680
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Perspectives and Trends in Advanced MXenes-Based Optical Biosensors for the Recognition of Food Contaminants

ORCID Icon, , , , , , & show all
Pages 633-652 | Published online: 24 Jun 2022

References

  • Saravanan, A.; Kumar, P. S.; Vo, D.-V. N.; Yaashikaa, P. R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V. D. Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review. Environ. Chem. Lett. 2021, 19, 441–463. DOI: 10.1007/s10311-020-01077-8.
  • Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart Plant-Wearable Biosensor for in-Situ Pesticide Analysis. Biosens. Bioelectron. 2020, 170, 112636. DOI: 10.1016/j.bios.2020.112636.
  • Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent Advances in Gold Nanoparticles-Based Biosensors for Food Safety Detection. Biosens. Bioelectron. 2021, 179, 113076. DOI: 10.1016/j.bios.2021.113076.
  • Petrarca, M. H.; Fernandes, J. O.; Marmelo, I.; Marques, A.; Cunha, S. C. Multi-Analyte Gas Chromatography-Mass Spectrometry Method to Monitor Bisphenols, Musk Fragrances, Ultraviolet Filters, and Pesticide Residues in Seafood. J. Chromatogr. A. 2022, 1663, 462755. DOI: 10.1016/j.chroma.2021.462755.
  • Parr, M. K.; Botrè, F. Supercritical Fluid Chromatography Mass Spectrometry as an Emerging Technique in Doping Control Analysis. TrAC, Trends Anal. Chem. 2022, 147, 116517. DOI: 10.1016/j.trac.2021.116517.
  • Végh, R.; Sörös, C.; Majercsik, N.; Sipos, L. Determination of Pesticides in Bee Pollen: Validation of a Multiresidue High-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Method and Testing Pollen Samples of Selected Botanical Origin. J. Agric. Food Chem. 2022, 70, 1507–1515. DOI: 10.1021/acs.jafc.1c06864.
  • Medina, D. A. V.; Dos Santos, N. G. P.; da Silva Burato, J. S.; Borsatto, J. V. B.; Lancas, F. M. An Overview of Open Tubular Liquid Chromatography with a Focus on the Coupling with Mass Spectrometry for the Analysis of Small Molecules. J. Chromatogr. A. 2021, 1641, 461989. DOI: 10.1016/j.chroma.2021.461989.
  • Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent Improvements in Enzyme-Linked Immunosorbent Assays Based on Nanomaterials. Talanta 2021, 223, 121722. DOI: 10.1016/j.talanta.2020.121722.
  • Li, Y.; Wang, Z.; Sun, L.; Liu, L.; Xu, C.; Kuang, H. Nanoparticle-Based Sensors for Food Contaminants. TrAC, Trends Anal. Chem. 2019, 113, 74–83. DOI: 10.1016/j.trac.2019.01.012.
  • Jiang, Y.; Sun, D.-W.; Pu, H.; Wei, Q. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. DOI: 10.1016/j.tifs.2018.02.020.
  • kholafazad Kordasht, H.; Hassanpour, S.; Baradaran, B.; Nosrati, R.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Biosensing of Microcystins in Water Samples; Recent Advances. Biosens. Bioelectron. 2020, 165, 112403. DOI: 10.1016/j.bios.2020.112403.
  • Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Lin, Y. Aptamer Functionalized Nanomaterials for Biomedical Applications: Recent Advances and New Horizons. Nano Today 2021, 39, 101177. DOI: 10.1016/j.nantod.2021.101177.
  • Mahmoudpour, M.; Dolatabadi, J. E. N.; Torbati, M.; Homayouni-Rad, A. Nanomaterials Based Surface Plasmon Resonance Signal Enhancement for Detection of Environmental Pollutions. Biosens. Bioelectron. 2019, 127, 72–84. DOI: 10.1016/j.bios.2018.12.023.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M.-M.; de la Guardia, M.; Dolatabadi, J. E. N. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. TrAC, Trends Anal. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Kordasht, H. K.; Hasanzadeh, M. Aptamer Based Recognition of Cancer Cells: Recent Progress and Challenges in Bioanalysis. Talanta 2020, 220, 121436. DOI: 10.1016/j.talanta.2020.121436.
  • Mahmoudpour, M.; Kholafazad-kordasht, H.; Nazhad Dolatabadi, J. E.; Hasanzadeh, M.; Rad, A. H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly(Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta. 2021, 1174, 338736. DOI: 10.1016/j.aca.2021.338736.
  • Mahmoudpour, M.; Dolatabadi, J. E. N.; Torbati, M.; Tazehkand, A. P.; Homayouni-Rad, A.; de la Guardia, M. Nanomaterials and New Biorecognition Molecules Based Surface Plasmon Resonance Biosensors for Mycotoxin Detection. Biosens. Bioelectron. 2019, 143, 111603. DOI: 10.1016/j.bios.2019.111603.
  • Kordasht, H. K.; Saadati, A.; Hasanzadeh, M. A Flexible Paper Based Electrochemical Portable Biosensor towards Recognition of Ractopamine as Animal Feed Additive: Low Cost Diagnostic Tool towards Food Analysis Using Aptasensor Technology. Food Chem. 2022, 373, 131411. DOI: 10.1016/j.foodchem.2021.131411.
  • Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A. Nanomaterial Based PVA Nanocomposite Hydrogels for Biomedical Sensing: Advances toward Designing the Ideal Flexible/Wearable Nanoprobes. Adv. Colloid Interface Sci. 2022, 305, 102705. DOI: 10.1016/j.cis.2022.102705.
  • Srivastava, M.; Srivastava, N.; Mishra, P.; Malhotra, B. D. Prospects of Nanomaterials-Enabled Biosensors for COVID-19 Detection. Sci. Total Environ. 2021, 754, 142363. DOI: 10.1016/j.scitotenv.2020.142363.
  • Karimzadeh, Z.; Mahmoudpour, M.; Guardia, M. d l.; Ezzati Nazhad Dolatabadi, J.; Jouyban, A. Aptamer-Functionalized Metal Organic Frameworks as an Emerging Nanoprobe in the Food Safety Field: Promising Development Opportunities and Translational Challenges. TrAC, Trends Anal. Chem. 2022, 152, 116622. DOI: 10.1016/j.trac.2022.116622.
  • Mahmoudpour, M.; Jouyban, A.; Soleymani, J.; Rahimi, M. Rational Design of Smart Nano-Platforms Based on Antifouling-Nanomaterials toward Multifunctional Bioanalysis. Adv. Colloid Interface Sci. 2022, 302, 102637. DOI: 10.1016/j.cis.2022.102637.
  • Mahmoudpour, M.; Dolatabadi, J. E.-N.; Hasanzadeh, M.; Soleymani, J. Carbon-Based Aerogels for Biomedical Sensing: Advances toward Designing the Ideal Sensor. Adv. Colloid Interface Sci. 2021, 298, 102550. DOI: 10.1016/j.cis.2021.102550.
  • Rohaizad, N.; Mayorga-Martinez, C. C.; Fojtů, M.; Latiff, N. M.; Pumera, M. Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chem. Soc. Rev. 2021, 50, 619–657. DOI: 10.1039/d0cs00150c.
  • Hossain, M.; Qin, B.; Li, B.; Duan, X. Synthesis, Characterization, Properties and Applications of Two-Dimensional Magnetic Materials. Nano Today 2022, 42, 101338. DOI: 10.1016/j.nantod.2021.101338.
  • Alwarappan, S.; Nesakumar, N.; Sun, D.; Hu, T. Y.; Li, C.-Z. 2D Metal Carbides and Nitrides (MXenes) for Sensors and Biosensors. Biosens. Bioelectron. 2022, 205, 113943. DOI: 10.1016/j.bios.2021.113943.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Ye, R.-K.; Sun, S.-S.; He, L.-Q.; Yang, S.-R.; Liu, X.-Q.; Li, M.-D.; Fang, P.-P.; Hu, J.-Q. Surface Engineering of Hematite Nanorods by 2D Ti3C2-MXene: Suppressing the Electron-Hole Recombination for Enhanced Photoelectrochemical Performance. Appl. Catal., B. 2021, 291, 120107. DOI: 10.1016/j.apcatb.2021.120107.
  • Li, X.-H.; Su, X.-Y.; Zhang, R.-Z.; Xing, C.-H.; Zhu, Z.-L. Pressure-Induced Band Engineering, Work Function and Optical Properties of Surface F-Functionalized Sc2C MXene. J. Phys. Chem. Solids 2020, 137, 109218. DOI: 10.1016/j.jpcs.2019.109218.
  • Liu, J.; Jiang, X.; Zhang, R.; Zhang, Y.; Wu, L.; Lu, W.; Li, J.; Li, Y.; Zhang, H. MXene‐Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv. Funct. Mater. 2019, 29, 1807326. DOI: 10.1002/adfm.201807326.
  • Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Enhancement of the Electrical Properties of MXene Ti3C2 Nanosheets by Post-Treatments of Alkalization and Calcination. Mater. Lett. 2015, 160, 537–540. DOI: 10.1016/j.matlet.2015.08.046.
  • Singh, H.; Bamrah, A.; Bhardwaj, S. K.; Deep, A.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. Nanomaterial-Based Fluorescent Sensors for the Detection of Lead Ions. J. Hazard. Mater. 2021, 407, 124379. DOI: 10.1016/j.jhazmat.2020.124379.
  • Pirzada, M.; Altintas, Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. Micromachines 2020, 11, 356. DOI: 10.3390/mi11040356.
  • Zhang, B.; Sun, J.-Y.; Ruan, M.-Y.; Gao, P.-X. Tailoring Two-Dimensional Nanomaterials by Structural Engineering for Chemical and Biological Sensing. Sensors Actuators Rep. 2020, 2, 100024. DOI: 10.1016/j.snr.2020.100024.
  • Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17, 2006054. DOI: 10.1002/smll.202006054.
  • Hong, J.; Wang, W.; Wang, J.; Wang, X.; Xie, H.; Li, T.; Gan, N. A Turn-on–Type Fluorescence Resonance Energy Transfer Aptasensor for Vibrio Detection Using Aptamer-Modified Polyhedral Oligomeric Silsesquioxane-Perovskite Quantum Dots/Ti3C2 MXenes Composite Probes. Microchim. Acta 2021, 188, 1. DOI: 10.1007/s00604-020-04679-9.
  • Jiang, X.; Kuklin, A. V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-Dimensional MXenes: From Morphological to Optical, Electric, and Magnetic Properties and Applications. Phys. Rep. 2020, 848, 1–58. DOI: 10.1016/j.physrep.2019.12.006.
  • Mohanty, B.; Giri, L.; Jena, B. K. MXene-Derived Quantum Dots for Energy Conversion and Storage Applications. Energy Fuels 2021, 35, 14304–14324. DOI: 10.1021/acs.energyfuels.1c01923.
  • Feng, Y.; Zhou, F.; Deng, Q.; Peng, C. Solvothermal Synthesis of in Situ Nitrogen-Doped Ti3C2 MXene Fluorescent Quantum Dots for Selective Cu2+ Detection. Ceram. Int. 2020, 46, 8320–8327. DOI: 10.1016/j.ceramint.2019.12.063.
  • Limbu, T. B.; Chitara, B.; Garcia Cervantes, M. Y.; Zhou, Y.; Huang, S.; Tang, Y.; Yan, F. Unravelling the Thickness Dependence and Mechanism of Surface-Enhanced Raman Scattering on Ti3C2Tx MXene Nanosheets. J. Phys. Chem. C. 2020, 124, 17772–17782. DOI: 10.1021/acs.jpcc.0c05143.
  • Chen, J.; Tong, P.; Huang, L.; Yu, Z.; Tang, D. Ti3C2 MXene Nanosheet-Based Capacitance Immunoassay with Tyramine-Enzyme Repeats to Detect Prostate-Specific Antigen on Interdigitated Micro-Comb Electrode. Electrochim. Acta 2019, 319, 375–381. DOI: 10.1016/j.electacta.2019.07.010.
  • Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti 3 C 2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone. Nanoscale 2019, 11, 15659–15667. DOI: 10.1039/c9nr05797h.
  • Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-Driven MXene-PEDOT: PSS Piezoresistive Wireless Biosensor. Nano Energy 2021, 82, 105711. DOI: 10.1016/j.nanoen.2020.105711.
  • Lu, L.; Han, X.; Lin, J.; Zhang, Y.; Qiu, M.; Chen, Y.; Li, M.; Tang, D. Ultrasensitive Fluorometric Biosensor Based on Ti 3 C 2 MXenes with Hg 2+-Triggered Exonuclease III-Assisted Recycling Amplification. Analyst 2021, 146, 2664–2669. DOI: 10.1039/d1an00178g.
  • Gonzalez‐Julian, J. Processing of MAX Phases: From Synthesis to Applications. J. Am. Ceram. Soc. 2021, 104, 659–690. DOI: 10.1111/jace.17544.
  • Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. DOI: 10.1002/adma.202103393.
  • Shuck, C. E.; Gogotsi, Y. Taking MXenes from the Lab to Commercial Products. Chem. Eng. J. 2020, 401, 125786. DOI: 10.1016/j.cej.2020.125786.
  • Malaki, M.; Maleki, A.; Varma, R. S. MXenes and Ultrasonication. J. Mater. Chem. A. 2019, 7, 10843–10857. DOI: 10.1039/C9TA01850F.
  • Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D Mxenes. Adv. Mater. 2021, 33, 2103148. DOI: 10.1002/adma.202103148.
  • Wei, W.; Lin, H.; Hao, T.; Su, X.; Jiang, X.; Wang, S.; Hu, Y.; Guo, Z. Dual-Mode ECL/SERS Immunoassay for Ultrasensitive Determination of Vibrio vulnificus Based on Multifunctional MXene. Sens. Actuators, B. 2021, 332, 129525. DOI: 10.1016/j.snb.2021.129525.
  • Rhouati, A.; Berkani, M.; Vasseghian, Y.; Golzadeh, N. MXene-Based Electrochemical Sensors for Detection of Environmental Pollutants: A Comprehensive Review. Chemosphere 2022, 291, 132921. DOI: 10.1016/j.chemosphere.2021.132921.
  • Al-Dhahebi, A. M.; Jose, R.; Mustapha, M.; Saheed, M. S. M. Ultrasensitive Aptasensor Using Electrospun MXene/Polyvinylidene Fluoride Nanofiber Composite for Ochratoxin a Detection. Food Chem. 2022, 390, 133105. DOI: 10.1016/j.foodchem.2022.133105.
  • Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A. I.; Kent, P. R. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394. DOI: 10.1021/ja501520b.
  • Bai, Y.; Zhou, K.; Srikanth, N.; Pang, J. H.; He, X.; Wang, R. Dependence of Elastic and Optical Properties on Surface Terminated Groups in Two-Dimensional MXene Monolayers: A First-Principles Study. RSC Adv. 2016, 6, 35731–35739. DOI: 10.1039/C6RA03090D.
  • Maleski, K.; Ren, C. E.; Zhao, M.-Q.; Anasori, B.; Gogotsi, Y. Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Appl. Mater. Interfaces. 2018, 10, 24491–24498. DOI: 10.1021/acsami.8b04662.
  • Persson, P. O.; Rosen, J. Current State of the Art on Tailoring the MXene Composition, Structure, and Surface Chemistry. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100774. DOI: 10.1016/j.cossms.2019.100774.
  • Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L. Y. S.; et al. Recent Advance in MXenes: A Promising 2D Material for Catalysis, Sensor and Chemical Adsorption. Coord. Chem. Rev. 2017, 352, 306–327. DOI: 10.1016/j.ccr.2017.09.012.
  • Satheeshkumar, E.; Makaryan, T.; Melikyan, A.; Minassian, H.; Gogotsi, Y.; Yoshimura, M. One-Step Solution Processing of Ag, Au and Pd@ MXene Hybrids for SERS. Sci. Rep. 2016, 6, 1. DOI: 10.1038/srep32049.
  • Xu, Q.; Ding, L.; Wen, Y.; Yang, W.; Zhou, H.; Chen, X.; Street, J.; Zhou, A.; Ong, W.-J.; Li, N. High Photoluminescence Quantum Yield of 18.7% by Using Nitrogen-Doped Ti 3 C 2 MXene Quantum Dots. J. Mater. Chem. C. 2018, 6, 6360–6369. DOI: 10.1039/C8TC02156B.
  • Huang, H.; Jiang, R.; Feng, Y.; Ouyang, H.; Zhou, N.; Zhang, X.; Wei, Y. Recent Development and Prospects of Surface Modification and Biomedical Applications of MXenes. Nanoscale 2020, 12, 1325–1338. DOI: 10.1039/c9nr07616f.
  • Li, Z.; Zhang, H.; Han, J.; Chen, Y.; Lin, H.; Yang, T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv. Mater. 2018, 30, 1706981. DOI: 10.1002/adma.201706981.
  • Zheng, J.; Wang, B.; Ding, A.; Weng, B.; Chen, J. Synthesis of MXene/DNA/Pd/Pt Nanocomposite for Sensitive Detection of Dopamine. Electroanal. Chem. 2018, 816, 189–194. DOI: 10.1016/j.jelechem.2018.03.056.
  • Wang, F.; Yang, C.; Duan, M.; Tang, Y.; Zhu, J. TiO2 Nanoparticle Modified Organ-like Ti3C2 MXene Nanocomposite Encapsulating Hemoglobin for a Mediator-Free Biosensor with Excellent Performances. Biosens. Bioelectron. 2015, 74, 1022–1028. DOI: 10.1016/j.bios.2015.08.004.
  • Kumar, S.; Lei, Y.; Alshareef, N. H.; Quevedo-Lopez, M.; Salama, K. N. Biofunctionalized Two-Dimensional Ti3C2 MXenes for Ultrasensitive Detection of Cancer Biomarker. Biosens. Bioelectron. 2018, 121, 243–249. DOI: 10.1016/j.bios.2018.08.076.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Lin, Y.; Zhou, Q.; Tang, D.; Niessner, R.; Yang, H.; Knopp, D. Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-on Photoelectrochemical Immunoassay of Mycotoxins. Anal. Chem. 2016, 88, 7858–7866. DOI: 10.1021/acs.analchem.6b02124.
  • Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB1 to Enhance Photocurrent of Mn2+-Doped Zn3 (OH) 2V2O7 Nanobelts. Anal. Chem. 2017, 89, 11803–11810. DOI: 10.1021/acs.analchem.7b03451.
  • Su, L.; Tong, P.; Zhang, L.; Luo, Z.; Fu, C.; Tang, D.; Zhang, Y. Photoelectrochemical Immunoassay of Aflatoxin B 1 in Foodstuff Based on Amorphous TiO 2 and CsPbBr 3 Perovskite Nanocrystals. Analyst 2019, 144, 4880–4886. DOI: 10.1039/c9an00994a.
  • Su, L.; Song, Y.; Fu, C.; Tang, D. Etching Reaction-Based Photoelectrochemical Immunoassay of Aflatoxin B1 in Foodstuff Using Cobalt Oxyhydroxide Nanosheets-Coating Cadmium Sulfide Nanoparticles as the Signal Tags. Anal. Chim. Acta. 2019, 1052, 49–56. DOI: 10.1016/j.aca.2018.11.059.
  • Jia, M.; Liao, X.; Fang, L.; Jia, B.; Liu, M.; Li, D.; Zhou, L.; Kong, W. Recent Advances on Immunosensors for Mycotoxins in Foods and Other Commodities. TrAC, Trends Anal. Chem. 2021, 136, 116193. DOI: 10.1016/j.trac.2021.116193.
  • Kordasht, H. K.; Hasanzadeh, M. Specific Monitoring of Aflatoxin M1 in Real Samples Using Aptamer Binding to DNFS Based on Turn‐on Method: A Novel Biosensor. J. Mol. Recognit. 2020, 33, e2832. DOI: 10.1002/jmr.2832.
  • Kordasht, H. K.; Moosavy, M.-H.; Hasanzadeh, M.; Soleymani, J.; Mokhtarzadeh, A. Determination of Aflatoxin M1 Using an Aptamer-Based Biosensor Immobilized on the Surface of Dendritic Fibrous Nano-Silica Functionalized by Amine Groups. Anal. Methods 2019, 11, 3910–3919. DOI: 10.1039/C9AY01185D.
  • Hussain, N.; Pu, H.; Sun, D.-W. Core Size Optimized Silver Coated Gold Nanoparticles for Rapid Screening of Tricyclazole and Thiram Residues in Pear Extracts Using SERS. Food Chem. 2021, 350, 129025. DOI: 10.1016/j.foodchem.2021.129025.
  • Jayan, H.; Pu, H.; Sun, D.-W. Recent Developments in Raman Spectral Analysis of Microbial Single Cells: Techniques and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 4294–4308. DOI: 10.1080/10408398.2021.1945534.
  • Hu, B.; Pu, H.; Sun, D.-W. Multifunctional Cellulose Based Substrates for SERS Smart Sensing: Principles, Applications and Emerging Trends for Food Safety Detection. Trends Food Sci. Technol. 2021, 110, 304–320. DOI: 10.1016/j.tifs.2021.02.005.
  • Zhang, C.; Huang, L.; Pu, H.; Sun, D.-W. Magnetic Surface-Enhanced Raman Scattering (MagSERS) Biosensors for Microbial Food Safety: Fundamentals and Applications. Trends Food Sci. Technol. 2021, 113, 366–381. DOI: 10.1016/j.tifs.2021.05.007.
  • Xie, H.; Li, P.; Shao, J.; Huang, H.; Chen, Y.; Jiang, Z.; Chu, P. K.; Yu, X.-F. Electrostatic Self-Assembly of Ti3C2T x MXene and Gold Nanorods as an Efficient Surface-Enhanced Raman Scattering Platform for Reliable and High-Sensitivity Determination of Organic Pollutants. ACS Sens. 2019, 4, 2303–2310. DOI: 10.1021/acssensors.9b00778.
  • Zheng, F.; Ke, W.; Shi, L.; Liu, H.; Zhao, Y. Plasmonic Au–Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin a Detection. Anal. Chem. 2019, 91, 11812–11820. DOI: 10.1021/acs.analchem.9b02469.
  • Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q.; Lin, X. Ti3C2Tx MXenes Loaded with Au Nanoparticle Dimers as a Surface-Enhanced Raman Scattering Aptasensor for AFB1 Detection. Food Chem. 2022, 372, 131293. DOI: 10.1016/j.foodchem.2021.131293.
  • Liu, B.; Ma, L.; Huang, Z.; Hu, H.; Wu, P.; Liu, J. Janus DNA Orthogonal Adsorption of Graphene Oxide and Metal Oxide Nanoparticles Enabling Stable Sensing in Serum. Mater. Horiz. 2018, 5, 65–69. DOI: 10.1039/C7MH00804J.
  • Wu, H.; Liu, R.; Kang, X.; Liang, C.; Lv, L.; Guo, Z. Fluorometric Aptamer Assay for Ochratoxin a Based on the Use of Single Walled Carbon Nanohorns and Exonuclease III-Aided Amplification. Microchim. Acta 2018, 185, 1. DOI: 10.1007/s00604-017-2592-6.
  • Zahra, QuA.; Ullah, S.; Shahzad, F.; Qiu, B.; Fang, X.; Ammar, A.; Luo, Z.; Zaidi, S. A. MXene-Based Aptasensors: Advances, Challenges, and Prospects. Prog. Mater. Sci. 2022, 129, 100967. DOI: 10.1016/j.pmatsci.2022.100967.
  • Wang, H.; Li, H.; Huang, Y.; Xiong, M.; Wang, F.; Li, C. A Label-Free Electrochemical Biosensor for Highly Sensitive Detection of Gliotoxin Based on DNA Nanostructure/MXene Nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531. DOI: 10.1016/j.bios.2019.111531.
  • Li, J.; Qiu, J. D.; Xu, J. J.; Chen, H. Y.; Xia, X. H. The Synergistic Effect of Prussian‐Blue‐Grafted Carbon Nanotube/Poly (4‐Vinylpyridine) Composites for Amperometric Sensing. Adv. Funct. Mater. 2007, 17, 1574–1580. DOI: 10.1002/adfm.200600033.
  • Song, S.; Hu, N. Dual-Switchable Bioelectrocatalysis Synergistically Controlled by pH and Perchlorate Concentration Based on Poly (4-Vinylpyridine) Films. J. Phys. Chem. B 2010, 114, 11689–11695. DOI: 10.1021/jp105802m.
  • Guo, W.; Umar, A.; Algadi, H.; Albargi, H.; Ibrahim, A. A.; Cui, K.; Wang, L.; Pei, M.; Wang, Y. Design of a Unique “on/off” Switch Electrochemical Aptasensor Driven by the pH for the Detection of Aflatoxin B1 in Acid Solutions Based on Titanium Carbide/Carboxylated Graphene Oxide-Poly (4-Vinyl Pyridine)/Aptamer Composite. Microchem. J. 2021, 169, 106548. DOI: 10.1016/j.microc.2021.106548.
  • Mousavi, M.-M.; Nemati, M.; Alizadeh Nabili, A. A.; mahmoudpour, M.; Arefhosseini, S. Application of Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography/Mass Spectrometry as Effective Tool for Trace Analysis of Organochlorine Pesticide Residues in Honey Samples. J. Iran. Chem. Soc. 2016, 13, 2211–2218. DOI: 10.1007/s13738-016-0939-2.
  • Mousavi, M. M.; Arefhosseini, S.; Alizadeh Nabili, A. A.; Mahmoudpour, M.; Nemati, M. Development of an Ultrasound‐Assisted Emulsification Microextraction Method for the Determination of Chlorpyrifos and Organochlorine Pesticide Residues in Honey Samples Using Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2016, 39, 2815–2822. DOI: 10.1002/jssc.201600197.
  • Mahmoudpour, M.; Saadati, A.; Hasanzadeh, M.; Kholafazad-kordasht, H. A Stretchable Glove Sensor toward Rapid Monitoring of Trifluralin: A New Platform for the On‐Site Recognition of Herbicides Based on Wearable Flexible Sensor Technology Using Lab‐on‐Glove. J. Mol. Recognit. 2021, 34, e2923. DOI: 10.1002/jmr.2923.
  • Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Ezzati Nazhad Dolatabadi, J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2021, 1–28. DOI: 10.1080/10408347.2021.1919987.
  • Tu, X.; Gao, F.; Ma, X.; Zou, J.; Yu, Y.; Li, M.; Qu, F.; Huang, X.; Lu, L. Mxene/Carbon Nanohorn/β-cyclodextrin-Metal-Organic Frameworks as High-Performance Electrochemical Sensing Platform for Sensitive Detection of Carbendazim Pesticide. J. Hazard. Mater. 2020, 396, 122776. DOI: 10.1016/j.jhazmat.2020.122776.
  • She, X.; Xu, H.; Yu, Y.; Li, L.; Zhu, X.; Mo, Z.; Song, Y.; Wu, J.; Yuan, S.; Li, H. Accelerating Photogenerated Charge Kinetics via the Synergetic Utilization of 2D Semiconducting Structural Advantages and Noble‐Metal‐Free Schottky Junction Effect. Small 2019, 15, 1804613. DOI: 10.1002/smll.201804613.
  • Li, S.; She, G.; Xu, J.; Zhang, S.; Zhang, H.; Mu, L.; Ge, C.; Jin, K.; Luo, J.; Shi, W. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes. ACS Appl. Mater. Interfaces. 2020, 12, 39092–39097. DOI: 10.1021/acsami.0c09498.
  • Yao, L.; Gu, Q.; Yu, X. Three-Dimensional MOFs@ MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries. ACS Nano. 2021, 15, 3228–3240. DOI: 10.1021/acsnano.0c09898.
  • Du, X.; Du, W.; Sun, J.; Jiang, D. Self-Powered Photoelectrochemical Sensor for Chlorpyrifos Detection in Fruit and Vegetables Based on Metal–Ligand Charge Transfer Effect by Ti3C2 Based Schottky Junction. Food Chem. 2022, 385, 132731. DOI: 10.1016/j.foodchem.2022.132731.
  • Sinha, A.; Ma, K.; Zhao, H. 2D Ti3C2Tx Flakes Prepared by in-Situ HF Etchant for Simultaneous Screening of Carbamate Pesticides. J. Colloid Interface Sci. 2021, 590, 365–374. DOI: 10.1016/j.jcis.2021.01.063.
  • Zeng, R.; Luo, Z.; Zhang, L.; Tang, D. Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework. Anal. Chem. 2018, 90, 12299–12306. DOI: 10.1021/acs.analchem.8b03889.
  • Zeng, R.; Tang, Y.; Zhang, L.; Luo, Z.; Tang, D. Dual-Readout Aptasensing of Antibiotic Residues Based on Gold Nanocluster-Functionalized MnO 2 Nanosheets with Target-Induced Etching Reaction. J. Mater. Chem. B 2018, 6, 8071–8077. DOI: 10.1039/c8tb02642d.
  • Zeng, R.; Luo, Z.; Su, L.; Zhang, L.; Tang, D.; Niessner, R.; Knopp, D. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Anal. Chem. 2019, 91, 2447–2454. DOI: 10.1021/acs.analchem.8b05265.
  • Zeng, R.; Zhang, L.; Su, L.; Luo, Z.; Zhou, Q.; Tang, D. Photoelectrochemical Bioanalysis of Antibiotics on rGO-Bi2WO6-Au Based on Branched Hybridization Chain Reaction. Biosens. Bioelectron. 2019, 133, 100–106. DOI: 10.1016/j.bios.2019.02.067.
  • Martinez, J. L.; Baquero, F.; Andersson, D. I. Predicting Antibiotic Resistance. Nat. Rev. Microbiol. 2007, 5, 958–965. DOI: 10.1038/nrmicro1796.
  • Xie, X.; Zhang, N.; Tang, Z.-R.; Anpo, M.; Xu, Y.-J. Ti3C2Tx MXene as a Janus Cocatalyst for Concurrent Promoted Photoactivity and Inhibited Photocorrosion. Appl. Catal, B 2018, 237, 43–49. DOI: 10.1016/j.apcatb.2018.05.070.
  • Yuan, C.; He, Z.; Chen, Q.; Wang, X.; Zhai, C.; Zhu, M. Selective and Efficacious Photoelectrochemical Detection of Ciprofloxacin Based on the Self-Assembly of 2D/2D g-C3N4/Ti3C2 Composites. Appl. Surf. Sci. 2021, 539, 148241. DOI: 10.1016/j.apsusc.2020.148241.
  • Yang, M.; Jia, Y.; Chen, Y.; Yan, P.; Xu, L.; Qian, J.; Chen, F.; Li, H. Fabrication of a Photoelectrochemical Aptasensor for Sensitively Detecting Enrofloxacin Antibiotic Based on g-C3N4/Bi24O31Cl10 Heterojunction. J. Environ. Chem. Eng. 2022, 10, 107208. DOI: 10.1016/j.jece.2022.107208.
  • Xu, K.; Chen, Y.; Okhai, T. A.; Snyman, L. W. Micro Optical Sensors Based on Avalanching Silicon Light-Emitting Devices Monolithically Integrated on Chips. Opt. Mater. Express 2019, 9, 3985. DOI: 10.1364/OME.9.003985.
  • Hesari, M.; Ding, Z.; Workentin, M. S. Electrogenerated Chemiluminescence of Monodisperse Au144 (SC2H4Ph) 60 Clusters. Organometallics 2014, 33, 4888–4892. DOI: 10.1021/om500112j.
  • Hesari, M.; Workentin, M. S.; Ding, Z. Highly Efficient Electrogenerated Chemiluminescence of Au38 Nanoclusters. ACS Nano. 2014, 8, 8543–8553. DOI: 10.1021/nn503176g.
  • Jiang, D.; Wei, M.; Du, X.; Qin, M.; Shan, X.; Wang, W.; Chen, Z. Ultrasensitive near-Infrared Aptasensor for Enrofloxacin Detection Based on Wavelength Tunable AgBr Nanocrystals Electrochemiluminescence Emission Triggered by O-Terminated Ti3C2 MXene. Biosens. Bioelectron. 2022, 200, 113917. DOI: 10.1016/j.bios.2021.113917.
  • Scallan, E.; Hoekstra, R. M.; Angulo, F. J.; Tauxe, R. V.; Widdowson, M.-A.; Roy, S. L.; Jones, J. L.; Griffin, P. M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. DOI: 10.3201/eid1701.P11101.
  • Xie, M.; Chen, T.; Xin, X.; Cai, Z.; Dong, C.; Lei, B. Multiplex Detection of Foodborne Pathogens by Real-Time Loop-Mediated Isothermal Amplification on a Digital Microfluidic Chip. Food Control 2022, 136, 108824. DOI: 10.1016/j.foodcont.2022.108824.
  • Mahoney, D. Food Safety: Culture and Its Impact on the Modern Food Business. Food Australia 2021, 73, 16.
  • Wang, W.; Xiao, S.; Jia, Z.; Xie, H.; Li, T.; Wang, Q.; Gan, N. A Dual-Mode Aptasensor for Foodborne Pathogens Detection Using Pt, Phenylboric Acid and Ferrocene Modified Ti3C2 MXenes Nanoprobe. Sens. Actuators, B 2022, 351, 130839. DOI: 10.1016/j.snb.2021.130839.
  • Niu, H.; Cai, S.; Liu, X.; Huang, X.; Chen, J.; Wang, S.; Zhang, S. A Novel Electrochemical Sandwich-like Immunosensor Based on Carboxyl Ti 3 C 2 T x MXene and Rhodamine b/Gold/Reduced Graphene Oxide for Listeria monocytogenes. Anal. Methods 2022, 14, 843–849. DOI: 10.1039/d1ay02029c.
  • Karimzadeh, Z.; Hasanzadeh, M.; Isildak, I.; Khalilzadeh, B. Multiplex Bioassaying of Cancer Proteins and Biomacromolecules: Nanotechnological, Structural and Technical Perspectives. Int. J. Biol. Macromol. 2020, 165, 3020–3039. DOI: 10.1016/j.ijbiomac.2020.10.191.
  • Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a Porous Wood-Based Triboelectric Nanogenerator and Gas Sensor for Real-Time Wireless Food-Quality Assessment. Nano Energy 2021, 83, 105833. DOI: 10.1016/j.nanoen.2021.105833.
  • Matindoust, S.; Farzi, A.; Baghaei Nejad, M.; Shahrokh Abadi, M. H.; Zou, Z.; Zheng, L.-R. Ammonia Gas Sensor Based on Flexible Polyaniline Films for Rapid Detection of Spoilage in Protein-Rich Foods. J. Mater. Sci: Mater. Electron. 2017, 28, 7760–7768. DOI: 10.1007/s10854-017-6471-z.
  • Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible Light-Assisted Room Temperature Gas Sensing with ZnO-Ag Heterostructure Nanoparticles. Sens. Actuators, B 2018, 259, 269–281. DOI: 10.1016/j.snb.2017.12.052.
  • Zhang, Y.; Jiang, Y.; Duan, Z.; Huang, Q.; Wu, Y.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Highly Sensitive and Selective NO2 Sensor of Alkalized V2CTx MXene Driven by Interlayer Swelling. Sens. Actuators, B 2021, 344, 130150. DOI: 10.1016/j.snb.2021.130150.
  • Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B. E.; Zeng, J. UV Illumination-Enhanced Ultrasensitive Ammonia Gas Sensor Based on (001) TiO2/MXene Heterostructure for Food Spoilage Detection. J. Hazard. Mater. 2022, 423, 127160. DOI: 10.1016/j.jhazmat.2021.127160.
  • Chen, J.; Huang, Q.; Huang, H.; Mao, L.; Liu, M.; Zhang, X.; Wei, Y. Recent Progress and Advances in the Environmental Applications of MXene Related Materials. Nanoscale 2020, 12, 3574–3592. DOI: 10.1039/c9nr08542d.
  • Jastrzębska, A.; Szuplewska, A.; Wojciechowski, T.; Chudy, M.; Ziemkowska, W.; Chlubny, L.; Rozmysłowska, A.; Olszyna, A. In Vitro Studies on Cytotoxicity of Delaminated Ti3C2 MXene. J. Hazard. Mater. 2017, 339, 1–8. DOI: 10.1016/j.jhazmat.2017.06.004.
  • Wu, Q.; Li, N.; Wang, Y.; Xu, Y.; Wu, J.; Jia, G.; Ji, F.; Fang, X.; Chen, F.; Cui, X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2-MXene Nanosheets. Anal. Chem. 2020, 92, 3354–3360. DOI: 10.1021/acs.analchem.9b05372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.