659
Views
2
CrossRef citations to date
0
Altmetric
Review

Malto-oligosaccharides as critical functional ingredient: a review of their properties, preparation, and versatile applications

, , ORCID Icon, , , , , & ORCID Icon show all

References

  • Abbasi, A., N. Hajipour, P. Hasannezhad, A. Baghbanzadeh, and L. Aghebati-Maleki. 2022. Potential in vivo delivery routes of postbiotics. Critical Reviews in Food Science and Nutrition 62 (12):3345–69. doi: 10.1080/10408398.2020.1865260.
  • Abdalla, M., B. Jiang, H. A. M. Hassanin, L. Zheng, and J. Chen. 2021. One-pot production of maltoheptaose (DP7) from starch by sequential addition of cyclodextrin glucotransferase and cyclomaltodextrinase. Enzyme and Microbial Technology 149:109847. doi: 10.1016/j.enzmictec.2021.109847.
  • Ali, M. B., S. Mhiri, M. Mezghani, and S. Bejar. 2001. Purification and sequence analysis of the atypical maltohexaose-forming α-amylase of the B. stearothermophilus US100. Enzyme and Microbial Technology 28 (6):537–42. doi: 10.1016/S0141-0229(01)00294-0.
  • Ali, R, and M. I. Shafiq. 2015. Sequence, structure, and binding analysis of cyclodextrinase (TK1770) from T. kodakarensis (KOD1) using an in silico approach. Archaea (Vancouver, B.C.) 2015:179196. doi: 10.1155/2015/179196.
  • Allala, F., K. Bouacem, N. Boucherba, Z. Azzouz, S. Mechri, M. Sahnoun, S. Benallaoua, H. Hacene, B. Jaouadi, and A. Bouanane-Darenfed. 2019. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline α-amylase from Tepidimonas fonticaldi strain HB23. International Journal of Biological Macromolecules 132:558–74. doi: 10.1016/j.ijbiomac.2019.03.201.
  • Aroob, I., N. Ahmad, and N. Rashid. 2021. Cyclodextrin-preferring glycoside hydrolases: Properties and applications. Amylase 5 (1):23–37. doi: 10.1515/amylase-2021-0003.
  • Bender, H. 1993. Purification and characterization of a cyclodextrin-degrading enzyme from Flavobacterium sp. Applied Microbiology and Biotechnology 39 (6):714–9. doi: 10.1007/BF00164455.
  • Bouchet-Spinelli, A., B. Reuillard, L. Coche-Guérente, S. Armand, P. Labbé, and S. Fort. 2013. Oligosaccharide biosensor for direct monitoring of enzymatic activities using QCM-D. Biosensors & Bioelectronics 49:290–6. doi: 10.1016/j.bios.2013.05.027.
  • Boyacι-Gündüz, C. P., S. A. Ibrahim, O. C. Wei, and C. M. Galanakis. 2021. Transformation of the food sector: Security and resilience during the COVID-19 pandemic. Foods 10 (3):497. doi: 10.3390/foods10030497.
  • Caldas, B. S., D. Lazarin-Bidóia, C. V. Nakamura, S. Halila, R. Borsali, and E. C. Muniz. 2020. Drug carrier systems made from self-assembled glyco-nanoparticles of maltoheptaose-b-polyisoprene enhanced the distribution and activity of curcumin against cancer cells. Journal of Molecular Liquids 309:113022. doi: 10.1016/j.molliq.2020.113022.
  • Chang, Q., B. Zheng, Y. Zhang, and H. Zeng. 2021. A comprehensive review of the factors influencing the formation of retrograded starch. International Journal of Biological Macromolecules 186:163–73. doi: 10.1016/j.ijbiomac.2021.07.050.
  • Chegeni, M., M. Amiri, B. L. Nichols, H. Y. Naim, and B. R. Hamaker. 2018. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 32 (7):3903–11. doi: 10.1096/fj.201701029R.
  • Chegeni, M, and B. Hamaker. 2015. Induction of differentiation of small intestinal enterocyte cells by maltooligosaccharides. FASEB Journal 29:596.514.
  • Chen, Y., S. Eder, S. Schubert, S. Gorgerat, E. Boschet, L. Baltensperger, E. Boschet, C. Städeli, S. Kuster, P. Fischer, et al. 2021. Influence of amylase addition on bread quality and bread staling. ACS Food Science & Technology 1 (6):1143–50. doi: 10.1021/acsfoodscitech.1c00158.
  • Cheng, Y., D. Li, X. Pang, and G. Liu. 2020. Maltohexaose-based probes for bacteria-specific imaging: Great sensitivity, specificity and translational potential. Chinese Chemical Letters 31 (5):1049–50. doi: 10.1016/j.cclet.2019.09.032.
  • Cheng, L., T. Luan, D. Liu, J. Cheng, H. Li, H. Wei, L. Zhang, J. Lan, Y. Liu, and G. Zhao. 2018. Diblock copolymer glyco-nanomicelles constructed by a maltoheptaose-based amphiphile for reduction- and pH-mediated intracellular drug delivery. Polymer Chemistry 9 (11):1337–47. doi: 10.1039/C7PY01601H.
  • Chen, D., C. Li, Z. Gu, Y. Hong, L. Cheng, and Z. Li. 2019. Effects of corn starch concentration on enzymatic preparation of linear malto-oligosaccharides. Food and Fermentation Industries 45 (13):15–22.
  • Chen, X., C. Li, Z. Li, X. Ban, Y. Hong, L. Cheng, and Z. Gu. 2021. Membrane fouling mechanism and regeneration in the preparation of linear malto-oligosaccharides by enzymatic membrane reactor. Food and Fermentation Industries 47 (12):36–42.
  • Cheong, K.-A., K.-A. Cheong, S.-Y. Tang, T.-K. Cheong, H. Cha, J.-W. Kim, and K.-H. Park. 2005. Thermostable and alkalophilic maltogenic amylase of Bacillus thermoalkalophilus ET2 in monomer-dimer equilibrium. Biocatalysis and Biotransformation 23 (2):79–87. doi: 10.1080/10242420500090094.
  • Chi, C., X. Li, S. Huang, L. Chen, Y. Zhang, L. Li, and S. Miao. 2021. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends in Food Science & Technology 109:154–68. doi: 10.1016/j.tifs.2021.01.024.
  • Cuong, N. P., W. H. Lee, IN. Oh, N. M. Thuy, D. G. Kim, J. T. Park, and K. H. Park. 2016. Continuous production of pure maltodextrin from cyclodextrin using immobilized Pyrococcus furiosus thermostable amylase. Process Biochemistry 51 (2):282–7. doi: 10.1016/j.procbio.2015.11.022.
  • Ebikade, E., J. Lym, G. Wittreich, B. Saha, and D. G. Vlachos. 2018. Kinetic studies of acid hydrolysis of food waste-derived saccharides. Industrial & Engineering Chemistry Research 57 (51):17365–74. doi: 10.1021/acs.iecr.8b04671.
  • Galanakis, C. M. 2022. Sustainable applications for the valorization of cereal processing by-Products. Foods 11 (2):241. doi: 10.3390/foods11020241.
  • Galanakis, C. M., T. M. S. Aldawoud, M. Rizou, N. J. Rowan, and S. A. Ibrahim. 2020. Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 9 (11):1701. doi: 10.3390/foods9111701.
  • Galanakis, C. M., M. Rizou, T. M. S. Aldawoud, I. Ucak, and N. J. Rowan. 2021. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science & Technology 110:193–200. doi: 10.1016/j.tifs.2021.02.002.
  • Gangoiti, J., T. Pijning, and L. Dijkhuizen. 2018. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnology Advances 36 (1):196–207. doi: 10.1016/j.biotechadv.2017.11.001.
  • Hao, J., Z. S. Lu, C. M. Li, and L. Q. Xu. 2019. A maltoheptaose-decorated BODIPY photosensitizer for photodynamic inactivation of Gram-positive bacteria. New Journal of Chemistry 43 (38):15057–65. doi: 10.1039/C9NJ02987G.
  • Hao, J., W. Y. Lv, C. M. Li, B. Wang, and L. Q. Xu. 2018. A tetraphenylethene and maltoheptaose conjugate with aggregation-induced emission (AIE) characteristic for temperature sensors. New Journal of Chemistry 42 (18):14709–12. doi: 10.1039/C8NJ03338B.
  • Hatada, Y., N. Masuda, M. Akita, M. Miyazaki, Y. Ohta, and K. Horikoshi. 2006. Oxidatively stable maltopentaose-producing α-amylase from a deep-sea Bacillus isolate, and mechanism of its oxidative stability validated by site-directed mutagenesis. Enzyme and Microbial Technology 39 (6):1333–40. doi: 10.1016/j.enzmictec.2006.03.022.
  • Hondoh, H., T. Kuriki, and Y. Matsuura. 2003. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. Journal of Molecular Biology 326 (1):177–88. doi: 10.1016/S0022-2836(02)01402-X.
  • Hosseini, S. F., L. Ramezanzade, and D. J. McClements. 2021. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science & Technology 109:322–39. doi: 10.1016/j.tifs.2021.01.045.
  • Hotchkiss, A. T., H. K. Chau, G. D. Strahan, A. Nuñez, S. Simon, A. K. White, S. Dieng, E. R. Heuberger, M. P. Yadav, and J. Hirsch. 2022. Structural characterization of red beet fiber and pectin. Food Hydrocolloids. 129:107549. doi: 10.1016/j.foodhyd.2022.107549.
  • Hu, Y., Y. Li, and F.-J. Xu. 2017. Versatile functionalization of polysaccharides via polymer grafts: From design to biomedical applications. Accounts of Chemical Research 50 (2):281–92. doi: 10.1021/acs.accounts.6b00477.
  • Huang, Z., H. Peng, Y. Sun, X. Zhu, H. Zhang, L. Jiang, Q. Zhao, and H. Xiong. 2019. Beneficial effects of novel hydrolysates produced by limited enzymatic broken rice on the gut microbiota and intestinal morphology in weaned piglets. Journal of Functional Foods 62:103560. doi: 10.1016/j.jff.2019.103560.
  • Hwang, S. K., K. Koper, H. Satoh, and T. W. Okita. 2016. Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. The Journal of Biological Chemistry 291 (38):19994–20007. doi: 10.1074/jbc.M116.735449.
  • Igarashi, K., K. Ara, K. Saeki, K. Ozaki, S. Kawai, and S. Ito. 1992. Nucleotide sequence of the gene that encodes a neopullulanase from an Alkalophilic Bacillus. Bioscience, Biotechnology, and Biochemistry 56 (3):514–6. doi: 10.1271/bbb.56.514.
  • Immonen, M., N. H. Maina, R. Coda, and K. Katina. 2021. The molecular state of gelatinized starch in surplus bread affects bread recycling potential. LWT 150:112071. doi: 10.1016/j.lwt.2021.112071.
  • Isono, T., K. Miyachi, Y. Satoh, R. Nakamura, Y. Zhang, I. Otsuka, K. Tajima, T. Kakuchi, R. Borsali, and T. Satoh. 2016. Self-assembly of maltoheptaose-block-polycaprolactone copolymers: Carbohydrate-decorated nanoparticles with tunable morphology and size in aqueous media. Macromolecules 49 (11):4178–94. doi: 10.1021/acs.macromol.6b00781.
  • Isono, T., I. Otsuka, S. Halila, R. Borsali, T. Kakuchi, and T. Satoh. 2015. Sub-20 nm microphase-separated structures in hybrid block copolymers consisting of polycaprolactone and maltoheptaose. Journal of Photopolymer Science and Technology 28 (5):635–42. (doi: 10.2494/photopolymer.28.635.
  • İspirli, H., M. O. Yüzer, C. Skory, I. J. Colquhoun, O. Sağdıç, and E. Dertli. 2019. Characterization of a glucansucrase from Lactobacillus reuteri E81 and production of malto-oligosaccharides. Biocatalysis and Biotransformation 37 (6):421–30. doi: 10.1080/10242422.2019.1593969.
  • Jaafar, N. R., R. Ahmad, N. N. Nawawi, N. H. A. Rahman, N. A. S. Annuar, R. A. Rahman, and R. M. Illias. 2021. Synergistic action of cyclodextrin glucanotransferase and maltogenic amylase improves the bioconversion of starch to malto-oligosaccharides. Process Biochemistry 103:9–17. doi: 10.1016/j.procbio.2021.02.002.
  • Jang, E. Y., K.-B. Hong, Y. B. Chang, J. Shin, E. Y. Jung, K. Jo, and H. J. Suh. 2020. In vitro prebiotic effects of malto-oligosaccharides containing water-soluble dietary fiber. Molecules 25 (21):5201. doi: 10.3390/molecules25215201.
  • Jarunee, K, and P. Piamsook. 2004. Expression of cyclodextrinase gene from Paenibacillus sp. A11 in Escherichia coli and characterization of the purified cyclodextrinase. Journal of Biochemistry and Molecular Biology 37 (4):408–15.
  • Ji, H., Y. Bai, X. Li, J. Wang, X. Xu, and Z. Jin. 2019. Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Carbohydrate Polymers 210:64–72. doi: 10.1016/j.carbpol.2019.01.041.
  • Ji, H., Y. Bai, X. Li, D. Zheng, Y. Shen, and Z. Jin. 2020. Structural and property characterization of corn starch modified by cyclodextrin glycosyltransferase and specific cyclodextrinase. Carbohydrate Polymers 237:116137. doi: 10.1016/j.carbpol.2020.116137.
  • Ji, H., X. Li, Y. Bai, Y. Shen, and Z. Jin. 2021. Synergetic modification of waxy maize starch by dual-enzyme to lower the in vitro digestibility through modulating molecular structure and malto-oligosaccharide content. International Journal of Biological Macromolecules 180:187–93. doi: 10.1016/j.ijbiomac.2021.02.219.
  • Ji, H., X. Li, T. Jiang, Q. Fang, Y. Bai, J. Long, L. Chen, and Z. Jin. 2022. A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20. Food Bioscience 45:101498. doi: 10.1016/j.fbio.2021.101498.
  • Jung, T. Y., D. Li, J. T. Park, S.-M. Yoon, P. L. Tran, B. H. Oh, S. Janecek, S. G. Park, E. J. Woo, and K. H. Park. 2012. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. The Journal of Biological Chemistry 287 (11):7979–89. doi: 10.1074/jbc.M111.304774.
  • Kadokawa, J-i., H. Chigita, and K. Yamamoto. 2020. Chemoenzymatic synthesis of carboxylate-terminated maltooligosaccharides and their use for cross-linking of chitin. International Journal of Biological Macromolecules 159:510–6. doi: 10.1016/j.ijbiomac.2020.05.082.
  • Kamasaka, H., K. Sugimoto, H. Takata, T. Nishimura, and T. Kuriki. 2002. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Applied and Environmental Microbiology 68 (4):1658–64. doi: 10.1128/AEM.68.4.1658-1664.2002.
  • Kamon, M., J. I. Sumitani, S. Tani, T. Kawaguchi, M. Kamon, J. Sumitani, S. Tani, and T. Kawaguchi. 2015. Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785. Applied Microbiology and Biotechnology 99 (11):4743–53. doi: 10.1007/s00253-015-6396-5.
  • Kim, T. J., J. H. Shin, J. H. Oh, M. J. Kim, S. B. Lee, S. Ryu, K. Kwon, J. W. Kim, E. H. Choi, J. F. Robyt, et al. 1998. Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterization of enzymatic properties. Archives of Biochemistry and Biophysics 353 (2):221–7. doi: 10.1006/abbi.1998.0639.
  • Ko-Woon, O., K. Myo-Jeong, K. Hae-Yeong, K. Byung-Yong, B. Moo-Yeol, A. Joong-Hyuck, and P. Cheon-Seok. 2005. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiology Letters 252 (1):175–81.
  • Lam, D. C., S. C. Chan, J. C. Mak, C. Freeman, M. S. Ip, and D. K. Shum. 2015. S-maltoheptaose targets syndecan-bound effectors to reduce smoking-related neutrophilic inflammation. Scientific Reports 5:12945. doi: 10.1038/srep12945.
  • Lapis, T. J., M. H. Penner, A. S. Balto, and J. Lim. 2017. Oral digestion and perception of starch: Effects of cooking, tasting time, and salivary α-amylase activity. Chemical Senses 42 (8):635–45. doi: 10.1093/chemse/bjx042.
  • Lapis, T. J., M. H. Penner, and J. Lim. 2016. Humans can taste glucose oligomers independent of the hT1R2/hT1R3 sweet taste receptor. Chemical Senses 41 (9):755–62. doi: 10.1093/chemse/bjw088.
  • Lee, Y. S., D. J. Park, and Y. L. Choi. 2015. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221. Applied Microbiology and Biotechnology 99 (9):3901–11. doi: 10.1007/s00253-014-6186-5.
  • Lee, B.-H., L. Yan, R. J. Phillips, B. L. Reuhs, K. Jones, D. R. Rose, B. L. Nichols, R. Quezada-Calvillo, S.-H. Yoo, and B. R. Hamaker. 2013. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. PloS One 8 (4):e59745. doi: 10.1371/journal.pone.0059745.
  • Liao, Y., L. J. Goujon, E. Reynaud, S. Halila, A. Gibaud, B. Wei, and R. Borsali. 2019. Self-assembly of copper-free maltoheptaose-block-polystyrene nanostructured thin films in real and reciprocal space. Carbohydrate Polymers 212:222–8. doi: 10.1016/j.carbpol.2019.02.014.
  • Li, J., X. Ban, Z. Gu, C. Li, Y. Hong, L. Cheng, and Z. Li. 2021. Preparation and antibacterial activity of a novel maltotetraose product. Process Biochemistry 108:8–17. doi: 10.1016/j.procbio.2021.05.018.
  • Li, J., D. Chen, Z. Gu, C. Li, and Z. Li. 2020. Effects of different separation techniques on the component content of linear maltooligosaccharides. Food and Machinery 7 (36):1–5.
  • Li, D., J.-T. Park, X. Li, S. Kim, S. Lee, J.-H. Shim, S.-H. Park, J. Cha, B.-H. Lee, J.-W. Kim, et al. 2010. Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 °C, from the hyperthermophilic archaeon Staphylothermus marinus. New Biotechnology 27 (4):300–7. doi: 10.1016/j.nbt.2010.04.001.
  • Li, X., Y. Wang, S. Mu, X. Ji, C. Zeng, D. Yang, L. Dai, C. Duan, and D. Li. 2022. Structure, retrogradation and digestibility of waxy corn starch modified by a GtfC enzyme from Geobacillus sp. 12AMOR1. Food Bioscience 46:101527. doi: 10.1016/j.fbio.2021.101527.
  • Li, Z., J. Wu, B. Zhang, F. Wang, X. Ye, Y. Huang, Q. Huang, and Z. Cui. 2015. AmyM, a novel maltohexaose-forming α-amylase from Corallococcus sp. strain EGB. Applied and Environmental Microbiology 81 (6):1977–87. doi: 10.1128/AEM.03934-14.
  • Mabrouk, S. B., E. B. Messaoud, D. Ayadi, S. Jemli, A. Roy, M. Mezghani, and S. Bejar. 2008. Cloning and sequencing of an original gene encoding a maltogenic amylase from Bacillus sp. US149 strain and characterization of the recombinant activity. Molecular Biotechnology 38 (3):211–9. doi: 10.1007/s12033-007-9017-4.
  • Maghsoudi, S., B. T. Shahraki, N. Rabiee, Y. Fatahi, M. Bagherzadeh, R. Dinarvand, S. Ahmadi, M. Rabiee, M. Tahriri, M. R. Hamblin, et al. 2022. The colorful world of carotenoids: A profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition 62 (13):3658–97. doi: 10.1080/10408398.2020.1867958.
  • Manas, N. H. A., S. Pachelles, N. M. Mahadi, and R. M. Illias. 2014. The characterisation of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved malto-oligosaccharide production by hydrolysis suppression. PloS One 9 (9):e106481. doi: 10.1371/journal.pone.0106481.
  • Min, B. C., S. Y. Kwon, Y. S. Jeon, B.-H. Lee, H. H. Baek, and K. H. Park. 2010. Maltoheptaose and maltooctaose as the superior aroma encapsulating agents. Food Science and Biotechnology 19 (6):1611–7. doi: 10.1007/s10068-010-0228-2.
  • Mingxue, B., B. Chaolumen, D. Asai, H. Takemura, K. Miyazaki, and T. Yoshida. 2020. Role of a long-chain alkyl group in sulfated alkyl oligosaccharides with high anti-HIV activity revealed by SPR and DLS. Carbohydrate Polymers 245:116518. doi: 10.1016/j.carbpol.2020.116518.
  • Morgan, F. J, and F. G. Priest. 1981. Characterization of a thermostable α‐amylase from Bacillus licheniformis NCIB 6346. Journal of Applied Bacteriology 50 (1):107–14. doi: 10.1111/j.1365-2672.1981.tb00875.x.
  • Nagarajan, D. R., G. Rajagopalan, and C. Krishnan. 2006. Purification and characterization of a maltooligosaccharide-forming α-amylase from a new Bacillus subtilis KCC103. Applied Microbiology and Biotechnology 73 (3):591–7. doi: 10.1007/s00253-006-0513-4.
  • Nakamura, Y., M. Ono, M. Suto, and H. Kawashima. 2020. Analysis of malto-oligosaccharides and related metabolites in rice endosperm during development. Planta 251 (6):110. doi: 10.1007/s00425-020-03401-6.
  • Nguyen, P. C., M. T. T. Nguyen, J. H. Kim, S. T. Hong, H. L. Kim, and J. T. Park. 2021. A novel maltoheptaose-based sugar ester having excellent emulsifying properties and optimization of its lipase-catalyzed synthesis. Food Chemistry 352:129358. doi: 10.1016/j.foodchem.2021.129358.
  • Nguyen, P. C., M. T. T. Nguyen, C. K. Lee, IN. Oh, J. H. Kim, S. T. Hong, and J. T. Park. 2019. Enzymatic synthesis and characterization of maltoheptaose-based sugar esters. Carbohydrate Polymers 218:126–35. doi: 10.1016/j.carbpol.2019.04.079.
  • Noronha, C. M., I. Otsuka, C. Bouilhac, C. Rochas, P. L. M. Barreto, and R. Borsali. 2017. Self-assembly of maltoheptaose-b-PMMA block copolymer systems: 10 nm resolution in thin film and bulk states. Carbohydrate Polymers 170:15–22. doi: 10.1016/j.carbpol.2017.04.029.
  • Otsuka, I., N. Nilsson, D. B. Suyatin, I. Maximov, and R. Borsali. 2017. Carbohydrate-based block copolymer systems: Directed self-assembly for nanolithography applications. Soft Matter 13 (40):7406–11. doi: 10.1039/c7sm01429e.
  • Pan, S., N. Ding, J. Ren, Z. Gu, C. Li, Y. Hong, L. Cheng, T. P. Holler, and Z. Li. 2017. Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Biotechnology Advances 35 (5):619–32. doi: 10.1016/j.biotechadv.2017.04.004.
  • Park, K. M., S. Y. Jun, K. H. Choi, K. H. Park, C. S. Park, and J. Cha. 2010. Characterization of an exo-acting intracellular α-amylase from the hyperthermophilic bacterium Thermotoga neapolitana. Applied Microbiology and Biotechnology 86 (2):555–66. doi: 10.1007/s00253-009-2284-1.
  • Pullicin, A. J., A. J. Ferreira, C. M. Beaudry, J. Lim, and M. H. Penner. 2018. Preparation and characterization of isolated low degree of polymerization food-grade maltooligosaccharides. Food Chemistry 246:115–20. doi: 10.1016/j.foodchem.2017.10.039.
  • Rebholz, G. F., K. Sebald, S. Dirndorfer, C. Dawid, T. Hofmann, and K. A. Scherf. 2021. Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. European Food Research and Technology 247 (3):695–706. doi: 10.1007/s00217-020-03657-y.
  • Ryu, J.-J., X. Li, E.-S. Lee, D. Li, and B.-H. Lee. 2022. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydrate Polymers 275:118685. doi: 10.1016/j.carbpol.2021.118685.
  • Shin, S. Y., Y. J. Jung, Y. Yong, H. J. Cho, Y. Lim, and Y. H. Lee. 2016. Inhibition of PDGF-induced migration and TNF-α-induced ICAM-1 expression by maltotetraose from bamboo stem extract (BSE) in mouse vascular smooth muscle cells. Molecular Nutrition & Food Research 60 (9):2086–97. doi: 10.1002/mnfr.201500601.
  • Thakur, M., A. K. Rai, B. B. Mishra, and S. P. Singh. 2021. Novel insight into valorization of potato peel biomass into type III resistant starch and maltooligosaccharide molecules. Environmental Technology & Innovation 24:101827. doi: 10.1016/j.eti.2021.101827.
  • Tian, Y., W. Xu, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2018. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnology Advances 36 (5):1540–52. doi: 10.1016/j.biotechadv.2018.06.010.
  • Unban, K., A. Kanpiengjai, S. Lumyong, T. H. Nguyen, D. Haltrich, and C. Khanongnuch. 2018. Molecular structure of cyclomaltodextrinase derived from amylolytic lactic acid bacterium Enterococcus faecium K-1 and properties of recombinant enzymes expressed in Escherichia coli and Lactobacillus plantarum. International Journal of Biological Macromolecules 107 (Pt A):898–905. doi: 10.1016/j.ijbiomac.2017.09.060.
  • Wang, Y., S. Pan, Z. Jiang, S. Liu, Y. Feng, Z. Gu, C. Li, and Z. Li. 2019. A novel maltooligosaccharide-forming amylase from Bacillus stearothermophilus. Food Bioscience 30:100415. doi: 10.1016/j.fbio.2019.100415.
  • Wang, L., Q. Wu, K. Zhang, S. Chen, Z. Yan, and J. Wu. 2020. Cyclodextrinase from Thermococcus sp expressed in Bacillus subtilis and its application in the preparation of maltoheptaose. Microbial Cell Factories 19 (1):157. doi: 10.1186/s12934-020-01416-y.
  • Wang, L., J. Xu, X. Fan, Q. Wang, P. Wang, Y. Zhang, L. Cui, J. Yuan, and Y. Yu. 2016. Effect of disaccharides of different composition and linkage on corn and waxy corn starch retrogradation. Food Hydrocolloids. 61:531–6. doi: 10.1016/j.foodhyd.2016.06.010.
  • Wu, C., X. Zhou, Y. Tian, X. Xu, and Z. Jin. 2017. Hydrolytic mechanism of α -maltotriohydrolase on waxy maize starch and retrogradation properties of the hydrolysates. Food Hydrocolloids. 66:136–43. doi: 10.1016/j.foodhyd.2016.12.016.
  • Xue, N., B. Svensson, and Y. Bai. 2022. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1→ 6 linkages-A review. Carbohydrate Polymers 275:118705. doi: 10.1016/j.carbpol.2021.118705.
  • Yang, S. J., H. S. Lee, J. W. Kim, M. H. Lee, J. H. Auh, B. H. Lee, and K. H. Park. 2006. Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Carbohydrate Research 341 (3):420–4. doi: 10.1016/j.carres.2005.11.031.
  • Yang, S. J., H. S. Lee, C. S. Park, Y. R. Kim, T. W. Moon, and K. H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an α-amylase and a cyclodextrin-hydrolyzing enzyme. Applied and Environmental Microbiology 70 (10):5988–95. doi: 10.1128/AEM.70.10.5988-5995.2004.
  • Yang, C. H, and W. H. Liu. 2007. Cloning and characterization of a maltotriose-producing α-amylase gene from Thermobifida fusca. Journal of Industrial Microbiology & Biotechnology 34 (4):325–30. doi: 10.1007/s10295-006-0200-6.
  • Yang, X., X. Shi, R. D’arcy, N. Tirelli, and G. Zhai. 2018. Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: Molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release: Official Journal of the Controlled Release Society 272:114–44. doi: 10.1016/j.jconrel.2017.12.033.
  • Zare, M., Z. N. Roshan, E. Assadpour, and S. M. Jafari. 2021. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition 61 (3):522–34. doi: 10.1080/10408398.2020.1738999.
  • Zepon, K. M., Otsuka, I. Bouilhac, C. c Muniz, E. C. Soldi, V, and Borsali, R. 2015. Glyco-nanoparticles made from self-assembly of maltoheptaose-block-poly(methyl methacrylate): Micelle, reverse micelle, and encapsulation. Biomacromolecules 16 (7):2012–24. doi: 10.1021/acs.biomac.5b00443.
  • Zepon, K. M., Otsuka, I. Bouilhac, C. c Muniz, E. C. Soldi, V, and Borsali, R. 2016. Self-assembly of oligosaccharide-b-PMMA block copolymer systems: Glyco-nanoparticles and their degradation under UV exposure. Langmuir: The ACS Journal of Surfaces and Colloids 32 (18):4538–45. doi: 10.1021/acs.langmuir.6b00212.
  • Zhang, Z., T. Jin, X. Xie, X. Ban, C. Li, Y. Hong, L. Cheng, Z. Gu, and Z. Li. 2020. Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity. International Journal of Biological Macromolecules 154:1303–13. doi: 10.1016/j.ijbiomac.2019.11.006.
  • Zhang, L., Z. Li, Y. Qiao, Y. Zhang, W. Zheng, Y. Zhao, Y. Huang, and Z. Cui. 2019. Improvement of the quality and shelf life of wheat bread by a maltohexaose producing α-amylase. Journal of Cereal Science 87:165–71. doi: 10.1016/j.jcs.2019.03.018.
  • Zhang, L., L. Zhong, J. Wang, Y. Zhao, Y. Zhang, Y. Zheng, W. Dong, X. Ye, Y. Huang, Z. Li, et al. 2021. Efficient hydrolysis of raw starch by a maltohexaose-forming α-amylase from Corallococcus sp. EGB. LWT 152:112361. doi: 10.1016/j.lwt.2021.112361.
  • Zheng, L., B. Jiang, J. Chen, T. Zhang, X. Gu, and Y. Pan. 2021. Efficient biotransformation and synergetic mechanism of dual-enzyme cascade reaction in nonreducing maltoheptaose synthesis. Food Bioscience 41:101066. doi: 10.1016/j.fbio.2021.101066.
  • Zhou, D. N., B. Zhang, B. Chen, and H. Q. Chen. 2017. Effects of oligosaccharides on pasting, thermal and rheological properties of sweet potato starch. Food Chemistry 230:516–23. doi: 10.1016/j.foodchem.2017.03.088.
  • Zlitni, A., G. Gowrishankar, I. Steinberg, T. Haywood, and S. S. Gambhir. 2020. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nature Communications 11 (1):1250. doi: 10.1038/s41467-020-14985-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.