498
Views
1
CrossRef citations to date
0
Altmetric
Review

Impact of internal structural design on quality and nutritional properties of 3D printed food products during post-printing: a critical review

, , &

References

  • An, Y.-J., C.-F. Guo, M. Zhang, and Z.-P. Zhong. 2019. Investigationon characteristics of 3D printing using Nostoc sphaeroides biomass. Journal of the Science of Food and Agriculture 99 (2):639–46. doi: 10.1002/jsfa.9226.
  • Çakmak, H, and C. E. Gümüş. 2020. 3D food printing with improved functional properties: A Review. International Journal of 3D Printing Technologies and Digital Industry 4 (2):178–92. doi: 10.46519/ij3dptdi.746389.
  • Chen, Y., M. Zhang, and B. Bhandari. 2021. 3D printing of steak-like foods based on textured soybean protein. Foods 10 (9):2011. doi: 10.3390/foods10092011.
  • Chen, F., M. Zhang, Z. Liu, and B. Bhandari. 2021. 4D deformation based on double-layer structure of the pumpkin/paper. Food Structure 27:100168. doi: 10.1016/j.foostr.2020.100168.
  • Chen, C., M. Zhang, C. Guo, and H. Chen. 2021. 4D printing of lotus root powder gel: Color change induced by microwave. Innovative Food Science & Emerging Technologies 68:102605. doi: 10.1016/j.ifset.2021.102605.
  • Chen, J., M. Zhang, A. S. Mujumdar, and P. Phuhongsunge. 2022. 4D printing induced by microwave and ultrasound for mushroom mixtures: Efficient conversion of ergosterol into vitamin D2. Food Chemistry 387:132840. doi:10.1016/j.foodchem.2022.132840.
  • Dankar, I., A. Haddarah, F. E. L. Omar, F. Sepulcre, and M. Pujolà. 2018. 3D printing technology: The new era for food customization and elaboration. Trends in Food Science and Technology 75:231–42. doi: 10.1016/j.tifs.2018.03.018.
  • Derossi, A., R. Caporizzi, M. Paolillo, and C. Severini. 2021. Programmable texture properties of cereal-based snack mediated by 3D printing technology. Journal of Food Engineering 289:110160. doi: 10.1016/j.jfoodeng.2020.110160.
  • Derossi, A., M. Paolillo, P. Verboven, B. Nicolai, and C. Severini. 2022. Extending 3D food printing application: Apple tissue microstructure as a digital model to create innovative cereal-based snacks. Journal of Food Engineering 316:110845. doi: 10.1016/j.jfoodeng.2021.110845.
  • Dick, A., B. Bhandari, X. Dong, and S. Prakash. 2020. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids 107:105940. doi: 10.1016/j.foodhyd.2020.105940.
  • Dick, A., Y. Gao, B. Bhandari, and S. Prakash. 2021. Influence of drying method and 3D design on the 4D morphing of beef products. Applied Food Research 1 (2):100017. doi: 10.1016/j.afres.2021.100017.
  • Fernandez-Vicente, M., W. Calle, S. Ferrandiz, and A. Conejero. 2016. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Printing and Additive Manufacturing 3 (3):183–92. doi: http://dx.doi.org/10.1089/3dp.2015.0036.
  • Feng, C., Q. Wang, H. Li, Q. Zhou, and W. Meng. 2018. Effects of pea protein on the properties of potato starch-based 3D printing materials. International Journal of Food Engineering 14 (3):20170297. doi:10.1515/ijfe-2017-0297.
  • Feng, C., M. Zhang, B. Bhandari, and Y. Ye. 2020. Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT 125:109265. doi: 10.1016/j.lwt.2020.109265.
  • Feng, C., M. Zhang, Z. Liu, A. Mujumdar, Y. Wang, and L. Chang. 2020. Effect of drying method on post-processing stability and quality of 3D printed rose-yam paste. Drying Technology 39 (9):1196–204. doi: 10.1080/07373937.2020.1851708.
  • Gholamipour-Shirazi, A., M. A. Kamlow, I. T. Norton, and T. Mills. 2020. How to formulate for structure and texture via medium of additive manufacturing-a review. Foods 9 (4):497. doi: 10.3390/foods9040497JFOODENG.2017.04.017.
  • Godoi, F. C., S. P. Bhesh, and R. Bhandari. 2016. 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
  • Gong, P., L. Hao, Y. Li, Z. Li, and W. Xiong. 2021. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural. Carbon 185:272–81. 10.1016/j.carbon.2021.09.014.
  • Guénard-Lampron, V., M. Masson, O. Leichtnam, and D. Blumenthal. 2021. Impact of 3D printing and post-processing parameters on shape, texture and microstructure of carrot appetizer cake. Innovative Food Science & Emerging Technologies 72:102738. doi: 10.1016/j.ifset.2021.102738.
  • Guo, C., M. Zhang, and S. Devahastin. 2021. Color/aroma changes of 3D-printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocolloids 112:106358. doi: 10.1016/j.foodhyd.2020.106358.
  • He, C., M. Zhang, and C. Guo. 2020. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innovative Food Science & Emerging Technologies 59:102250. doi: 10.1016/j.ifset.2019.102250.
  • Hertafeld, E., C. Zhang, Z. Jin, A. Jakub, K. Russell, Y. Lakehal, K. Andreyeva, S. N. Bangalore, J. Mezquita, and J. Blutinger. 2019. Multi-material three-dimensional food printing with simultaneous infrared cooking. 3D Print. Additive Manufacturing 6:13–9. doi:http://doi.org/10.1089/3dp.2018.0042.
  • Huang, M., M. Zhang, and B. Bhandari. 2019. Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food and Bioprocess Technology 12 (7):1185–96. doi: http://doi.org/10.1007/s11947-019-02287-x.
  • Hussain, S., S. Malakar, and V. K. Arora. 2022. Extrusion-based 3D food printing technological approaches, material characteristics, printing stability, and post-processing. Food Engineering Reviews 14 (1):100–19. doi: 10.1007/s12393-021-09293-w.
  • Jiang, W., H. Mei, and S. Zhao. 2021. Applications of 3D bio-printing in tissue engineering and biomedicine. Journal of Biomedical Nanotechnology 17 (6):989–1006. doi:10.1166/jbn.2021.3078.
  • Keerthana, K., T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan. 2020. Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering. 287:110116. doi: 10.1016/j.jfoodeng.2020.110116.
  • Kewuyemi, Y. O., H. Kesa, and O. A. Adebo. 2022. Trends in functional food development with three-dimensional (3D) food printing technology: Prospects for value-added traditionally processed food products. Critical Reviews in Food Science and Nutrition 62 (28):7866–904. doi: 10.1080/10408398.2021.1920569.
  • Kim, H. W., I. J. Lee, S. M. Park, J. H. Lee, M.-H. Nguyen, and H. J. Park. 2019. Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. LWT 101:69–75. doi: 10.1016/j.lwt.2018.11.019.
  • Kong, D., M. Zhang, P. Phuhongsung, and A. S. Mujumdar. 2022. 3D food printing: Controlling characteristics and improving technological effect during food processing. Food Research International (Ottawa, Ont.) 156:111120– doi: 10.1016/j.foodres.2022.111120.
  • Krishnaraj, P., T. Anukiruthika, P. Choudhary, J. A. Moses, and C. Anandharamakrishnan. 2019. 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour. Food and Bioprocess Technology 12 (10):1776–86. doi: 10.1007/s11947-019-02336-5.
  • Lee, J. H., D. J. Won, H. W. Kim, and H. J. Park. 2019. Effect of particle size on 3D printing performance of the food-ink system with cellular food materials. Journal of Food Engineering 256:1–8. doi: 10.1016/j.jfoodeng.2019.03.014.
  • Lille, M., A. Nurmela, E. Nordlund, S. Metsa-Kortelainen, and N. Sozer. 2018. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering 220:20–7. doi: 10.1016/j.jfoodeng.2017.04.034.
  • Lille, M., A. Kortekangas, R.-L. Heinio, and N. Sozer. 2020. Structural and textural characteristics of 3D-printed protein- and dietary fibre-rich snacks made of milk powder and wholegrain rye flour. Foods 9 (11):1527. doi: 10.3390/foods9111527.
  • Lipton, J., D. Arnold, F. Nigl, N. Lopez, D. Cohen, N. Norén, and H. Lipson. 2010. Multi-material food printing with complex internal structure suitable for conventional post-printing. Solid Freeform Fabrication Symposium, USA, Austin TX, August 9–11: 809–15. doi: http://sffsymposium.engr.utexas.edu/Manuscripts/2010/2010-68-Lipton.pdf.
  • Lipton, J. I., M. Cutler, F. Nigl, D. Cohen, and H. Lipson. 2015. Additive manufacturing for the food industry. Trends in Food Science & Technology 43 (1):114–23. doi: 10.1016/j.tifs.2015.02.004.
  • Liu, Z., M. Zhang, B. Bhandari, and Y. Wang. 2017. 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology 69:83–94. doi: 10.1016/j.tifis.2017.08.018.
  • Liu, Z., M. Zhang, B. Bhandari, and C. Yang. 2018. Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering 220:76–82. doi: 10.1016/j.jfoodeng.2017.04.017.
  • Liu, Z., M. Zhang, and C. Yang. 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT 96:589–96. doi: 10.1016/j.lwt.2018.06.014.
  • Liu, Z., B. Bhandari, S. Prakash, and M. Zhang. 2018. Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Research International 111:534–43. doi: 10.1016/j.foodres.2018.05.075.
  • Liu, Z., M. Zhang, and B. Bhandari. 2018. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules 117:1179–87. doi:10.1016/j.ijbiomac.2018.06.048.
  • Liu, Y., X. Liang, A. Saeed, W. Lan, and W. Qin. 2019. Properties of 3D printed dough and optimization of printing parameters. Innovative Food Science & Emerging Technologies 54:9–18. doi: 10.1016/j.ifset.2019.03.008.
  • Liu, Z., A. Dick, S. Prakash, B. Bhandari, and M. Zhang. 2020. Texture modification of 3D printed air-fried potato snack by varying its internal structure with the potential to reduce oil content. Food and Bioprocess Technology 13 (3):564–76. doi: 10.1007/s11947-020-02408-x.
  • Liu, Z, and M. Zhang. 2021. Texture properties of microwave post-processed 3D printed potato snack with different ingredients and infill structure. Future Foods 3:100017. doi: 10.1016/j.fufo.2021.100017.
  • Mantihal, S., S. Prakash, and B. Bhandari. 2019. Textural modification of 3D printed dark chocolate by varying internal infill Structure. Food Research International (Ottawa, Ont.) 121:648–57. doi:10.1016/j.foodres.2018.12.034.
  • McLouth, T. D., J. V. Severino, P. M. Adams, D. N. Patel, and R. J. Zaldivar. 2017. The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Additive Manufacturing 18:103–9. doi: 10.1016/j.addma.2017.09.003.
  • Oyinloye, T. M, and W. B. Yoon. 2021. Stability of 3D printing using a mixture of pea protein and alginate: Precision and application of additive layer manufacturing simulation approach for stress distribution. Journal of Food Engineering 288:110127. doi: 10.1016/j.jfoodeng.2020.110127.
  • Park, S. M., H. W. Kim, and H. J. Park. 2020. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. Journal of Food Engineering 271:109781. doi: 10.1016/j.jfoodeng.2019.109781.
  • Pereira, T., S. Barroso, and M. M. Gil. 2021. Food texture design by 3D printing: A review. Foods 10 (2):320. doi: 10.3390/foods10020320.
  • Pérez, B., H. Nykvist, A. F. Brogger, M. B. Larsen, and M. F. Falkeborg. 2019. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry 287:249–57. doi:10.1016/j.foodchem.2019.02.090.
  • Phuhongsung, P., M. Zhang, and B. Bhandari. 2020. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Research International 137:109605. doi: 10.1016/j.foodres.2020.109605.
  • Phuhongsung, P., Y. Lin, X. Wen, D. Iwai, K. Sato, M. Obrist, and S. Mueller. 2020. Demonstration of FoodFab: Creating food perception illusions using food 3D printing. Proceedings of the Conference on Human Factors in Computing Systems CHI’20, 2530. doi: 10.1145/3334480.3383144.
  • Pinna, C., L. Ramundo, F. G. Sisca, C. M. Angioletti, M. Taisch, and S. Terzi. 2016. Additive Manufacturing applications within Food industry: An actual overview and future opportunities XXI Summer School Francesco Turco. AIDI-Italian Association of Industrial Operations Professors, 18–24. Industrial Systems Engineering. (https://www.researchgate.net/publication/311085764_Additive_Manufacturing_applications_within_Food_industry_an_actual_overview_and_future_opportunities.
  • Pulatsu, E., J.-W. Su, J. Lin, and M. Lin. 2020. Factors affecting 3D printing and post-pro-cessing capacity of cookie dough. Innovative Food Science & Emerging Technologies 61 (5):102316. doi: 10.1016/j.ifset.2020.102316.
  • Pulatsu, E., J.-W. Su, S. M. Kenderes, J. Lin, B. Vardhanabhuti, and M. Lin. 2022. Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes. Journal of Food Engineering 319:110911. doi: 10.1016/j.jfoodeng.2021.110911.
  • RepRap. 2016. RepRapWiki: G-code. Retrieved 2 March, 2016, from http://reprap.org/wiki/G-code.
  • Severini, C., A. Derossi, and D. Azzollini. 2016. Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innovative Food Science & Emerging Technologies 38:281–91. doi: 10.1016/j.ifset.2016.10.001.
  • Severini, C., D. Azzollini, M. Albenzio, and A. Derossi. 2018. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International (Ottawa, Ont.) 106:666–76. doi:10.1016/J.FOODRES.2018.01.034.
  • Severini, C., A. Derossi, I. Ricci, R. Caporizzi, and A. Fiore. 2018. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering 220:89–100. doi: 10.1016/j.jfoodeng.2017.08.025.
  • Solla, M., C. Casqueiro, and I. Cuvillo. 2020. Approach to generate 3D-printed terrain models using free software and open data sources: Application to military planning. Computer Applications in Engineering Education 28 (3):477–89. doi: 10.1002/cae.22211.
  • Sommer, A. C, and E. Z. Blumenthal. 2019. Implementations of 3D printing in ophthalmology. Graefes Archive for. Graefe’s Archive for Clinical and Experimental Ophthalmology 257 (9):1815–22. doi: 10.1007/s00417-019-04312-3.
  • Sood, A. K., R. Ohdar, and S. Mahapatra. 2010. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design 31 (1):287–95. doi: 10.1016/j.matdes.2009.06.016.
  • Stevenson, M., J. Long, P. Guerrero, K. d l Caba, A. Seyfoddin, and A. Etxabide. 2019. Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocolloids 96:65–71. doi: 10.1016/j.foodhyd.2019.05.018.
  • Sun, J., Z. Peng, L. Yan, J. Fuh, and G. S. Hong. 2015. 3D food printing—An innovative way of mass customization in food fabrication. International Journal of Bioprinting 1:27–8. doi: 10.18063/IJB.2015.01.006.
  • Sun, J., Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu. 2015. A Review on 3D printing for customized food fabrication. Procedia Manufacturing 1:308–19. doi: 10.1016/j.promfg.2015.09.057.
  • Sun, J., W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong. 2015. An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology 8 (8):1605–15. doi: 10.1007/s11947-015-1528-6.
  • Sun, J., W. Zhou, L. Yan, D. Huang, and L-y Lin. 2018. Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering 220:1–11. doi: http://dx.doi.org/10.1016/j.jfoodeng.2017.02.028.
  • Suntornnond, R., J. An, and C. Chua. 2017. Roles of support materials in 3D bioprinting–present and future. International Journal of Bioprinting 3 (1):006–4. doi: 10.18063/IJB.2017.01.006.
  • Teng, X., M. Zhang, and A. S. Mujumdar. 2021. 4D printing: Recent advantages and proposals in the food sector. Trends in Food Science and Technology 110:349–63. doi: 10.1016/j.tifs.2021.01.076.
  • Thompson, M. K., G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, et al. 2016. Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals 65 (2):737–60. doi: 10.1016/j.cirp.2016.05.004.
  • Tomašević, I., P. Putnik, F. Valjak, B. Pavlić, B. Šojić, A. Bebek Markovinović, and D. Bursać Kovačević. 2021. 3D printing as novel tool for fruit-based functional food production. Current Opinion in Food Science 41:138–45. doi: 10.1016/j.cofs.2021.03.015.
  • Theagarajan, R., S. Nimbkar, J. A. Moses, and C. Anandharamakrishnan. 2021. Effect of post-processing treatments on the quality of three-dimensional printed rice starch constructs. Journal of Food Process Engineering 44 (9):e13772. doi: 10.1111/jfpe.13772.
  • Tronvoll, S. A., T. Welo, and C. W. Elverum. 2018. The effects of voids on structural properties of fused deposition modelled parts: A probabilistic approach. The International Journal of Advanced Manufacturing Technology 97 (9-12):3607–18. doi: 10.1007/s00170-018-2148-x.
  • Varghese, C., J. Wolodko, L. Chen, M. Doschak, P. P. Srivastav, and M. S. Roopesh. 2020. Influence of selected product and process parameters on microstructure, rheological, and textural properties of 3D printed cookies. Foods 9 (7):907. doi: 10.3390/foods9070907.
  • Varvara, R. A., K. Szabo, and D. C. Vodnar. 2021. 3D food printing: Principles of obtaining digitally-designed nourishment. Nutrients 13 (10):3617. doi: 10.3390/nu13103617.
  • Vancauwenberghe, V., P. Verboven, J. Lammertyn, and B. Nicolai. 2018. Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant. Journal of Food Engineering 225:42–52. doi: 10.1016/j.jfoodeng.2018.01.008.
  • Vithani, K., A. Goyanes, V. Jannin, A. W. Basit, S. Gaisford, and B. J. Boyd. 2018. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharmaceutical Research 36 (1):4. doi:10.1007/s11095-018-2531-1.
  • Wang, L., M. Zhang, B. Bhandari, and C. Yang. 2018. Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering 220:101–8. doi: 10.1016/j.jfoodeng.2017.02.029.
  • Xiao, J., M. Zhan, and R. Cong. 2019. Study on 3D printing molding of chocolate containing Functional factors of Traditional Chinese medicine. Science and Technology of Food Industry 5:729–82.
  • Yang, F., M. Zhang, and B. R. Bhandari. 2017. Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition 57 (14):3145–53. doi:10.1080/10408398.2015.1094732.
  • Yang, F., M. Zhang, S. Prakash, and Y. Liu. 2018. Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science & Emerging Technologies 49:202–10. doi: 10.1016/j.ifset.2018.01.001.
  • Yang, F., M. Zhang, B. Bhandari, and Y. Liu. 2018. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT 87:67–76. doi: 10.1016/j.lwt.2017.08.054.
  • Yang, F., M. Zhang, Z. Fang, and Y. Liu. 2019. Impact of processing parameters and post-treatment on the shape accuracy of 3D-printed baking dough. International Journal of Food Science & Technology 54 (1):68–74. doi: http://doi.org/10.1111/ijfs.13904.
  • Yoha, K. S., T. Anukiruthika, W. Anila, J. A. Moses, and C. Anandharamakrishnan. 2021. 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT 146:111461. doi: 10.1016/j.lwt.2021.111461.
  • Zhang, L., Y. Lou, and M. A. I. Schutyser. 2018. 3D printing of cereal-based food structures containing probiotics. Food Structure 18:14–22. doi: 10.1016/j.foostr.2018.10.002.
  • Zhang, J. Y., J. K. Pandya, D. J. McClements, J. Lu, and A. J. Kinchla. 2021. Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition 2:1–18. doi: 10.1080/10408398.2021.1878103.
  • Zoran, A, and M. Coelho. 2011. Cornucopia: The concept of digital gastronomy. Leonardo 44 (5):425–31. doi: 10.1162/LEON_a_00243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.