312–323. DOI: 10.1016/j.snb.2017.10.171.
  • Qing, X.; Shi, D.; Lv, X.; Wang, B.; Chen, S.; Shao, Z. Prognostic Significance of 8-Hydroxy-2′-Deoxyguanosine in Solid Tumors: A Meta-Analysis. BMC Cancer 2019, 19, DOI: 10.1186/s12885-019-6189-9.
  • Sun, Y.; Wan, Y.; Jiang, Y.; Wang, H. Urinary Concentrations of Acetaminophen in Young Children in Central and South China: Repeated Measurements and Associations with 8-Hydroxy-Guanosine and 8-Hydroxy-2′-Deoxyguanosine. Sci. Total Environ. 2021, 787, 147614. DOI: 10.1016/j.scitotenv.2021.147614.
  • Majdinasab, M.; Ben Aissa, S.; Marty, J. L. Advances in Colorimetric Strategies for Mycotoxins Detection: Toward Rapid Industrial Monitoring. Toxins 2020, 13, 13. DOI: 10.3390/toxins13010013.
  • Liu, H.; Wang, Y.-S.; Wang, J.-C.; Xue, J.-H.; Zhou, B.; Zhao, H.; Liu, S.-D.; Tang, X.; Chen, S.-H.; Li, M.-H.; Cao, J.-X. A Colorimetric Aptasensor for the Highly Sensitive Detection of 8-Hydroxy-2′-Deoxyguanosine Based on G-Quadruplex–Hemin DNAzyme. Anal. Biochem. 2014, 458, 4–10. DOI: 10.1016/j.ab.2014.04.031.
  • Zahra, Q. U. A.; Luo, Z.; Ali, R.; Khan, M. I.; Li, F.; Qiu, B. Advances in Gold Nanoparticles-Based Colorimetric Aptasensors for the Detection of Antibiotics: An Overview of the past Decade. Nanomaterials 2021, 11, 840. DOI: 10.3390/nano11040840.
  • Yazdian-Robati, R.; Hedayati, N.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Colorimetric Gold Nanoparticles-Based Aptasensors. Nanomed. J. 2018, 5, 1.
  • Toomjeen, P.; Phanchai, W.; Choodet, C.; Chompoosor, A.; Thanan, R.; Sakonsinsiri, C.; Puangmali, T. Designing an Aptasensor Based on Cysteamine-Capped AuNPs for 8-Oxo-dG Detection: A Molecular Dynamics Approach and Experimental Validation. J. Phys. Chem. B 2019, 123, 1129–1138. DOI: 10.1021/acs.jpcb.8b10436.
  • Matulakul, P.; Vongpramate, D.; Kulchat, S.; Chompoosor, A.; Thanan, R.; Sithithaworn, P.; Sakonsinsiri, C.; Puangmali, T. Development of Low-Cost AuNP-Based Aptasensors with Truncated Aptamer for Highly Sensitive Detection of 8-Oxo-dG in Urine. ACS Omega. 2020, 5, 17423–17430. DOI: 10.1021/acsomega.0c01834.
  • Liu, H.; Wang, Y.-S.; Tang, X.; Yang, H.-X.; Chen, S.-H.; Zhao, H.; Liu, S.-D.; Zhu, Y.-F.; Wang, X.-F.; Huang, Y.-Q. A Novel Fluorescence Aptasensor for 8-Hydroxy-2′-Deoxyguanosine Based on the Conformational Switching of K+-Stabilized G-Quadruplex. J. Pharm. Biomed. Anal. 2016, 118, 177–182. DOI: 10.1016/j.jpba.2015.10.035.
  • Azadbakht, A.; Roushani, M.; Abbasi, A. R.; Menati, S.; Derikvand, Z. A Label-Free Aptasensor Based on Polyethyleneimine Wrapped Carbon Nanotubes in Situ Formed Gold Nanoparticles as Signal Probe for Highly Sensitive Detection of Dopamine. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 585–593. DOI: 10.1016/j.msec.2016.05.077.
  • Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. A Simple Label-Free Electrochemical Aptasensor for Dopamine Detection. RSC Adv. 2014, 4, 52250–52255. DOI: 10.1039/C4RA08090D.
  • Taheri, R. A.; Eskandari, K.; Negahdary, M. An Electrochemical Dopamine Aptasensor Using the Modified Au Electrode with Spindle-Shaped Gold Nanostructure. Microchem. J. 2018, 143, 243–251. DOI: 10.1016/j.microc.2018.08.008.
  • Taghdisi, S. M.; Danesh, N. M.; Nameghi, M. A.; Ramezani, M.; Alibolandi, M.; Hassanzadeh-Khayat, M.; Emrani, A. S.; Abnous, K. A Novel Electrochemical Aptasensor Based on Nontarget-Induced High Accumulation of Methylene Blue on the Surface of Electrode for Sensing of α-Synuclein Oligomer. Biosens. Bioelectron. 2019, 123, 14–18. DOI: 10.1016/j.bios.2018.09.081.
  • Shi, S.-S.; Jia, L.-P.; Ma, R.-N.; Jia, W.-L.; Wang, H.-S. A Label-Free Electrochemical Aptasensor for 8-Hydroxy-2′-Deoxyguanosine Detection. Electroanal. Chem. 2015, 759, 107–112. DOI: 10.1016/j.jelechem.2015.10.040.
  • Zhao, R.-N.; Jia, L.-P.; Feng, Z.; Ma, R.-N.; Zhang, W.; Shang, L.; Xue, Q.-W.; Wang, H.-S. Ultrasensitive Electrochemiluminescence Aptasensor for 8-Hydroxy-2′-Deoxyguanosine Detection Based on Target-Induced multi-DNA Release and Nicking Enzyme Amplification Strategy. Biosens. Bioelectron. 2019, 144, 111669. DOI: 10.1016/j.bios.2019.111669.
  • Huang, H.; Shi, S.; Gao, X.; Gao, R.; Zhu, Y.; Wu, X.; Zang, R.; Yao, T. A Universal Label-Free Fluorescent Aptasensor Based on Ru Complex and Quantum Dots for Adenosine, Dopamine and 17β-Estradiol Detection. Biosens. Bioelectron. 2016, 79, 198–204. DOI: 10.1016/j.bios.2015.12.024.
  • Wang, Y.; Kang, K.; Wang, S.; Kang, W.; Cheng, C.; Niu, L. M.; Guo, Z. A Novel Label-Free Fluorescence Aptasensor for Dopamine Detection Based on an Exonuclease III-and SYBR Green I-Aided Amplification Strategy. Sens. Actuators, B 2020, 305, 127348. DOI: 10.1016/j.snb.2019.127348.
  • Cao, Y.; McDermott, M. T. Femtomolar and Selective Dopamine Detection by a Gold Nanoparticle Enhanced Surface Plasmon Resonance Aptasensor. BioRxiv 2018, 2018, 273078.
  • Tao, L.; Yue, Q.; Hou, Y.; Wang, Y.; Chen, C.; Li, C.-Z. Resonance Light Scattering Aptasensor for Urinary 8-Hydroxy-2′-Deoxyguanosine Based on Magnetic Nanoparticles: A Preliminary Study of Oxidative Stress Association with Air Pollution. Microchim. Acta 2018, 185, 1. DOI: 10.1007/s00604-018-2937-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.