355
Views
1
CrossRef citations to date
0
Altmetric
Review

Influence of ozone treatment on functional and rheological characteristics of food products: an updated review

, , , , , , , & ORCID Icon show all

References

  • Aday, M. S., and C. Caner. 2014. Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life. LWT - Food Science and Technology 57 (1):344–51. doi: 10.1016/j.lwt.2014.01.006.
  • Aday, M. S., M. B. Büyükcan, R. Temizkan, and C. Caner. 2014. Role of ozone concentrations and exposure times in extending shelf life of strawberry. Ozone: Science & Engineering 36 (1):43–56. doi: 10.1080/01919512.2013.833851.
  • Alexandre, A. P., N. Castanha, M. A. Calori-Domingues, and P. E. Augusto. 2017. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 52 (7):516–24. doi: 10.1080/03601234.2017.1303325.
  • Alexandre, E. M., T. R. Brandão, and C. L. Silva. 2012. Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of Food Engineering 108 (3):417–26. doi: 10.1016/j.jfoodeng.2011.09.002.
  • Alharaty, G., and H. S. Ramaswamy. 2020. The effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. Journal of Composites Science 4 (3):123. doi: 10.3390/jcs4030123.
  • Ali, A., M. K. Ong, and C. F. Forney. 2014. Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chemistry 142:19–26. doi: 10.1016/j.foodchem.2013.07.039.
  • Alkuraieef, A. N., and A. AlJahani. 2022. Effect of extraction process and storage time on the quality attributes of pomegranate juice of two local pomegranate varieties. Italian Journal of Food Science 34 (1):24–32. doi: 10.15586/ijfs.v34i1.2109.
  • Alothman, M., B. Kaur, A. Fazilah, R. Bhat, and A. A. Karim. 2010. Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies 11 (4):666–71. doi: 10.1016/j.ifset.2010.08.008.
  • Al-sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, R. M. Yusof, and F. A. Hassan. 2011. Functional properties and characterization of dietary fiber from Mangifera pajang Kort. fruit pulp. Journal of Agricultural and Food Chemistry 59 (8):3980–5. doi: 10.1021/jf103956g.
  • Arachchilage, D. V. G., D. J. Young, and W. S. Choo. 2022. Extraction, purification, food applications, and recent advances for enhancing the bioavailability of 6-gingerol from ginger: A review. Quality Assurance and Safety of Crops & Foods 14 (4):67–83.
  • Arivalagan, M., G. Karunakaran, T. K. Roy, M. Dinsha, B. C. Sindhu, V. M. Shilpashree, G. C. Satisha, and K. S. Shivashankara. 2021. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry 353:129426.
  • Aslam, R., M. S. Alam, and R. Pandiselvam. 2022. Aqueous ozone sanitization system for fresh produce: Design, development, and optimization of process parameters for minimally processed onion. Ozone: Science & Engineering 44 (1):3–16. doi: 10.1080/01919512.2021.1984206.
  • Aslam, R., M. S. Alam, and P. A. Saeed. 2020. Sanitization potential of ozone and its role in postharvest quality management of fruits and vegetables. Food Engineering Reviews 12 (1):48–67. doi: 10.1007/s12393-019-09204-0.
  • Aune, D., E. Giovannucci, P. Boffetta, L. T. Fadnes, N. Keum, T. Norat, D. C. Greenwood, E. Riboli, L. J. Vatten, and S. Tonstad. 2017. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology 46 (3):1029–56.
  • Awuchi, C. G., V. S. Igwe, and C. K. Echeta. 2019. The functional properties of foods and flours. International Journal of Advanced Academic Research 5 (11):2488–9849.
  • Baggio, A., M. Marino, N. Innocente, M. Celotto, and M. Maifreni. 2020. Antimicrobial effect of oxidative technologies in food processing: An overview. European Food Research and Technology 246 (4):669–92. doi: 10.1007/s00217-020-03447-6.
  • Balali, G. I., D. D. Yar, V. G. Afua Dela, and P. Adjei-Kusi. 2020. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. International Journal of Microbiology 2020:1–13. doi: 10.1155/2020/3029295.
  • Bellincontro, A., C. Catelli, R. Cotarella, and F. Mencarelli. 2017. Postharvest ozone fumigation of Petit verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Australian Journal of Grape and Wine Research 23 (2):200–6. doi: 10.1111/ajgw.12257.
  • Bolel, H., M. A. Koyuncu, and D. Erbaş. 2019. The combined effect of controlled atmosphere with ozone and prochloraz treatment on storage life and quality of Pomegranate Cv. Hicaznar. AkademikZiraatDergisi 8 (2):195–202.
  • Bortolin, R. C., F. F. Caregnato, A. M. Divan Junior, A. Zanotto-Filho, K. S. Moresco, A. d O. Rios, A. d O. Salvi, C. F. Ortmann, P. de Carvalho, F. H. Reginatto, et al. 2016. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicology and Environmental Safety 129:16–24.
  • Botondi, R., F. De Sanctis, N. Moscatelli, A. M. Vettraino, C. Catelli, and F. Mencarelli. 2015. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chemistry 188:641–7. doi: 10.1016/j.foodchem.2015.05.029.
  • Brodowska, A. J., A. Nowak, and K. Śmigielski. 2018. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition 58 (13):2176–201. doi: 10.1080/10408398.2017.1308313.
  • Brodowska, A. J., K. Śmigielski, A. Nowak, A. Czyżowska, and A. Otlewska. 2015. The impact of ozone treatment in dynamic bed parameters on changes in biologically active substances of juniper berries. PLoS One 10 (12):e0144855. doi: 10.1371/journal.pone.0144855.
  • Cahyana, Y., R. Titipanillah, E. Mardawati, E. Sukarminah, T. Rialita, R. Andoyo, M. Djali, I.-I. Hanidah, I. S. Setiasih, and K. Handarini. 2018. Non-starch contents affect the susceptibility of banana starch and flour to ozonation. Journal of Food Science and Technology 55 (5):1726–33.
  • Castanha, N., D. C. Lima, M. D. Matta Junior, O. H. Campanella, and P. E. D. Augusto. 2019a. Combining ozone and ultrasound technologies to modify maize starch mechanical. International Journal of Biological Macromolecules 139:63–74. doi: 10.1016/j.ijbiomac.2019.07.161.
  • Castanha, N., D. Nascimento e Santos, R. L. Cunha, and P. E. D. Augusto. 2019b. Properties and possible applications of ozone-modified potato starch. Food Research International 116:1192–201. doi: 10.1016/j.foodres.2018.09.064.
  • Carletti, L., R. Botondi, R. Moscetti, E. Stella, D. Monarca, M. Cecchini, and R. Massantini. 2013. Use of ozone in sanitation and storage of fresh fruits and vegetables. Journal of Food, Agriculture and Environment 11 (3-4):585–9.
  • Changchai, S., J. Varith, and S. Jaturonglumlert. 2014. Effect of high concentration-ozone fumigation on chemical and physical changes in fresh chilli. Measurement 8 (889):1–7.
  • Chen, C., H. Zhang, C. Dong, H. Ji, X. Zhang, L. Li, Z. Ban, N. Zhang, and W. Xue. 2019. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Advances 9 (44):25429–38. doi: 10.1039/c9ra03988k.
  • Chen, J., Y. Hu, J. Wang, H. Hu, and H. Cui. 2016. Combined effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh-cut green peppers. Journal of Food Processing and Preservation 40 (5):1145–50. doi: 10.1111/jfpp.12695.
  • de Almeida Monaco, K., S. M. Costa, I. O. Minatel, C. R. Correa, F. A. Calero, F. Vianello, and G. P. P. Lima. 2016. Influence of ozonated water sanitation on postharvest quality of conventionally and organically cultivated mangoes after postharvest storage. Postharvest Biology and Technology 120:69–75. doi: 10.1016/j.postharvbio.2016.05.003.
  • Deng, L. Z., A. S. Mujumdar, Z. Pan, S. K. Vidyarthi, J. Xu, M. Zielinska, and H. W. Xiao. 2020. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Critical Reviews in Food Science and Nutrition 60 (15):2481–508.
  • Diao, E., X. Shen, Z. Zhang, N. Ji, W. Ma, and H. Dong. 2014. Identification of the oxidative products and ozonolysis pathways of polyphenols in peanut skins. Journal of Food and Nutrition Research 2 (3):101–8. doi: 10.12691/jfnr-2-3-2.
  • Dong, S., Y. Ma, Y. Li, and Q. Xiang. 2021. Effect of dielectric barrier discharge (DBD) plasma on the activity and structural changes of horseradish peroxidase. Quality Assurance and Safety of Crops & Foods 13 (3):92–101. doi: 10.15586/qas.v13i3.934.
  • Forney, C. F., J. Song, P. D. Hildebrand, L. Fan, and K. B. Mcrae. 2007. Interactive effects of ozone and 1-methylcyclopropene on decay resistance and quality of stored carrots. Postharvest Biology and Technology 45 (3):341–8. doi: 10.1016/j.postharvbio.2007.03.006.
  • Gao, C.-C., Q. Lin, C.-H. Dong, H.-P. Ji, J.-Z. Yu, C.-K. Chen, Z.-Q. Zhu, Z. Ban, N. Zhang, and Y.-Y. Bao. 2020. Effects of ozone concentration on the postharvest quality and microbial diversity of muscat hamburg grapes. RSC Advances 10 (15):9037–45.
  • Gavahian, M., T. Meng-Jen, and A. M. Khaneghah. 2020. Emerging techniques in food science: The resistance of chlorpyrifos pesticide pollution against arc and dielectric barrier discharge plasma. Quality Assurance and Safety of Crops & Foods 12 (SP1):9–17. doi: 10.15586/qas.v12iSP1.807.
  • Glowacz, M., R. Colgan, and D. Rees. 2015. Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini. Postharvest Biology and Technology 99:1–8. doi: 10.1016/j.postharvbio.2014.06.015.
  • Goffi, V., L. Zampella, L. Forniti, M. Petriccione, and R. Botondi. 2019. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis ‘soreli’ during cold storage. Journal of the Science of Food and Agriculture 99 (13):5654–61.
  • Gonzalles, G., N. Geng, S. Luo, C. Zhang, C. Wu, D. Li, Y. Li, and J. Song. 2021. Effects of different water activities on the stability of carotenoids in puff-dried yellow peach powder during storage. Quality Assurance and Safety of Crops & Foods 13 (SP2):1–8. doi: 10.15586/qas.v13SP2.944.
  • Greene, A. K., Z. B. Güzel-Seydim, and A. C. Seydim. 2012. Chemical and physical properties of ozone. In Ozone in food processing, 19–32. Hoboken, NJ: Wiley.
  • Guerrero, S., M. Tognon, and S. M. Alzamora. 2005. Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control. 16 (2):131–9. doi: 10.1016/j.foodcont.2004.01.003.
  • Horvitz, S., and M. J. Cantalejo. 2014. Application of ozone for the postharvest treatment of fruits and vegetables application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition 54 (3):312–39.
  • Hu, J., X. Li, Y. Jing, X. Hu, Z. Ma, R. Liu, G. Song, and D. Zhang. 2020. Effect of gaseous ozone treatment on the microbial and physicochemical properties of buckwheat-based composite flour and shelf-life extension of fresh noodles. Journal of Cereal Science 95:103055. doi: 10.1016/j.jcs.2020.103055.
  • Jaramillo-Sánchez, G. M., A. B. Garcia Loredo, P. L. Gómez, and S. M. Alzamora. 2018. Ozone processing of peach juice: Impact on physicochemical parameters, color, and viscosity. Ozone: Science & Engineering 40 (4):305–12. doi: 10.1080/01919512.2017.1417111.
  • Jia, X., J. Li, M. Du, Z. Zhao, J. Song, W. Yang, Y. Zheng, L. Chen, and X. Li. 2020. Combination of low fluctuation of temperature with TiO2 photocatalytic/ozone for the quality maintenance of postharvest peach. Foods 9 (2):234–5. doi: 10.3390/foods9020234.
  • Kaavya, R., R. Pandiselvam, S. Abdullah, N. U. Sruthi, Y. Jayanath, C. Ashokkumar, A. Chandra Khanashyam, A. Kothakota, and S. V. Ramesh. 2021. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends in Food Science & Technology 112:400–18. doi: 10.1016/j.tifs.2021.04.011.
  • Karaca, H., and Y. S. Velioglu. 2014. Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley. Postharvest Biology and Technology 88:46–53. doi: 10.1016/j.postharvbio.2013.09.003.
  • Keutgen, A. J., and E. Pawelzik. 2008. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biology and Technology 9 (1):10–8.
  • Khaneghah, A. M. 2021. New emerging techniques in combination with conventional methods in improving the quality, safety, and nutrient values of food products: Current state, further challenges, and the future. Quality Assurance and Safety of Crops & Foods 13 (SP1):12–3.
  • Khanashyam, A. C., M. A. Shanker, A. Kothakota, N. K. Mahanti, and R. Pandiselvam. 2022. Ozone applications in milk and meat industry. Ozone: Science & Engineering 44 (1):50–65. doi: 10.1080/01919512.2021.1947776.
  • Lee, M. J., M. J. Kim, H. S. Kwak, S. Lim, and S. S. Kim. 2017. Effects of ozone treatment on physicochemical properties of Korean wheat flour. Food Science and Biotechnology 26 (2):435–40.
  • Lima, D. C., N. Castanha, B. C. Maniglia, M. D. Matta Junior, C. I. A. La Fuente, and P. E. D. Augusto. 2021. Ozone processing of cassava starch. Ozone: Science & Engineering 43 (1):60–77. doi: 10.1080/01919512.2020.1756218.
  • Liu, Y., M. Xu, H. Wu, L. Jing, B. Gong, M. Gou, K. Zhao, and W. Li. 2018. The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science and Technology 55 (12):5142–52.
  • Li, H., Z. Xiong, D. Gui, and X. Li. 2019. Effect of aqueous ozone on quality and shelf life of Chinese winter jujube. Journal of Food Processing and Preservation 43 (12):e14244. doi: 10.1111/jfpp.14244.
  • Lima, D. C., J. Villar, N. Castanha, B. C. Maniglia, M. D. Matta Junior, and P. E. Duarte Augusto. 2020. Ozone modification of arracacha starch: Effect on structure and functional properties. Food Hydrocolloids. 108 (106066):106066. doi: 10.1016/j.foodhyd.2020.106066.
  • Lindroth, R. L. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36 (1):2–21. doi: 10.1007/s10886-009-9731-4.
  • López-Gálvez, F., A. Allende, P. Truchado, A. Martínez-Sánchez, J. A. Tudela, M. V. Selma, and M. I. Gil. 2010. Suitability of aqueous chlorine dioxide versus sodium hypochlorite as an effective sanitizer for preserving quality of fresh-cut lettuce while avoiding by-product formation. Postharvest Biology and Technology 55 (1):53–60. doi: 10.1016/j.postharvbio.2009.08.001.
  • Lv, Y., I. I. Tahir, and M. E. Olsson. 2019. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. ScientiaHorticulturae 253:49–60.
  • Micek, A.,J. Godos,D. Del Rio,F. Galvano, andG. Grosso. 2021. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose–Response Meta‐Analysis. Molecular Nutrition & Food Research 65 (6):2001019 doi:10.1002/mnfr.202001019.
  • Miller, F. A., C. L. Silva, and T. R. Brandão. 2013. review on ozone-based treatments for fruit and vegetable preservation. Food Engineering Reviews 5 (2):77–106. doi: 10.1007/s12393-013-9064-5.
  • Minas, I. S., G. S. Karaoglanidis, G. A. Manganaris, and M. Vasilakakis. 2010. Postharvest biology and technology effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by Botrytis cinerea. Postharvest Biology and Technology 58 (3):203–10. doi: 10.1016/j.postharvbio.2010.07.002.
  • Minas, I. S., G. Tanou, M. Belghazi, D. Job, G. A. Manganaris, A. Molassiotis, and M. Vasilakakis. 2012. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. Journal of Experimental Botany 63 (7):2449–64.
  • Mukherjee, P. K. 2019. Phyto-pharmaceuticals, nutraceuticals and their evaluation. In Quality control and evaluation of herbal drugs, 707–22. New York, NY: Elsevier.
  • Mustapha, A. T., C. Zhou, H. Wahia, R. Amanor-Atiemoh, P. Otu, A. Qudus, O. Abiola Fakayode, and H. Ma. 2020. Sonozonation: Enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato. Ultrasonics Sonochemistry 64:105059. doi: 10.1016/j.ultsonch.2020.105059.
  • Nayak, S. L., S. Sethi, R. R. Sharma, R. M. Sharma, S. Singh, and D. Singh. 2020. Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria × ananassa Duch.). Journal of Food Science and Technology 57 (1):319–26. doi: 10.1007/s13197-019-04063-3.
  • Ngnitcho, P. F. K., I. Khan, C. N. Tango, M. S. Hussain, and D. H. Oh. 2017. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innovative Food Science and Emerging Technologies 43:68–76. doi: 10.1016/j.ifset.2017.07.033.
  • Niveditha, A., R. Pandiselvam, V. A. Prasath, S. K. Singh, K. Gul, and A. Kothakota. 2021. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods—A review. Food Control. 130:108338. doi: 10.1016/j.foodcont.2021.108338.
  • Obadi, M., K. X. Zhu, W. Peng, A. F. Ammar, and H. M. Zhou. 2016. Effect of ozone gas processing on physical and chemical properties of wheat proteins. Tropical Journal of Pharmaceutical Research 15 (10):2147–54. doi: 10.4314/tjpr.v15i10.13.
  • Obadi, M., K. X. Zhu, W. Peng, A. A. Sulieman, K. Mohammed, and H. M. Zhou. 2018. Effects of ozone treatment on the physicochemical and functional properties of whole-grain flour. Journal of Cereal Science 81:127–32. doi: 10.1016/j.jcs.2018.04.008.
  • Ocheme, O. B., O. E. Adedeji, C. E. Chinma, C. M. Yakubu, and U. H. Ajibo. 2018. Proximate composition, functional, and pasting properties of wheat and groundnut protein concentrate flour blends. Food Science & Nutrition 6 (5):1173–8. doi: 10.1002/fsn3.670.
  • Oladebeye, A. O., A. A. Oshodi, I. A. Amoo, and A. Abd Karim. 2013. Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chemistry 141 (2):1416–23.
  • Ölmez, H., and M. Y. Akbas. 2009. Optimization of ozone treatment of fresh-cut green leaf lettuce. Journal of Food Engineering 90 (4):487–94. doi: 10.1016/j.jfoodeng.2008.07.026.
  • Orhan, N., I. E. Orhan, and F. Ergun. 2011. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food and Chemical Toxicology 49 (9):2305–12.
  • O’Donnell, C., B. K. Tiwari, P. J. Cullen, and R. G. Rice, eds. 2012. Ozone in food processing. Hoboken, NJ: John Wiley & Sons.
  • Painter, J. A., R. M. Hoekstra, T. Ayers, R. V. Tauxe, C. R. Braden, F. J. Angulo, and P. M. Griffin. 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, united states, 1998-2008. Emerging Infectious Diseases 19 (3):407–15. doi: 10.3201/eid1903.111866.
  • Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5:e47. doi: 10.1017/jns.2016.41.
  • Pandiselvam, R., S. Sunoj, M. R. Manikantan, A. Kothakota, and K. B. Hebbar. 2017. Application and kinetics of ozone in food preservation. Ozone: Science & Engineering 39 (2):115–26. doi: 10.1080/01919512.2016.1268947.
  • Pandiselvam, R., M. R. Manikantan, V. Divya, C. Ashokkumar, R. Kaavya, A. Kothakota, and S. V. Ramesh. 2019a. Ozone: An advanced oxidation technology for starch modification. Ozone: Science & Engineering 41 (6):491–507. doi: 10.1080/01919512.2019.1577128.
  • Pandiselvam, R., S. Subhashini, E. P. Banuu Priya, A. Kothakota, S. V. Ramesh, and S. Shahir. 2019b. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone: Science & Engineering 41 (1):17–34. doi: 10.1080/01919512.2018.1490636.
  • Pandiselvam, R., M. R. Manikantan, S. Sunoj, S. Sreejith, and S. Beegum. 2019c. Modeling of coconut milk residue incorporated rice‐corn extrudates properties using multiple linear regression and artificial neural network. Journal of Food Process Engineering 42 (2):e12981. doi: 10.1111/jfpe.12981.
  • Pandiselvam, R., R. Kaavya, Y. Jayanath, K. Veenuttranon, P. Lueprasitsakul, V. Divya, A. Kothakota, and S. V. Ramesh. 2020a. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods—A review. Trends in Food Science & Technology 97:38–54. doi: 10.1016/j.tifs.2019.12.017.
  • Pandiselvam, R., V. P. Mayookha, A. Kothakota, L. Sharmila, S. V. Ramesh, C. P. Bharathi, K. Gomathy, and V. Srikanth. 2020b. Impact of ozone treatment on seed germination—A systematic review. Ozone: Science & Engineering 42 (4):331–46. doi: 10.1080/01919512.2019.1673697.
  • Pandiselvam, R., and A. Kothakota. 2022. Recent applications of ozone in agri-food industry. Ozone: Science & Engineering 44 (1):1–2. doi: 10.1080/01919512.2022.2018897.
  • Pandiselvam, R., A. Singh, S. Agriopoulou, M. Sachadyn-Król, R. Aslam, C. M. Gonçalves Lima, A. C. Khanashyam, A. Kothakota, O. Atakan, M. Kumar, et al. 2022. A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science & Technology 127:74–86. doi: 10.1016/j.tifs.2022.06.008.
  • Perry, J. J., and A. E. Yousef. 2011. Decontamination of raw foods using ozone-based sanitization techniques. Annual Review of Food Science and Technology 2:281–98.
  • Piechowiak, T., and M. Balawejder. 2019. Impact of ozonation process on the antioxidant status in blackcurrant Ribesnigrum L. fruit. Journal of Berry Research 9 (4):575–85. doi: 10.3233/JBR-190397.
  • Prabha, V.,R. D. Barma,R. Singh, andA. Madan. 2015. Ozone technology in food processing: A review. Trends in Biosciences
  • Premjit, Y., N. U. Sruthi, R. Pandiselvam, and A. Kothakota. 2022. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Comprehensive Reviews in Food Science and Food Safety 21 (2):1054–85. doi: 10.1111/1541-4337.12886.
  • Raghunathan, R., R. Pandiselvam, A. Kothakota, and A. M. Khaneghah. 2021. The application of emerging non-thermal technologies for the modification of cereal starches. LWT - Food Science and Technology 138:110795. doi: 10.1016/j.lwt.2020.110795.
  • Rafiq, S. I., K. Muzaffar, S. M. Rafiq, D. C. Saxena, and B. N. Dar. 2021. Underutilized horse chestnut (Aesculus indica) flour and its utilization for the development of gluten-free pasta. Italian Journal of Food Science 33 (SP1):137–49. doi: 10.15586/ijfs.v33iSP1.2088.
  • Rajashri, K., B. S. Roopa, N. P. S. Pradeep, and N. K. Rastogi. 2020. Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. Journal of Food Processing and Preservation 44 (3):e14363. doi: 10.1111/jfpp.14363.
  • Reddy, V. S., D. V. Sudhakar Rao, R. R. Sharma, P. Preethi, and R. Pandiselvam. 2022. Role of ozone in post-harvest disinfection and processing of horticultural crops: A review. Ozone: Science & Engineering 44 (1):127–46. doi: 10.1080/01919512.2021.1994367.
  • Rodoni, L.,N. Casadei,A. Concellón,A. R. Chaves Alicia, andA. R. Vicente. 2010. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. Journal of Agricultural and Food Chemistry 58 (1):594–9.
  • Rodoni, L., N. Casadei, A. Concellön, A. R. Chaves Alicia, and A. R. Vicente. 2010. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. Journal of Agricultural and Food Chemistry 58 (1):594–599. doi: 10.1021/jf9029145.
  • Sachadyn-Król, M., M. Materska, M. Chilczuk, M. Karaś, A. Jakubczyk, I. Perucka, and I. & Jackowska. 2016. Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chemistry 211:59–67. doi: 10.1016/j.foodchem.2016.05.023.
  • Selma, M. V., A. M. Ibanez, M. Cantwell, and T. Suslow. 2008. Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiology 25 (4):558–65. doi: 10.1016/j.fm.2008.02.006.
  • Shah, N., A. Sulaiman, N. S. M. Sidek, and N. A. M. Supian. 2019. Quality assessment of ozone-treated citrus fruit juices. International Food Research Journal 26 (5):1405–15.
  • Shezi, S., L. S. Magwaza, A. Mditshwa, and S. Z. Tesfay. 2020. Changes in biochemistry of fresh produce in response to ozone postharvest treatment. ScientiaHorticulturae 269:109397.
  • Sivaranjani, S., V. A. Prasath, R. Pandiselvam, A. Kothakota, and A. M. Khaneghah. 2021. Recent advances in applications of ozone in the cereal industry. LWT - Food Science and Technology 146:111412. doi: 10.1016/j.lwt.2021.111412.
  • Song, J., L. Fan, P. D. Hildebrand, and C. F. Forney. 2000. biological effects of corona discharge on onions in a commercial storage facility. HortTechnology 10 (3):608–12. doi: 10.21273/HORTTECH.10.3.608.
  • Souza, L. P. d., L. R. D. Faroni, F. F. Heleno, P. R. Cecon, T. D. C. Gonçalves, G. J. d Silva, and L. H. F. Prates. 2018. Effects of ozone treatment on postharvest carrot quality. LWT - Food Science and Technology 90:53–60. doi: 10.1016/j.lwt.2017.11.057.
  • Sroy, S., J. F. Fundo, F. A. Miller, T. R. Brandão, and C. L. Silva. 2019. Impact of ozone processing on microbiological, physicochemical, and bioactive characteristics of refrigerated stored cantaloupe melon juice. Journal of Food Processing and Preservation 43 (12):1–9. doi: 10.1111/jfpp.14276.
  • Sruthi, N. U.,K. Josna,R. Pandiselvam,A. Kothakota,M. Gavahian, andA. Mousavi Khaneghah. 2022. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry 368:130809 doi:10.1016/j.foodchem.2021.130809. PMC: 34450498.
  • Sujayasree, O. J., A. K. Chaitanya, R. Bhoite, R. Pandiselvam, A. Kothakota, M. Gavahian, and A. Mousavi Khaneghah. 2022. Ozone: An advanced oxidation technology to enhance sustainable food consumption through mycotoxin degradation. Ozone: Science & Engineering 44 (1):17–37. doi: 10.1080/01919512.2021.1948388.
  • Sumardiono, S., B. Jos, I. Pudjihastuti, A. M. Yafiz, M. Rachmasari, and H. Cahyono. 2021. Physicochemical properties of sago ozone oxidation: The effect of reaction time, acidity, and concentration of starch. Foods 10 (6):1309. doi: 10.3390/foods10061309.
  • Tazeen, H. U. M. E. E. R. A., N. Vardharaju, and V. Chandrasekar. 2016. Influence of ozonation on the some physicochemical properties of coconut water. Advances in Life Sciences 5 (10):4153–9.
  • Tewari, S., R. Sehrawat, P. K. Nema, and B. P. Kaur. 2017. Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. Journal of Food Biochemistry 41 (1):e12319. doi: 10.1111/jfbc.12319.
  • Tiwari, B. K., K. Muthukumarappan, C. P. O’Donnell, M. Chenchaiah, and P. J. Cullen. 2008. Effect of ozonation on the rheological and colour characteristics of hydrocolloid dispersions. Food Research International 41 (10):1035–43. doi: 10.1016/j.foodres.2008.07.011.
  • Tiwari, B. K., K. Muthukumarappan, C. P. O’Donnell, and P. J. Cullen. 2008. Kinetics of freshly squeezed orange juice quality changes during ozone processing. Journal of Agricultural and Food Chemistry 56 (15):6416–22. doi: 10.1021/jf800515e.
  • Tongjai, P., S. Hongsibsong, and R. Sapbamrer. 2021. The efficiency of various household processing for removing chlorpyrifos and cypermethrin in Chinese kale and Pakchoi. Quality Assurance and Safety of Crops & Foods 13 (3):45–52. doi: 10.15586/qas.v13i3.913.
  • Torres, B., B. K. Tiwari, A. Patras, H. H. Wijngaard, N. Brunton, P. J. Cullen, and C. P. O’Donnell. 2011. Effect of ozone processing on the colour, rheological properties and phenolic content of apple juice. Food Chemistry 124 (3):721–6. doi: 10.1016/j.foodchem.2010.06.050.
  • Tzortzakis, N., T. Taybi, R. Roberts, I. Singleton, A. Borland, and J. Barnes. 2011. Low-level atmospheric ozone exposure induces protection against Botrytis cinerea with down-regulation of ethylene-, jasmonate- and pathogenesis-related genes in tomato fruit. Postharvest Biology and Technology 61 (2–3):152–9. doi: 10.1016/j.postharvbio.2011.02.013.
  • Uzun, H.,E. Ibanoglu,H. Catal, andS. Ibanoglu. 2012. Effects of ozone on functional properties of proteins. Food Chemistry 134 (2):647–54.
  • Wang, L., X. Fan, K. Sokorai, and J. Sites. 2019. Quality deterioration of grape tomato fruit during storage after treatments with gaseous ozone at conditions that significantly reduced populations of Salmonella on stem scar and smooth surface. Food Control. 103:9–20. doi: 10.1016/j.foodcont.2019.03.026.
  • Wei, K., H. Zhou, T. Zhou, and J. Gong. 2007. Comparison of ­aqueous ozone and chlorine as sanitizers in the food processing industry: Impact on fresh agricultural produce quality. Ozone: Science & Engineering 29 (2):113–20. doi: 10.1080/01919510601186592.
  • Yadav, A., N. Kumar, A. Upadhyay, A. Singh, R. K. Anurag, and R. Pandiselvam. 2022. Effect of mango kernel seed starch-based active edible coating functionalized with lemongrass essential oil on the shelf-life of guava fruit. Quality Assurance and Safety of Crops & Foods 14 (3):103–15. doi: 10.15586/qas.v14i3.1094.
  • Yeoh, W. K., A. Ali, and C. F. Forney. 2014. Effects of ozone on major antioxidants and microbial populations of fresh-cut papaya. Postharvest Biology and Technology 89:56–8. doi: 10.1016/j.postharvbio.2013.11.006.
  • Zardzewiały, M., N. Matlok, T. Piechowiak, J. Gorzelany, and M. Balawejder. 2020. Ozone treatment is a process of quality improvement method of Rhubarb (Rheum rhaponticumL.) petioles during storage. Applied Sciences 10 (22):8282–15. doi: 10.3390/app10228282.
  • Zhang, H., X. Zhang, C. Dong, N. Zhang, Z. Ban, L. Li, J. Yu, Y. Hu, and C. Chen. 2020. Effects of ozone treatment on SOD activity and genes in postharvest cantaloupe. RSC Advances 10 (30):17452–60.
  • Zhang, L., Z. Lu, Z. Yu, and X. Gao. 2005. Preservation of fresh-cut celery by treatment of ozonated water. Food Control. 16 (3):279–83. doi: 10.1016/j.foodcont.2004.03.007.
  • Zhang, D., B. Jiang, Y. Luo, X. Fu, H. Kong, y Shan, and S. Ding. 2022. Effects of ultrasonic and ozone pretreatment on the structural and functional properties of soluble dietary fiber from lemon peel. Journal of Food Processing Engineering 45 (1):e13916.
  • Zhao, Z., G. Xu, Z. Han, Q. Li, Y. Chen, and D. Li. 2013. Effect of ozone on the antioxidant capacity of “qiushui” pear (Pyruspyrifolia nakaicv. Qiushui) during postharvest storage. Journal of Food Quality 36 (3):190–7. doi: 10.1111/jfq.12021.
  • Zhu, X., J. Jiang, C. Yin, G. Li, Y. Jiang, and Y. Shan. 2019. Effect of ozone treatment on flavonoid accumulation of Satsuma mandarin (Citrus unshiu Marc.) during ambient storage. Biomolecules 9 (12):821. doi: 10.3390/biom9120821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.