447
Views
4
CrossRef citations to date
0
Altmetric
Review

Occurrence, transformation, and toxicity of fumonisins and their covert products during food processing

, , , , &

References

  • Alberts, J., J. Rheeder, W. Gelderblom, G. Shephard, and H. M. Burger. 2019. Rural subsistence maize farming in South Africa: Risk assessment and intervention models for reduction of exposure to fumonisin mycotoxins. Toxins 11 (6):334. doi: 10.3390/toxins11060334.
  • Arroyo-Manzanares, N., N. Campillo, I. López-García, M. Hernández-Córdoba, and P. Viñas. 2021. High-resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchemical Journal 166:106197. doi: 10.1016/j.microc.2021.106197.
  • Arumugam, T., T. Ghazi, and A. A. Chuturgoon. 2021. Molecular and epigenetic modes of fumonisin B-1 mediated toxicity and carcinogenesis and detoxification strategies. Critical Reviews in Toxicology 51 (1):76–94. doi: 10.1080/10408444.2021.1881040.
  • Balthazar, C. F., J. T. Guimarães, R. S. Rocha, T. C. Pimentel, R. P. Neto, M. I. B. Tavares, J. S. Graça, E. G. Alves Filho, M. Q. Freitas, E. A. Esmerino, et al. 2021. Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Trends in Food Science & Technology 108:84–91. doi: 10.1016/j.tifs.2020.12.011.
  • Bartok, T., L. Tolgyesi, A. Mesterhazy, M. Bartok, and A. Szecsi. 2010. Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP-HPLC separation: Palmitoyl, linoleoyl and oleoyl EFB(1) fumonisin isomers from a solid culture of Fusarium verticillioides. Food Additive & Contaminants: Part A 27 (12):1714–23. doi: 10.1080/19440049.2010.521958.
  • Braun, M. S, and M. Wink. 2018. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Comprehensive Reviews in Food Science and Food Safety 17 (3):769–91. doi: 10.1111/1541-4337.12334.
  • Bryła, M., M. Roszko, K. Szymczyk, R. Jędrzejczak, and M. W. Obiedziński. 2016. Fumonisins and their masked forms in maize products. Food Control 59:619–27. doi: 10.1016/j.foodcont.2015.06.032.
  • Bryła, M., M. Roszko, K. Szymczyk, R. Jędrzejczak, E. Słowik, and M. W. Obiedziński. 2014. Effect of baking on reduction of free and hidden fumonisins in gluten-free bread. Journal of Agricultural and Food Chemistry 62 (42):10341–7. doi: 10.1021/jf504077m.
  • Bryła, M., K. Szymczyk, R. Jędrzejczak, and M. W. Obiedziński. 2015. Free and hidden fumonisins in various fractions of maize dry milled under model conditions. LWT - Food Science and Technology 64 (1):171–6. doi: 10.1016/j.lwt.2015.05.048.
  • Bryła, M., A. Waśkiewicz, K. Szymczyk, and R. Jędrzejczak. 2017. Effects of pH and temperature on the stability of fumonisins in maize products. Toxins 9 (3):88. doi: 10.3390/toxins9030088.
  • Burger, H. M., G. S. Shephard, W. Louw, J. P. Rheeder, and W. C. A. Gelderblom. 2013. The mycotoxin distribution in maize milling fractions under experimental conditions. International Journal of Food Microbiology 165 (1):57–64. doi: 10.1016/j.ijfoodmicro.2013.03.028.
  • Burgess, K. M. N., J. B. Renaud, T. McDowell, and M. W. Sumarah. 2016. Mechanistic insight into the biosynthesis and detoxification of fumonisin mycotoxins. ACS Chemical Biology 11 (9):2618–25. doi: 10.1021/acschembio.6b00438.
  • Chen, J., Z. Wei, Y. Wang, M. Long, W. Wu, and K. Kuca. 2021. Fumonisin B1: Mechanisms of toxicity and biological detoxification progress in animals. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 149:111977. doi: 10.1016/j.fct.2021.111977.
  • Cingolani, F., A. H. Futerman, and J. Casas. 2016. Ceramide synthases in biomedical research. Chemistry and Physics of Lipids 197:25–32. doi: 10.1016/j.chemphyslip.2015.07.026.
  • Cirlini, M., I. Hahn, E. Varga, M. Dall’Asta, C. Falavigna, L. Calani, F. Berthiller, D. D. Rio, and C. Dall’Asta. 2015. Hydrolysed fumonisin B1 and N-(deoxy-D-fructos-1-yl)-fumonisin B1: Stability and catabolic fate under simulated human gastrointestinal conditions. International Journal of Food Sciences and Nutrition 66 (1):98–103. doi: 10.3109/09637486.2014.979316.
  • Crawford, J. M, and C. A. Townsend. 2010. New insights into the formation of fungal aromatic polyketides. Nature Reviews. Microbiology 8 (12):879–89. doi: 10.1038/nrmicro2465.
  • Dada, T. A., T. I. Ekwomadu, and M. Mwanza. 2020. Multi mycotoxin determination in dried beef using liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). Toxins 12 (6):357. doi: 10.3390/toxins12060357.
  • Dall’Erta, A., M. Cirlini, M. Dall’Asta, D. Del Rio, G. Galaverna, and C. Dall’Asta. 2013. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chemical Research in Toxicology 26 (3):305–12. doi: 10.1021/tx300438c.
  • Dawlal, P., C. Brabet, M. S. Thantsha, and E. M. Buys. 2017. Potential of lactic acid bacteria for the reduction of fumonisin exposure in African fermented maize based foods. World Mycotoxin Journal 10 (4):309–18. doi: 10.3920/WMJ2017.2184.
  • Dinolfo, M. I., M. Martínez, E. Castañares, and A. F. Arata. 2022. Fusarium in maize during harvest and storage: A review of species involved, mycotoxins, and management strategies to reduce contamination. European Journal of Plant Pathology 164 (2):151–66. doi: 10.1007/s10658-022-02548-0.
  • Domijan, A.-M. 2012. Fumonisin B1: A neurotoxic mycotoxin. Arhiv za Higijenu Rada i Toksikologiju 63 (4):531–44. doi: 10.2478/10004-1254-63-2012-2239.
  • Domijan, A.-M, and A. Y. Abramov. 2011. Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis-Implication to mechanism of cell toxicity. The International Journal of Biochemistry & Cell Biology 43 (6):897–904. doi: 10.1016/j.biocel.2011.03.003.
  • Du, L., X. Zhu, R. Gerber, J. Huffman, L. Lou, J. Jorgenson, F. Yu, K. Zaleta-Rivera, and Q. Wang. 2008. Biosynthesis of sphinganine-analog mycotoxins. Journal of Industrial Microbiology & Biotechnology 35 (6):455–64. doi: 10.1007/s10295-008-0316-y.
  • Ekwomadu, T. I., S. A. Akinola, and M. Mwanza. 2021. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. International Journal of Environmental Research and Public Health 18 (22):11741. doi: 10.3390/ijerph182211741.
  • El-Nekeety, A. A., A. A. El-Kady, K. G. Abdel-Wahhab, N. S. Hassan, and M. A. Abdel-Wahhab. 2017. Reduction of individual or combined toxicity of fumonisin B-1 and zearalenone via dietary inclusion of organo-modified nano-montmorillonite in rats. Environmental Science and Pollution Research International 24 (25):20770–83. doi: 10.1007/s11356-017-9721-y.
  • Epifano, F., S. Genovese, L. Marchetti, L. Palumbo, M. Bastianini, F. Cardellini, R. Spogli, and S. Fiorito. 2020. Solid phase adsorption of anthraquinones from plant extracts by lamellar solids. Journal of Pharmaceutical and Biomedical Analysis 190:113515. doi: 10.1016/j.jpba.2020.113515.
  • EU. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
  • Falavigna, C., I. Lazzaro, G. Galaverna, P. Battilani, and C. Dall’Asta. 2013. Fatty acid esters of fumonisins: First evidence of their presence in maize. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (9):1606–13. doi: 10.1080/19440049.2013.802839.
  • FAO/WHO. 2019. Codex Alimentarius, general standard for contaminants and toxins in food and feed.
  • FDA. 2001. Guidance for industry: Fumonisin levels in human foods and animal feeds.
  • Figueroa, J. D. C., J. J. Véles-Medina, E. M. Tolentino-López, M. Gaytán-Martínez, F. Aragón-Cuevas, N. Palacios, and M. Willcox. 2013. Effect of traditional nixtamalization process on starch annealing and the relation to pozole quality. Journal of Food Process Engineering 36 (5):704–14. doi: 10.1111/jfpe.12034.
  • Freire, L, and A. S. Sant’Ana. 2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 111:189–205. doi: 10.1016/j.fct.2017.11.021.
  • Generotti, S., M. Cirlini, C. Dall’Asta, and M. Suman. 2015. Influence of the industrial process from caryopsis to cornmeal semolina on levels of fumonisins and their masked forms. Food Control. 48:170–4. doi: 10.1016/j.foodcont.2014.06.003.
  • Grenier, B., F. L. B. Ana-Paula, E. S. Heidi, T. Catherine, C. Anne-Marie, S. Gerd, M. Kolf-Clauw, M. Wulf-Dieter, and P. O. Isabelle. 2012. The low intestinal and hepatic toxicity of hydrolyzed fumonisin B-1 correlates with its inability to alter the metabolism of sphingolipids. Biochemical Pharmacology 83 (10):1465–73. doi: 10.1016/j.bcp.2012.02.007.
  • Grenier, B., E. S. Heidi, C. Sylvia, D. M. Wulf, S. Gerd, and J. A. Todd. 2015. Dose-dependent effects on sphingoid bases and cytokines in chickens fed diets prepared with Fusarium verticillioides culture material containing fumonisins. Toxins 7 (4):1253–72. doi: 10.3390/toxins7041253.
  • Guerre, P., A. Travel, and D. Tardieu. 2022. Targeted analysis of sphingolipids in turkeys fed fusariotoxins: First evidence of key changes that could help explain their relative resistance to fumonisin toxicity. International Journal of Molecular Sciences 23 (5):2512. doi: 10.3390/ijms23052512.
  • Harper, A. R., R. C. J. Dobson, V. K. Morris, and G. J. Moggre. 2022. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microbial Biotechnology 15 (5):1404–21. doi: 10.1111/1751-7915.14008.
  • Harrer, H., E. L. Laviad, H. U. Humpf, and A. H. Futerman. 2013. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Molecular Nutrition & Food Research 57 (3):516–22. doi: 10.1002/mnfr.201200465.
  • Heidari, N, and A. Ghiasvand. 2020. A review on magnetic field-assisted solid-phase microextraction techniques. Journal of Liquid Chromatography & Related Technologies 43 (3-4):75–82. doi: 10.1080/10826076.2019.1668804.
  • Heinl, S., D. Hartinger, M. Thamhesl, E. Vekiru, R. Krska, G. Schatzmayr, W. D. Moll, and R. Grabherr. 2010. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology 145 (2):120–9. doi: 10.1016/j.jbiotec.2009.11.004.
  • Hou, S., J. Ma, Y. Cheng, H. Wang, J. Sun, and Y. Yan. 2020. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control. 117 (107107):107107. doi: 10.1016/j.foodcont.2020.107107.
  • IARC. 2002. International agency for research on cancer. IARC Monographs 82:301–66.
  • Irene, H., N. Veronika, S. H. Elisabeth, V. Elisabeth, S. Christiane, S. Veronika, and R. Nicole. 2015. Effects of orally administered fumonisin B-1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food and Chemical Toxicology 76:11–8. doi: 10.1016/j.fct.2014.11.020.
  • Jackson, L. S., K. A. Voss, and D. Ryu. 2012. Effects of different extrusion conditions on the chemical and toxicological fate of fumonisin B-1 in maize: A short review. World Mycotoxin Journal 5 (3):251–60. doi: 10.3920/WMJ2012.1431.
  • Kamle, M., D. K. Mahato, S. Devi, K. E. Lee, S. G. Kang, and P. Kumar. 2019. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 11 (6):328. doi: 10.3390/toxins11060328.
  • Kemboi, D. C., G. Antonissen, P. E. Ochieng, S. Croubels, S. Okoth, E. K. Kangethe, J. Faas, J. F. Lindahl, and J. K. Gathumbi. 2020. A review of the impact of mycotoxins on dairy cattle health: challenges for food safety and dairy production in sub-Saharan Africa. Toxins 12 (4):222. doi: 10.3390/toxins12040222.
  • Kenneth, V., R. Dojin, J. Lauren, R. Ronald, and G. W. Janee. 2017. Reduction of fumonisin toxicity by extrusion and nixtamalization (alkaline cooking). Journal of Agricultural and Food Chemistry 65 (33):7088–96. doi: 10.1021/acs.jafc.6b05761.
  • Keskin, E, and O. E. Eyupoglu. 2023. Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chemistry 400:134086. doi: 10.1016/j.foodchem.2022.134086.
  • Kiseleva, M., Z. Chalyy, I. Sedova, and I. Aksenov. 2020. Stability of mycotoxins in individual stock and multi-analyte standard solutions. Toxins 12 (2):94. doi: 10.3390/toxins12020094.
  • Knutsen, H.-K., L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, L. Edler, B. Grasl‐Kraupp, C. Hogstrand, et al. 2018. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA Journal 16 (2):e05172. doi: 10.2903/j.efsa.2018.5172.
  • Latorre, A., T. Dagnac, B. F. Lorenzo, and M. Llompart. 2015. Occurrence and stability of masked fumonisins in corn silage samples. Food Chemistry 189:38–44. doi: 10.1016/j.foodchem.2014.10.156.
  • Lattanzio, V., M. T. A. Visconti, M. Haidukowski, and M. Pascale. 2012. Identification and characterization of new Fusarium masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography-high-resolution mass spectrometry. Journal of Mass Spectrometry: JMS 47 (4):466–75. doi: 10.1002/jms.2980.
  • Letertre, M. P. M., G. Dervilly, and P. Giraudeau. 2021. Combined nuclear magnetic resonance spectroscopy and mass spectrometry approaches for metabolomics. Analytical Chemistry 93 (1):500–18. doi: 10.1021/acs.analchem.0c04371.
  • Li, K., S. Yu, D. Yu, H. Lin, N. Liu, and A. Wu. 2022. Biodegradation of fumonisins by the consecutive action of a fusion enzyme. Toxins 14 (4):266. doi: 10.3390/toxins14040000.
  • Lu, Q., J. Qin, Y. Fu, J. Luo, J. Lu, A. F. Logrieco, and M. Yang. 2020. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. TrAC Trends in Analytical Chemistry 133:116088. doi: 10.1016/j.trac.2020.116088.
  • Lumsangkul, C., H. I. Chiang, N. W. Lo, Y. K. Fan, and J. C. Ju. 2019. Developmental toxicity of mycotoxin fumonisin B-1 in animal embryogenesis: An OVERVIEW. Toxins 11 (2):114. doi: 10.3390/toxins11020114.
  • Lumsangkul, C., K. Tso, Y. Fan, H. Chiang, and J. Ju. 2021. Mycotoxin fumonisin B-1 interferes sphingolipid metabolisms and neural tube closure during early embryogenesis in brown tsaiya ducks. Toxins 13 (11):743. doi: 10.3390/toxins13110743.
  • Murshed, S. A. A., M. Rizwan, F. Akbar, N. Zaman, M. Suleman, and S. S. Ali. 2022. Analysis of the aflatoxin M1 contamination in traditional and commercial cheeses consumed in Yemen. International Journal of Dairy Technology 75 (1):194–200. doi: 10.1111/1471-0307.12827.
  • Marshall, D. D, and R. Powers. 2017. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in Nuclear Magnetic Resonance Spectroscopy 100:1–16. doi: 10.1016/j.pnmrs.2017.01.001.
  • Mary, V. S., S. L. Arias, S. N. Otaiza, P. A. Velez, H. R. Rubinstein, and M. G. Theumer. 2017. The aflatoxin B1-fumonisin B1 toxicity in BRL-3A hepatocytes is associated to induction of cytochrome P450 activity and arachidonic acid metabolism. Environmental Toxicology 32 (6):1711–24. doi: 10.1002/tox.22395.
  • Massarolo, K. C., J. R. Mendoza, T. Verma, L. Kupski, E. Badiale-Furlong, and A. Bianchini. 2021. Stability of fumonisin B1 and its bioaccessibility in extruded corn-based products. Mycotoxin Research 37 (2):161–8. doi: 10.1007/s12550-021-00426-y.
  • Massarolo, K. C., P. Rodrigues, C. F. J. Ferreira, L. Kupski, and E. Badiale-Furlong. 2022. Simultaneous distribution of aflatoxins B1 and B2, and fumonisin B1 in corn fractions during dry and wet-milling. Journal of Food Science and Technology 59 (8):3192–200. doi: 10.1007/s13197-022-05373-9.
  • McCormick, S. P., T. Kato, C. M. Maragos, M. Busman, V. M. T. Lattanzio, G. Galaverna, C. Dall-Asta, D. Crich, N. P. J. Price, and C. P. Kurtzman. 2015. Anomericity of T-2 toxin-glucoside: Masked mycotoxin in cereal crops. Journal of Agricultural and Food Chemistry 63 (2):731–8. doi: 10.1021/jf504737f.
  • Meca, G., M. Fernandez-Franzon, A. Ritieni, G. Font, M. J. Ruiz, and J. Manes. 2010. Formation of fumonisin B-1-glucose reaction product, in vitro cytotoxicity, and lipid peroxidation on kidney cells. Journal of Agricultural and Food Chemistry 58 (2):1359–65. doi: 10.1021/jf9028255.
  • Mikula, H., J. Weber, D. Svatunek, P. Skrinjar, G. Adam, R. Krska, C. Hametner, and J. Fröhlich. 2014. Synthesis of zearalenone-16-beta, D-glucoside and zearalenone-16-sulfate: A tale of protecting resorcylic acid lactones for regiocontrolled conjugation. Beilstein Journal of Organic Chemistry 10:1129–34. doi: 10.3762/bjoc.10.112.
  • Milani, J, and G. Maleki. 2014. Effects of processing on mycotoxin stability in cereals. Journal of the Science of Food and Agriculture 94 (12):2372–5. doi: 10.1002/jsfa.6600.
  • Mohammadi, S., M. Keshavarzi, A. Kazemi, S. Rahmdel, M. Nouri, A. Rastegar, and A. Ghaffarian‐Bahraman. 2022. Aflatoxin‐M1 contamination in cheese of six countries in the West Asia region: A systematic review and meta‐analysis. International Journal of Dairy Technology 75 (3):653–67. doi: 10.1111/1471-0307.12866.
  • Molina-Pintor, I. B., A. E. Rojas-Garcia, I. M. Medina-Diaz, B. S. Barron-Vivanco, Y. Y. Bernal-Hernandez, L. Ortega-Cervantes, A. J. Ramos, J. F. Herrera-Moreno, and C. A. Gonzalez-Arias. 2022. An update on genotoxic and epigenetic studies of fumonisin B1. World Mycotoxin Journal 15 (1):57–72. doi: 10.3920/WMJ2021.2720.
  • Nagl, V., B. Woechtl, H. E. Schwartz-Zimmermann, I. Hennig-Pauka, W. D. Moll, G. Adam, and F. Berthiller. 2014. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters 229 (1):190–7. doi: 10.1016/j.toxlet.2014.06.032.
  • Nagl, V., H. Schwartz, R. Krska, W.-D. Moll, S. Knasmüller, M. Ritzmann, G. Adam, and F. Berthiller. 2012. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicology Letters 213 (3):367–73. doi: 10.1016/j.toxlet.2012.07.024.
  • Nakagawa, H., K. Ohmichi, S. Sakamoto, Y. Sago, M. Kushiro, H. Nagashima, M. Yoshida, and T. Nakajima. 2011. Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap (TM) MS. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 28 (10):1447–56. doi: 10.1080/19440049.2011.597434.
  • Odukoya, J. O., S. De Saeger, M. De Boevre, G. O. Adegoke, K. Audenaert, S. Croubels, G. Antonissen, K. Vermeulen, S. Gbashi, and P. B. Njobeh. 2021. Effect of selected cooking ingredients for nixtamalization on the reduction of Fusarium mycotoxins in maize and sorghum. Toxins 13 (1):27. doi: 10.3390/toxins13010027.
  • Paris, M. P., W. Schweiger, C. Hametner, R. Stückler, G. J. Muehlbauer, E. Varga, R. Krska, F. Berthiller, and G. Adam. 2014. Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agricultural and Food Chemistry 62 (5):1181–9. doi: 10.1021/jf405627d.
  • Park, J., D. Kim, J. Moon, J. An, Y. Kim, S. Chung, and C. Lee. 2018. Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC-MS/MS to evaluate the carry-over ratio during wet-milling. Toxins 10 (8):319. doi: 10.3390/toxins10080319.
  • Peillod, C., M. Laborde, A. Travel, A. Mika, J. D. Bailly, D. Cleva, C. Boissieu, J. Le Guennec, O. Albaric, S. Labrut, et al. 2021. Toxic effects of fumonisins, deoxynivalenol and zearalenone alone and in combination in ducks fed the maximum EU tolerated level. Toxins 13 (2):152. doi: 10.3390/toxins13020152.
  • Petrova, P., A. Arsov, F. Tsvetanova, T. Parvanova-Mancheva, E. Vasileva, L. Tsigoriyna, and K. Petrov. 2022. The complex role of lactic acid bacteria in food detoxification. Nutrients 14 (10):2038. doi: 10.3390/nu14102038.
  • Pietri, A., M. Zanetti, and T. Bertuzzi. 2009. Distribution of aflatoxins and fumonisins in dry-milled maize fractions. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 26 (3):372–80. doi: 10.1080/02652030802441513.
  • Plessis, B., T. Regnier, S. Combrinck, P. Heinrich, and T. Braunbeck. 2019. Effect of pH on the toxicity of fumonisins towards the RTL-W1 cell line and zebrafish (Danio rerio) embryos. Toxicology Letters 313:101–7. doi: 10.1016/j.toxlet.2019.06.009.
  • Ponce-Garcia, N., S. O. Serna-Saldivar, and S. Garcia-Lara. 2018. Fumonisins and their analogues in contaminated corn and its processed foods - A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (11):2183–203. doi: 10.1080/19440049.2018.1502476.
  • Qu, L., L. Wang, H. Ji, Y. Fang, P. Lei, X. Zhang, L. Jin, D. Sun, and H. Dong. 2022. Toxic mechanism and biological detoxification of fumonisins. Toxins (Basel) 14 (3):182. doi: 10.3390/toxins14030182.
  • Rausch, A. K., R. Brockmeyer, and T. Schwerdtle. 2020. Development and validation of a QuEChERS-based liquid chromatography tandem mass spectrometry multi-method for the determination of 38 native and modified mycotoxins in cereals. Journal of Agricultural and Food Chemistry 68 (16):4657–69. doi: 10.1021/acs.jafc.9b07491.
  • Reyes-Velazquez, W. P., C. N. Anguiano-Sevilla, R. Anguiano-Estrella, and F. G. Rojo. 2018. Association of acute equine leukoencephalomalacia (ELEM) with fumonisins concentrations in corn stover in an outbreak in the state of Jalisco, Mexico. Austral Journal of Veterinary Sciences 50 (2):111–3. doi: 10.4067/S0719-81322018000200111.
  • Salve, A. R., J. G. LeBlanc, and S. S. Arya. 2021. Effect of processing on polyphenol profile, aflatoxin concentration and allergenicity of peanuts. Journal of Food Science and Technology 58 (7):2714–24. doi: 10.1007/s13197-020-04779-7.
  • Scarpino, V., F. Vanara, A. Reyneri, and M. Blandino. 2020. Fate of moniliformin during different large-scale maize dry-milling processes. Lwt 123:109098. doi: 10.1016/j.lwt.2020.109098.
  • Schaarschmidt, S, and C. Fauhl-Hassek. 2018. The fate of mycotoxins during the processing of wheat for human consumption. Comprehensive Reviews in Food Science and Food Safety 17 (3):556–93. doi: 10.1111/1541-4337.12338.
  • Schaarschmidt, S, and C. Fauhl-Hassek. 2019. Mycotoxins during the processes of nixtamalization and tortilla production. Toxins 11 (4):227. doi: 10.3390/toxins11040227.
  • Schaarschmidt, S, and C. Fauhl-Hassek. 2021a. The fate of mycotoxins during secondary food processing of maize for human consumption. Comprehensive Reviews in Food Science and Food Safety 20 (1):91–148. doi: 10.1111/1541-4337.12657.
  • Schaarschmidt, S, and C. Fauhl-Hassek. 2021b. The fate of mycotoxins during the primary food processing of maize. Food Control 121:107651. doi: 10.1016/j.foodcont.2020.107651.
  • Schambri, P., S. Brunet, J. Bailly, D. Kleiber, and C. Levasseur-Garcia. 2021. Effect of popcorn (Zea mays var. everta) popping mode (microwave, hot oil, and hot air) on fumonisins and deoxynivalenol contamination levels. Toxins 13 (7):486. doi: 10.3390/toxins13070486.
  • Schwartz-Zimmermann, H. E., C. Hametner, V. Nagl, V. Slavik, W. Moll, and F. Berthiller. 2014. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: From identification to biomarker method development, validation and application. Analytical and Bioanalytical Chemistry 406 (30):7911–24. doi: 10.1007/s00216-014-8252-3.
  • Sharma, S. K., S. P. Sharma, D. Miller, J. M. A. Parel, and R. M. Leblanc. 2019. Interfacial behavior of fumonisin B1 toxin and its degradation on the membrane. Langmuir : The ACS Journal of Surfaces and Colloids 35 (7):2814–20. doi: 10.1021/acs.langmuir.8b03505.
  • Shi, H. T., S. L. Li, Y. Y. Bai, L. L. Prates, Y. G. Lei, and P. Q. Yu. 2018. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 91:202–15. doi: 10.1016/j.foodcont.2018.03.036.
  • Singh, M. P, and S. C. Kang. 2017. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepatotoxicity in vitro and in vivo. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 110:371–82. doi: 10.1016/j.fct.2017.10.054.
  • Smaoui, S., O. B. Braïek, and H. B. Hlima. 2020. Mycotoxins analysis in cereals and related foodstuffs by liquid chromatography-tandem mass spectrometry techniques. Journal of Food Quality 2020:1–23. doi: 10.1155/2020/8888117.
  • Sun, X. D., P. Su, and H. Shan. 2017. Mycotoxin contamination of maize in China. Comprehensive Reviews in Food Science and Food Safety 16 (5):835–49. doi: 10.1111/1541-4337.12286.
  • van den Brand, A. D., L. Bajard, I.-L. Steffensen, A. L. Brantsaeter, H. A. A. M. Dirven, J. Louisse, A. Peijnenburg, S. Ndaw, A. Mantovani, B. De Santis, et al. 2022. Providing biological plausibility for exposure-health relationships for the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) in humans using the AOP framework. Toxins 14 (4):279. doi: 10.3390/toxins14040279.
  • Vanara, F., V. Scarpino, and M. Blandino. 2018. Fumonisin distribution in maize dry-milling products and by-products: impact of two industrial degermination systems. Toxins 10 (9):357. doi: 10.3390/toxins10090357.
  • Vidal, A., V. Sanchis, A. J. Ramos, and S. Marín. 2016. The fate of deoxynivalenol through wheat processing to food products. Current Opinion in Food Science 11:34–9. doi: 10.1016/j.cofs.2016.09.001.
  • Voss, K. A, and R. T. Riley. 2013. Fumonisin toxicity and mechanism of action: overview and current perspectives. Food Safety 1 (1):2013006. doi: 10.14252/foodsafetyfscj.2013006.
  • Wan, L. Y., K. J. Allen, P. C. Turner, and H. El-Nezami. 2014. Modulation of mucin mRNA (MUC5AC and MUC5B) expression and protein production and secretion in Caco-2/HT29-MTX co-cultures following exposure to individual and combined Fusarium mycotoxins. Toxicological Sciences : An Official Journal of the Society of Toxicology 139 (1):83–98. doi: 10.1093/toxsci/kfu019.
  • Wang, L., W. Duan, S. Zhou, H. Qian, H. Zhang, and X. Qi. 2016. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chemistry 204:320–5. doi: 10.1016/j.foodchem.2016.02.053.
  • Wangia-Dixon, R. N, and K. Nishimwe. 2021. Molecular toxicology and carcinogenesis of fumonisins: A review. Journal of Environmental Science and Health. Part C, Toxicology and Carcinogenesis 39 (1):44–67. doi: 10.1080/26896583.2020.1867449.
  • Xie, L., Y. Wu, Y. Wang, Y. Jiang, B. Yang, X. Duan, and T. Li. 2021. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. Environmental Pollution 288:117793. doi: 10.1016/j.envpol.2021.117793.
  • Xu, H., L. Wang, J. Sun, L. Wang, H. Guo, Y. Ye, and X. Sun. 2022. Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition 62 (18):4951–69. doi: 10.1080/10408398.2021.1879730.
  • Xue, K. S., G. Qian, S. Lin, J. Su, L. Tang, W. C. A. Gelderblom, R. T. Riley, T. D. Phillips, and J. S. Wang. 2018. Modulation of pre-neoplastic biomarkers induced by sequential aflatoxin B1 and fumonisin B1 exposure in F344 rats treated with UPSN clay. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 114:316–24. doi: 10.1016/j.fct.2018.02.048.
  • Yang, C., G. Song, and W. Lim. 2020. Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials 389:122087. doi: 10.1016/j.jhazmat.2020.122087.
  • Yi, D. Q., D. Niroula, W. R. Gutekunst, J. E. Loper, Q. Yan, and V. Agarwal. 2022. A nonfunctional halogenase masquerades as an aromatizing dehydratase in biosynthesis of pyrrolic polyketides by Type I polyketide synthases. ACS Chemical Biology 17 (6):1351–6. doi: 10.1021/acschembio.2c002881351.
  • Yoder, A. D., C. R. Stark, J. M. DeRouchey, M. D. Tokach, C. B. Paulk, J. Gebhardt, J. C. Woodworth, C. K. Jones, and C. A. Zumbaugh. 2021. Effect of cleaning corn on mycotoxin concentration and nursery pig growth performance. Translational Animal Science 5 (3): txab134. doi: 10.1093/tas/txab134.
  • Yu, S., B. Jia, H. Lin, S. Zhang, D. Yu, N. Liu, and A. Wu. 2022. Effects of fumonisin B and hydrolyzed fumonisin B on growth and intestinal microbiota in broilers. Toxins 14 (3):163. doi: 10.3390/toxins14030163.
  • Yu, S., B. Jia, N. Liu, D. Yu, and A. Wu. 2020. Evaluation of the individual and combined toxicity of fumonisin mycotoxins in human gastric epithelial cells. International Journal of Molecular Sciences 21 (16):5917. doi: 10.3390/ijms21165917.
  • Yu, S., B. Jia, N. Liu, D. Yu, S. Zhang, and A. Wu. 2021. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. The Science of the Total Environment 787:147405. doi: 10.1016/j.scitotenv.2021.147405.
  • Zhang, X., Y. Ye, J. Sun, J. Wang, L. Tang, Y. Xu, J. Ji, and X. Sun. 2022. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by fumonisin B1. Environmental Pollution 304:119141. doi: 10.1016/j.envpol.2022.119141.
  • Zhu, F, and Y. Wang. 2022. Fumonisin B1 induces immunotoxicity and apoptosis of chicken splenic lymphocytes. Frontiers in Veterinary Science 9:898121. doi: 10.3389/fvets.2022.898121.
  • Zhu, H., Q. Yu, H. Ouyang, R. Zhang, J. Li, R. Xian, K. Wang, X. Li, and C. Cao. 2022. Antagonistic effect of selenium on fumonisin B1 promotes neutrophil extracellular traps formation in chicken neutrophils. Journal of Agricultural and Food Chemistry 70 (19):5911–20. doi: 10.1021/acs.jafc.2c01329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.