548
Views
3
CrossRef citations to date
0
Altmetric
Review

Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: developments and challenges

, , , , , , , , ORCID Icon, , , , & show all

References

  • Afifah, D. N., Rustanti, N. Anjani, G. Syah, D. Yanti, and Suhartono, M. T. 2017. Proteomics study of extracellular fibrinolytic proteases from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from Indonesian fermented food. IOP Conference Series: Earth and Environmental Science 55:012025. doi: 10.1088/1755-1315/55/1/012025.
  • Afifah, D. N., M. Sulchan, D. Syah, M. T. Suhartono, and J. H. Kim. 2014. Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus 2.g isolated from Gembus, an Indonesian fermented food. Preventive Nutrition and Food Science 19 (3):213–9. doi: 10.3746/pnf.2014.19.3.213.
  • Ahn, Y.-J., M. H. Kim, J. Kim, G. An, D. Kim, Y.-R. Kwon, A. M. Lee, Y.-B. Kim, and H.-H. Kim. 2015. Abstract W P262: Neuroprotective effect of Nattokinase mediated by inhibition of platelet aggregation and thrombosis in photothrombotic stroke. Stroke 46 (suppl_1):P262. doi: 10.1161/str.46.suppl_1.wp262.
  • Amin, K., X. Zeng, Y. You, Y. Hu, H. Sun, B. Lyu, C. Piao, and H. Yu. 2020. Enhanced thermostability and antioxidant activity of Nattokinase by biogenic enrichment of selenium. Journal of Food Measurement and Characterization 14 (4):2145–54. doi: 10.1007/s11694-020-00461-w.
  • Ashipala, O. K., and Q. He. 2008. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresource Technology 99 (10):4112–9. doi: 10.1016/j.biortech.2007.09.029.
  • Barzkar, N., S. T. Jahromi, and F. Vianello. 2022. Marine microbial fibrinolytic enzymes: An overview of source, production, biochemical properties and thrombolytic activity. Marine Drugs 20 (1):46. doi: 10.3390/md20010046.
  • Bora, B., A. D. Biswas, A. B. Gurung, A. Bhattacharjee, V. S. K. Mattaparthi, and A. K. Mukherjee, 2017. An in silico approach to understand the structure-function properties of a serine protease (Bacifrinase) from Bacillus cereus and experimental evidence to support the interaction of Bacifrinase with fibrinogen and thrombin. Journal of Biomolecular Structure & Dynamics 35 (3):622–44. doi: 10.1080/07391102.2016.1158665.
  • Buyel, J. F., R. M. Twyman, and R. Fischer. 2015. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnology Advances 33 (6 Pt 1):902–13. doi: 10.1016/j.biotechadv.2015.04.010.
  • Cai, D. B., C. J. Zhu, and S. W. Chen. 2017. Microbial production of nattokinase: Current progress, challenge and prospect. World Journal of Microbiology & Biotechnology 33 (5):84. doi: 10.1007/s11274-017-2253-2.
  • Cai, Y. J., W. Bao, S. J. Jiang, M. Z. Weng, Y. Jia, Y. Yin, … G. L. Zou. 2011. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiology Letters 325 (2):155–61. doi: 10.1111/j.1574-6968.2011.02423.x.
  • Chang, C.-T., P.-M. Wang, Y.-F. Hung, and Y.-C. Chung. 2012. Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chemistry 133 (4):1611–7. doi: 10.1016/j.foodchem.2012.02.061.
  • Chang, S. P., D. H. Kim, W. Y. Lee, D. O. Kang, J. J. Song, and N. S. Choi. 2013. Identification of fibrinogen-induced nattokinase WRL101 from Bacillus subtilis WRL101 isolated from Doenjang. African Journal of Microbiology Research 7 (19):1983–92. doi: 10.5897/AJMR12.041.
  • Chen, H., E. M. McGowan, N. Ren, S. Lal, N. Nassif, F. Shad-Kaneez, X. Qu, and Y. Lin. 2018. Nattokinase: A promising alternative in prevention and treatment of cardiovascular diseases. Biomarker Insights 13:1177271918785130. doi: 10.1177/1177271918785130.
  • Choi, N.-S., K.-T. Chang, P. Jae Maeng, and S.-H. Kim. 2004. Cloning, expression, and fibrin (ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiology Letters 236 (2):325–31. doi: 10.1016/j.femsle.2004.06.006.
  • Choi, N.-S., D.-M. Chung, C.-S. Park, K.-H. Ahn, J. S. Kim, J. J. Song, S.-H. Kim, B.-D. Yoon, and M.-S. Kim. 2010. Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnology and Bioprocess Engineering 15 (3):446–52. doi: 10.1007/s12257-009-0191-z.
  • Choi, N. S., J. J. Song, D. M. Chung, Y. J. Kim, P. J. Maeng, and S. H. Kim. 2009. Purification and characterization of a novel thermoacid-stable fibrinolytic enzyme from Staphylococcus sp. strain AJ isolated from Korean salt-fermented Anchovy-joet. Journal of Industrial Microbiology & Biotechnology 36 (3):417–26. doi: 10.1007/s10295-008-0512-9.
  • Christopoulou, E. C., T. D. Filippatos, and M. S. Elisaf. 2017. Non-hemorrhage-related adverse effects of rivaroxaban. Archives of Medical Sciences. Atherosclerotic Diseases 2 (2):e108–e112.
  • Clementino, E. L., A. E. Sales, M. N. C. Cunha, A. L. F. Porto, and T. S. Porto. 2019. Integrated production and purification of fibrinolytic protease from Mucor subtilissimus UCP 1262. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 71 (2):553–62. doi: 10.1590/1678-4162-9495.
  • Cui, W. J., Suo, F. Y. Cheng, J. T. Han, L. C. Hao, W. L. Guo, J. L., and Zhou, Z. M. 2018. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microbial Biotechnology 11 (5):930–42. doi: 10.1111/1751-7915.13298.
  • da Cruz, R. F., J. G. dos Santos, R. A. Palheta, V. C. Santos-Ebinuma, D. D. V. Marques, and M. F. S. Teixeira. 2021. Comparison of conventional and extractive fermentation using aqueous two-phase system to extract fibrinolytic proteases produced by Bacillus stearothermophilus DPUA 1729. Preparative Biochemistry & Biotechnology 51 (2):191–200. doi: 10.1080/10826068.2020.1805756.
  • da Silva, M. M., T. A. Rocha, D. F. de Moura, C. A. Chagas, F. C. A. de Aguiar Júnior, N. P. da Silva Santos, R. V. Da Silva Sobral, J. M. do Nascimento, A. C. Lima Leite, L. Pastrana, et al. 2019. Effect of acute exposure in Swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regulatory Toxicology and Pharmacology 103:282–91. doi: 10.1016/j.yrtph.2019.02.009.
  • Dabbagh, F., M. Negahdaripour, A. Berenjian, A. Behfar, F. Mohammadi, M. Zamani, C. Irajie, and Y. Ghasemi. 2014. Nattokinase: Production and application. Applied Microbiology and Biotechnology 98 (22):9199–206. doi: 10.1007/s00253-014-6135-3.
  • Daniell, H., S. J. Streatfield, and E. P. Rybicki. 2015. Advances in molecular farming: Key technologies, scaled up production and lead targets. Plant Biotechnology Journal 13 (8):1011–2. doi: 10.1111/pbi.12478.
  • Danilova, I., and M. Sharipova. 2020. The practical potential of bacilli and their enzymes for industrial production. Frontiers in Microbiology 11:1782. doi: 10.3389/fmicb.2020.01782.
  • de Souza, F. A. S. D., A. E. Sales, P. E. Costa e Silva, R. P. Bezerra, G. M. de Medeiros e Silva, J. M. de Araújo, G. M. de Campos Takaki, T. S. Porto, J. A. C. Teixeira, and A. L. F. Porto. 2016. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromolecular Research 24 (7):587–95. doi: 10.1007/s13233-016-4089-2.
  • Deepak, V., S. Ilangovan, M. V. Sampathkumar, M. J. Victoria, S. P. B. S. Pasha, S. B. R. K. Pandian, and S. Gurunathan. 2010. Medium optimization and immobilization of purified fibrinolytic URAK from Bacillus cereus NK1 on PHB nanoparticles. Enzyme and Microbial Technology 47 (6):297–304. doi: 10.1016/j.enzmictec.2010.07.004.
  • Deepak, V., K. Kalishwaralal, S. Ramkumarpandian, S. V. Babu, S. R. Senthilkumar, and G. Sangiliyandi. 2008. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology 99 (17):8170–4. doi: 10.1016/j.biortech.2008.03.018.
  • Deepak, V., S. Pandian, K. Kalishwaralal, and S. Gurunathan. 2009. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresource Technology 100 (24):6644–6. doi: 10.1016/j.biortech.2009.06.057.
  • Devaraj, Y., S. K. Rajender, and P. M. Halami. 2018. Purification and characterization of fibrinolytic protease from Bacillus amyloliquefaciens MCC2606 and analysis of fibrin degradation product by MS/MS. Preparative Biochemistry & Biotechnology 48 (2):172–80. doi: 10.1080/10826068.2017.1421964.
  • Devi, C. S., V. Mohanasrinivasan, P. Sharma, D. Das, B. Vaishnavi, and S. J. Naine. 2016. Production, purification and stability studies on Nattokinase: A therapeutic protein extracted from mutant Pseudomonas aeruginosa CMSS isolated from bovine milk. International Journal of Peptide Research and Therapeutics 22 (2):263–9. doi: 10.1007/s10989-015-9505-5.
  • Elbakry, M. M. M., S. Z. Mansour, H. Helal, and E. S. A. Ahmed. 2022. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. Environmental Science and Pollution Research 29 (49):75086–100. doi: 10.1007/s11356-022-21126-9.
  • Fadl, N. N., H. H. Ahmed, H. F. Booles, and A. H. Sayed. 2013. Serrapeptase and nattokinase intervention for relieving Alzheimer’s disease pathophysiology in rat model. Human & Experimental Toxicology 32 (7):721–35. doi: 10.1177/0960327112467040.
  • Feng, C., S. Jin, M. Luo, W. Wang, X.-X. Xia, Y.-G. Zu, L.-P. Li, and Y.-J. Fu. 2015. Optimization of production parameters for preparation of natto-pigeon pea with immobilized Bacillus natto and sensory evaluations of the product. Innovative Food Science & Emerging Technologies 31:160–9. doi: 10.1016/j.ifset.2015.08.002.
  • Fernandes, L. M. G., M. N. Carneiro-da-Cunha, J. d. C. Silva, A. L. F. Porto, and T. S. Porto. 2020. Purification and characterization of a novel Aspergillus heteromorphus URM 0269 protease extracted by aqueous two-phase systems PEG/citrate. Journal of Molecular Liquids 317:113957. doi: 10.1016/j.molliq.2020.113957.
  • Fujita, M., K. Hong, Y. Ito, R. Fujii, K. Kariya, and S. Nishimuro. 1995. Thrombolytic effect of Nattokinase on a chemically induced thrombosis model in rat. Biological & Pharmaceutical Bulletin 18 (10):1387–91. doi: 10.1248/bpb.18.1387.
  • Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochemical and Biophysical Research Communications 197 (3):1340–7. doi: 10.1006/bbrc.1993.2624.
  • Gao, R., Q. Yu, Y. Shen, Q. Chu, G. Chen, S. Fen, M. Yang, L. Yuan, D. J. McClements, and Q. Sun. 2021. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology 110 (1):687–99. doi: 10.1016/j.tifs.2021.02.031.
  • Garg, R., and B. N. Thorat. 2014. Nattokinase purification by three phase partitioning and impact of t-butanol on freeze drying. Separation and Purification Technology 131:19–26. doi: 10.1016/j.seppur.2014.04.011.
  • Ghasemi, Y., F. Dabbagh, and A. Ghasemian. 2012. Cloning of a fibrinolytic enzyme (subtilisin) gene from Bacillus subtilis in Escherichia coli. Molecular Biotechnology 52 (1):1–7. doi: 10.1007/s12033-011-9467-6.
  • Guo, H., Y.-H. Ban, Y. Cha, E. S. An, J. Choi, D. W. Seo, D. Park, E.-K. Choi, and Y.-B. Kim. 2019. Comparative anti-thrombotic activity and haemorrhagic adverse effect of nattokinase and tissue-type plasminogen activator. Food Science and Biotechnology 28 (5):1535–42. doi: 10.1007/s10068-019-00580-1.
  • Guo, N., X.-R. Song, P. Kou, Y.-P. Zang, J. Jiao, T. Efferth, Z.-M. Liu, and Y.-J. Fu. 2018. Optimization of fermentation parameters with magnetically immobilized Bacillus natto on Ginkgo seeds and evaluation of bioactivity and safety. LWT - Food Science and Technology 97:172–9. doi: 10.1016/j.lwt.2018.06.046.
  • Han, L., Q. Chen, J. Luo, W. Cui, and Z. Zhou. 2022. Development of a glycerol-inducible expression system for high-yield heterologous protein production in Bacillus subtilis. Microbiology Spectrum 2022:e0132222. doi: 10.1128/spectrum.01322-22.
  • Han, L., L. Zhang, J. Liu, H. Li, Y. Wang, and A. Hasi. 2015. Transient expression of optimized and synthesized nattokinase gene in melon (Cucumis melo L.) fruit by agroinfiltration. Plant Biotechnology 32 (2):175–80. doi: 10.5511/plantbiotechnology.15.0430a.
  • Han, X.-M., R.-F. Guo, H.-W. Yu, and Y.-M. Jia. 2009. Cloning and expression of one fibrinolytic enzyme from Bacillus sp. zlw-2. Agricultural Sciences in China 8 (5):591–6. doi: 10.1016/S1671-2927(08)60250-3.
  • Han, X. J., Y. Shiwa, M. Itoh, T. Suzuki, H. Yoshikawa, T. Nakagawa, and H. Nagano. 2013. Molecular cloning and sequence analysis of an extracellular protease from four Bacillus subtilis strains. Bioscience, Biotechnology, and Biochemistry 77 (4):870–3. doi: 10.1271/bbb.120920.
  • Heo, K., K. M. Cho, C. K. Lee, G. M. Kim, J. H. Shin, J. S. Kim, and J. H. Kim. 2013. Characterization of a fibrinolytic enzyme secreted by Bacillus amyloliquefaciens CB1 and its gene cloning. Journal of Microbiology and Biotechnology 23 (7):974–83. doi: 10.4014/jmb.1302.02065.
  • Hodis, H. N., W. J. Mack, H. J. Meiselman, V. Kalra, H. Liebman, J. Hwang-Levine, L. Dustin, N. Kono, M. Mert, R. B. Wenby, et al. 2021. Nattokinase atherothrombotic prevention study: A randomized controlled trial. Clinical Hemorheology and Microcirculation 78 (4):339–53. doi: 10.3233/CH-211147.
  • Hsia, C. H., M. C. Shen, J. S. Lin, Y. K. Wen, K. L. Hwang, T. M. Cham, and N. C. Yang. 2009. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutrition Research 29 (3):190–6. doi: 10.1016/j.nutres.2009.01.009.
  • Hsu, R. L., K. T. Lee, J. H. Wang, L. Y. L. Lee, and R. P. Y. Chen. 2009. Amyloid-degrading ability of Nattokinase from Bacillus subtilis Natto. Journal of Agricultural and Food Chemistry 57 (2):503–8. doi: 10.1021/jf803072r.
  • Hu, Y., D. Yu, Z. Wang, J. Hou, R. Tyagi, Y. Liang, and Y. Hu. 2019. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Scientific Reports 9 (1):9235. doi: 10.1038/s41598-019-45686-y.
  • Huang, M., Y. Ji, J. Yan, T. Qi, S.-F. Zhang, T. Li, S. Lü, Y. Liu, and M. Liu. 2020. A nano polymer conjugate for dual drugs sequential release and combined treatment of colon cancer and thrombotic complications. Materials Science & Engineering. C, Materials for Biological Applications 110:110697. doi: 10.1016/j.msec.2020.110697.
  • Huang, Z., T. K. Ng, W. Chen, X. Sun, D. Huang, D. Zheng, J. Yi, Y. Xu, X. Zhuang, and S. Chen. 2021. Nattokinase attenuates retinal neovascularization via modulation of Nrf2/HO-1 and glial activation. Investigative Ophthalmology & Visual Science 62 (6):25. doi: 10.1167/iovs.62.6.25.
  • Huy, D. N. A., P. A. Hao, and P. V. Hung. 2016. Screening and identification of Bacillus sp isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. International Food Research Journal 23 (1):326–31.
  • Irajie, C., M. Mohkam, N. Nezafat, F. Mohammadi, and Y. Ghasemi. 2017. In silico analysis of Nattokinase from Bacillus subtilis sp natto. International Journal of Pharmaceutical and Clinical Research 9 (04):4. doi: 10.25258/ijpcr.v9i04.8535.
  • Jang, J.-Y., T.-S. Kim, J. Cai, J. Kim, Y. Kim, K. Shin, K. S. Kim, S. K. Park, S.-P. Lee, E.-K. Choi, et al. 2013. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. Laboratory Animal Research 29 (4):221–5. doi: 10.5625/lar.2013.29.4.221.
  • Jensen, G., M. Lenninger, M. P. Ero, and K. Benson. 2016. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integrated Blood Pressure Control 9:95–104. doi: 10.2147/IBPC.S99553.
  • Jeong, S. J., K. M. Cho, C. K. Lee, G. M. Kim, J. H. Shin, J. S. Kim, and J. H. Kim. 2014. Overexpression of aprE2, a fibrinolytic enzyme gene from Bacillus subtilis CH3-5, in Escherichia coli and the properties of AprE2. Journal of Microbiology and Biotechnology 24 (7):969–78. doi: 10.4014/jmb.1401.01034.
  • Jeong, S. J., K. Heo, J. Y. Park, K. W. Lee, J. Y. Park, S. H. Joo, and J. H. Kim. 2015. Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176. Journal of Microbiology and Biotechnology 25 (1):89–97. doi: 10.4014/jmb.1409.09087.
  • Jeong, S. J., G. H. Kwon, J. Chun, J. S. Kim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from Cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. Journal of Microbiology and Biotechnology 17 (6):1018–23.
  • Jeong, S.-J., J. Y. Park, J. Y. Lee, K. W. Lee, K. M. Cho, G. M. Kim, J.-H. Shin, J.-S. Kim, and J. H. Kim. 2015. Improvement of fibrinolytic activity of Bacillus subtilis 168 by integration of a fibrinolytic gene into the chromosome. Journal of Microbiology and Biotechnology 25 (11):1863–70. doi: 10.4014/jmb.1505.05062.
  • Ji, H. R., L. Yu, K. Y. Liu, Z. G. Yu, Q. Zhang, F. J. Zou, and B. Liu. 2014. Mechanisms of Nattokinase in protection of cerebral ischemia. European Journal of Pharmacology 745:144–51. doi: 10.1016/j.ejphar.2014.10.024.
  • Jo, H. D., G. H. Kwon, J. Y. Park, J. Cha, Y. S. Song, and J. H. Kim. 2011. Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17. Biotechnology and Bioprocess Engineering 16 (2):352–9. doi: 10.1007/s12257-010-0328-0.
  • Jo, H. D., H. A. Lee, S. J. Jeong, and J. H. Kim. 2011. Purification and characterization of a major fibrinolytic enzyme from Bacillus amyloliquefaciens MJ5-41 isolated from Meju. Journal of Microbiology and Biotechnology 21 (11):1166–73. doi: 10.4014/jmb.1106.06008.
  • Ju, S. Y., Z. L. Cao, C. Wong, Y. Y. Liu, M. F. Foda, Z. Y. Zhang, and J. S. Li. 2019. Isolation and optimal fermentation condition of the Bacillus subtilis subsp. natto strain WTC016 for Nattokinase production. Fermentation 5 (4):92. doi: 10.3390/fermentation5040092.
  • Kamiya, S., M. Hagimori, M. Ogasawara, and M. Arakawa. 2010. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model. Acta Haematologica 124 (4):218–24. doi: 10.1159/000321518.
  • Kattula, S., J. R. Byrnes, and A. S. Wolberg. 2017. Fibrinogen and fibrin in hemostasis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (3):e13–e21. doi: 10.1161/ATVBAHA.117.308564.
  • Kim, G. M., A. R. Lee, K. W. Lee, J.-Y. Park, A.-Y. Park, J. Chun, J. Cha, Y.-S. Song, and J. H. Kim. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. Journal of Microbiology and Biotechnology 19 (9):997–1004. doi: 10.4014/jmb.0811.600.
  • Kim, J., J. H. Kim, K. H. Choi, J. H. Kim, Y. S. Song, and J. Cha. 2011. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis. Journal of Agricultural and Food Chemistry 59 (16):8675–82. doi: 10.1021/jf201947m.
  • Kim, J. Y., S. N. Gum, J. K. Paik, H. H. Lim, K.-C. Kim, K. Ogasawara, K. Inoue, S. Park, Y. Jang, and J. H. Lee. 2008. Effects of nattokinase on blood pressure: A randomized, controlled trial. Hypertension Research 31 (8):1583–8. doi: 10.1291/hypres.31.1583.
  • Kim, S.-B., D.-W. Lee, C.-I. Cheigh, E.-A. Choe, S.-J. Lee, Y.-H. Hong, H.-J. Choi, and Y.-R. Pyun. 2006. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. Journal of Industrial Microbiology & Biotechnology 33 (6):436–44. doi: 10.1007/s10295-006-0085-4.
  • Kim, S. H., and N. S. Choi. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Journal of the Agricultural Chemical Society of Japan 64 (8):1722–5.
  • Kim, T. W., Y. H. Kim, H. J. Jung, C. S. Park, and H. Y. Kim. 2012. Screening of Strains with fibrinolytic activity and angiotensin-converting enzyme inhibitory activity from doenjang. Food Science and Biotechnology 21 (2):581–5. doi: 10.1007/s10068-012-0074-5.
  • Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Applied and Environmental Microbiology 62 (7):2482–8. doi: 10.1128/aem.62.7.2482-2488.1996.
  • Kim, Y.-N., S.-I. Heo, and M.-H. Wang. 2009. Antigenotoxic, fibrinolytic and immunomodulating activity of traditionally fermented soy product, chungkukjang. Journal of Food Processing and Preservation 33 (1):87–104. doi: 10.1111/j.1745-4549.2008.00275.x.
  • Ko, J. H., J. P. Yan, L. Zhu, and Y. P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 137 (1):65–74. doi: 10.1016/j.cca.2003.11.008.
  • Koffman, B., K. J. Modarress, and N. Bashirelahi. 1991. The effects of various serine protease inhibitors on estrogen receptor steroid binding. The Journal of Steroid Biochemistry and Molecular Biology 38 (5):569–74. doi: 10.1016/0960-0760(91)90314-U.
  • Kotb, E. 2014. The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnology Progress 30 (3):656–72. doi: 10.1002/btpr.1918.
  • Kou, Y., R. Feng, J. Chen, L. Duan, S. Wang, Y. Hu, N. Zhang, T. Wang, Y. Deng, and Y. Song. 2020. Development of a nattokinase-polysialic acid complex for advanced tumor treatment. European Journal of Pharmaceutical Sciences 145:105241. doi: 10.1016/j.ejps.2020.105241.
  • Kumar, D. J., R. Rakshitha, M. A. Vidhya, P. S. Jennifer, S. Prasad, M. R. Kumar, and P. T. Kalaichelvan. 2014. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19. Pakistan Journal of Biological Sciences: PJBS 17 (4):529–34. doi: 10.3923/pjbs.2014.529.534.
  • Kwon, G. H., W. J. Jeong, A. R. Lee, J. Y. Park, J. Cha, Y. S. Song, and J. H. Kim. 2008. Heterologous gene expression of aprE2 encoding a 29 kDa fibrinolytic enzyme from Bacillus subtilis in Bacillus licheniformis ATCC 10716. Food Science and Biotechnology 17 (6):1372–5.
  • Kwon, G. H., J. Y. Park, J. S. Kim, J. Lim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2011. Cloning and expression of a bpr gene encoding Bacillopeptidase F from Bacillus amyloliquefaciens CH86-1. Journal of Microbiology and Biotechnology 21 (5):515–8. doi: 10.4014/jmb.1010.10061.
  • Lee, A. R., G. M. Kim, J. Y. Park, H. D. Jo, J. Cha, Y. S. Song, … J. H. Kim. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH86-1 isolated from cheonggukjang. Journal of the Korean Society for Applied Biological Chemistry 53 (1):56–61. doi: 10.3839/jksabc.2010.010.
  • Lee, B. H., Y. S. Lai, and S. C. Wu. 2015. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. Journal of Food and Drug Analysis 23 (4):750–7. doi: 10.1016/j.jfda.2015.06.008.
  • Li, D., L. Hou, M. Hu, Y. Gao, Z. Tian, B. Fan, S. Li, and F. Wang. 2022. Recent advances in nattokinase-enriched fermented soybean foods: A review. Foods 11 (13):1867. doi: 10.3390/foods11131867.
  • Li, G., X. Liu, S. Cong, Y. Deng, and X. Zheng. 2021. A novel serine protease with anticoagulant and fibrinolytic activities from the fruiting bodies of mushroom Agrocybe aegerita. International Journal of Biological Macromolecules 168:631–9. doi: 10.1016/j.ijbiomac.2020.11.118.
  • Li, X. X., X. L. Wang, S. L. Xiong, J. Zhang, L. T. Cai, and Y. Y. Yang. 2007. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells. Biotechnology Letters 29 (10):1459–64. doi: 10.1007/s10529-007-9426-2.
  • Li, Y., X. Tang, L. Chen, X. Xu, and J. Li. 2022. Characterization of a nattokinase from the newly isolated bile salt-resistant Bacillus mojavensis LY-06. Foods 11 (16):2403. doi: 10.3390/foods11162403.
  • Liang, X., S. Jia, Y. Sun, M. Chen, X. Chen, J. Zhong, and L. Huan. 2007. Secretory expression of nattokinase from bacillus subtilis YF38 in Escherichia coli. Molecular Biotechnology 37 (3):187–94. doi: 10.1007/s12033-007-0060-y.
  • Liang, X. B., L. X. Zhang, J. Zhong, and L. D. Huan. 2007. Secretory expression of a heterologous nattokinase in Lactococcus lactis. Applied Microbiology and Biotechnology 75 (1):95–101. doi: 10.1007/s00253-006-0809-4.
  • Lin, S., Y. Wang, L. Zhang, and W. Guan. 2019. Dabigatran must be used carefully: Literature review and recommendations for management of adverse events. Drug Design, Development and Therapy 13:1527–33. doi: 10.2147/DDDT.S203112.
  • Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochemistry 40 (8):2757–62. doi: 10.1016/j.procbio.2004.12.025.
  • Liu, J. G., J. M. Xing, T. S. Chang, and H. Z. Liu. 2006. Purification of nattokinase by reverse micelles extraction from fermentation broth: Effect of temperature and phase volume ratio. Bioprocess and Biosystems Engineering 28 (4):267–73. doi: 10.1007/s00449-005-0032-1.
  • Liu, S., J. Zhu, C. Liu, J. Li, L. Zhang, J. Zhao, and H. Liu. 2021. Synthesis of sustained release/controlled release nanoparticles carrying nattokinase and their application in thrombolysis. Die Pharmazie 76 (4):145–9. doi: 10.1691/ph.2021.0155.
  • Liu, X.-L., N. K. Kopparapu, H. C. Zheng, P. Katrolia, Y. P. Deng, and X. Q. Zheng. 2016. Purification and characterization of a fibrinolytic enzyme from the food-grade fungus, Neurospora sitophila. Journal of Molecular Catalysis B: Enzymatic 134:98–104. doi: 10.1016/j.molcatb.2016.10.006.
  • Liu, Z. M., H. Zhao, L. C. Han, W. J. Cui, L. Zhou, and Z. M. Zhou. 2019. Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis. Biotechnology and Bioengineering 116 (8):1833–43. doi: 10.1002/bit.26983.
  • Liu, Z. M., W. H. Zheng, C. L. Ge, W. J. Cui, L. Zhou, and Z. M. Zhou. 2019. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiology 19 (1):89. doi: 10.1186/s12866-019-1461-3.
  • Lord, S. T. 2011. Molecular mechanisms affecting fibrin structure and stability. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (3):494–9. doi: 10.1161/ATVBAHA.110.213389.
  • Madhavan, A., R. Sindhu, P. Binod, R. K. Sukumaran, and A. Pandey. 2017. Strategies for design of improved biocatalysts for industrial applications. Bioresource Technology 245 (Pt B):1304–13. doi: 10.1016/j.biortech.2017.05.031.
  • Mahajan, P. M., S. V. Gokhale, and S. S. Lele. 2010. Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up, and kinetic modeling. Food Science and Biotechnology 19 (6):1593–603. doi: 10.1007/s10068-010-0226-4.
  • Mahmoodi, S., M. Pourhassan-Moghaddam, D. W. Wood, H. Majdi, N. Zarghami, and R. Hatti Kaul. 2019. Current affinity approaches for purification of recombinant proteins. Cogent Biology 5 (1):1665406. doi: 10.1080/23312025.2019.1665406.
  • Man, L. L., D. J. Xiang, and C. L. Zhang. 2019. Strain screening from traditional fermented soybean foods and induction of nattokinase production in Bacillus subtilis MX-6. Probiotics and Antimicrobial Proteins 11 (1):283–94. doi: 10.1007/s12602-017-9382-7.
  • Mao, R. F., K. P. Zhou, Z. W. Han, and Y. F. Wang. 2016. Subtilisin QK-2: Secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microbial Cell Factories 15 (1):80. doi: 10.1186/s12934-016-0478-7.
  • Meng, D., M. Dai, B.-L. Xu, Z.-S. Zhao, X. Liang, M. Wang, X.-F. Tang, and B. Tang. 2016. Maturation of fibrinolytic Bacillopeptidase F involves both hetero- and autocatalytic processes. Applied and Environmental Microbiology 82 (1):318–27. doi: 10.1128/AEM.02673-15.
  • Meng, Y., Z. Yao, H. G. Le, S. J. Lee, H. S. Jeon, J. Y. Yoo, and J. H. Kim. 2021. Characterization of a salt-resistant fibrinolytic protease of Bacillus licheniformis HJ4 isolated from Hwangseokae jeotgal, a traditional Korean fermented seafood. Folia Microbiologica 66 (5):787–95. doi: 10.1007/s12223-021-00878-w.
  • Mine, Y., A. H. Kwan Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Research International 38 (3):243–50. doi: 10.1016/j.foodres.2004.04.008.
  • Mohanasrinivasan, V., A. Mohanapriya, S. Potdar, S. Chatterji, S. Konne, S. Kumari, S. M. Keziah, and C. Subathra Devi. 2017. In vitro and in silico studies on fibrinolytic activity of nattokinase: A clot buster from Bacillus sp. Frontiers in Biology 12 (3):219–25. doi: 10.1007/s11515-017-1453-3.
  • Moula Ali, A. M., and S. C. B. Bavisetty. 2020. Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: A comprehensive review. International Journal of Biological Macromolecules 163:1498–517. doi: 10.1016/j.ijbiomac.2020.07.303.
  • Murai, U., N. Sawada, H. Charvat, M. Inoue, N. Yasuda, K. Yamagishi, and S. Tsugane. 2022. Soy product intake and risk of incident disabling dementia: The JPHC Disabling Dementia Study. European Journal of Nutrition. doi: 10.1007/s00394-022-02937-5.
  • Murakami, K., N. Yamanaka, K. Ohnishi, M. Fukayama, and M. Yoshino. 2012. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food. Food & Function 3 (6):674–8. doi: 10.1039/c2fo10245e.
  • Nagata, C., K. Wada, T. Tamura, K. Konishi, Y. Goto, S. Koda, T. Kawachi, M. Tsuji, and K. Nakamura. 2017. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: The Takayama study. The American Journal of Clinical Nutrition 105 (2):426–31. doi: 10.3945/ajcn.116.137281.
  • Nailufar, F., R. R. Tjandrawinata, and M. T. Suhartono. 2016. Thrombus degradation by fibrinolytic enzyme of Stenotrophomonas sp. originated from Indonesian soybean-based fermented food on Wistar rats. Advances in Pharmacological Sciences 2016:4206908. doi: 10.1155/2016/4206908.
  • Nascimento, T. P., A. E. Sales, C. S. Porto, R. M. P. Brandão, G. M. de Campos-Takaki, J. A. C. Teixeira, T. S. Porto, A. L. F. Porto, and A. Converti. 2016. Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1025:16–24. doi: 10.1016/j.jchromb.2016.04.046.
  • Nguyen, T. T., T. D. Quyen, and H. T. Le. 2013. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microbial Cell Factories 12:79. doi: 10.1186/1475-2859-12-79.
  • Ni, H., P.-C. Guo, W.-L. Jiang, X.-M. Fan, X.-Y. Luo, and H.-H. Li. 2016. Expression of nattokinase in Escherichia coli and renaturation of its inclusion body. Journal of Biotechnology 231:65–71. doi: 10.1016/j.jbiotec.2016.05.034.
  • Nielsen, V. G., J. K. Kirklin, W. L. Holman, and B. L. Steenwyk. 2009. Clot lifespan model analysis of the effects of warfarin on thrombus growth and fibrinolysis: Role of contact protein and tissue factor initiation. ASAIO Journal (American Society for Artificial Internal Organs: 1992) 55 (1):33–40. doi: 10.1097/MAT.0b013e318190c1a9.
  • Oba, M., W. Rongduo, A. Saito, T. Okabayashi, T. Yokota, J. Yasuoka, Y. Sato, K. Nishifuji, H. Wake, Y. Nibu, et al. 2021. Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro. Biochemical and Biophysical Research Communications 570:21–5. doi: 10.1016/j.bbrc.2021.07.034.
  • Okumura, N., F. Terasawa, A. Haneishi, N. Fujihara, M. Hirota-Kawadobora, K. Yamauchi, H. Ota, and S. T. Lord. 2007. B: B interactions are essential for polymerization of variant fibrinogens with impaired holes ‘a. Journal of Thrombosis and Haemostasis: JTH 5 (12):2352–9. doi: 10.1111/j.1538-7836.2007.02793.x.
  • Omura, K., M. Hitosugi, X. Zhu, M. Ikeda, H. Maeda, and S. Tokudome. 2005. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. Journal of Pharmacological Sciences 99 (3):247–51. doi: 10.1254/jphs.fp0050408.
  • Pagnoncelli, M. G. B., M. J. Fernandes, C. Rodrigues, and C. R. Soccol. 2017. 22. Nattokinases. In Current developments in biotechnology and bioengineering, eds. A. Pandey, S. Negi, and C. R. Soccol, 509–26. New York, NY: Elsevier.
  • Peng, Y., Q. Huang, R.-H. Zhang, and Y.-Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 134 (1):45–52. doi: 10.1016/S1096-4959(02)00183-5.
  • Peng, Y., X.-J. Yang, L. Xiao, and Y.-Z. Zhang. 2004. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Research in Microbiology 155 (3):167–73. doi: 10.1016/j.resmic.2003.10.004.
  • Peng, Y., X. Yang, and Y. Zhang. 2005. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Applied Microbiology and Biotechnology 69 (2):126–32. doi: 10.1007/s00253-005-0159-7.
  • Peterbauer, C., T. Maischberger, and D. Haltrich. 2011. Food-grade gene expression in lactic acid bacteria. Biotechnology Journal 6 (9):1147–61. doi: 10.1002/biot.201100034.
  • Pham, P. T., B. Han, and B. X. Hoang. 2020. Nattospes as effective and safe functional supplements in management of stroke. Journal of Medicinal Food 23 (8):879–85. doi: 10.1089/jmf.2019.0183.
  • Pinontoan, R., A. Sanjaya, and J. Jo. 2021. Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Bioscience of Microbiota, Food and Health 40 (3):144–9. doi: 10.12938/bmfh.2020-071.
  • Pirmohamed, M. 2006. Warfarin: Almost 60 years old and still causing problems. British Journal of Clinical Pharmacology 62 (5):509–11. doi: 10.1111/j.1365-2125.2006.02806.x.
  • Purwaeni, E., I. Darojatin, C. Riani, and D. S. Retnoningrum. 2018. Bacterial fibrinolytic enzyme coding sequences from Indonesian traditional fermented foods isolated using metagenomic approach and their expression in Escherichia coli. Food Biotechnology 32 (1):47–59. doi: 10.1080/08905436.2017.1413986.
  • Radnaabazar, C., C. M. Park, J. H. Kim, J. Cha, and Y. S. Song. 2011. Fibrinolytic and antiplatelet aggregation properties of a recombinant cheonggukjang kinase. Journal of Medicinal Food 14 (6):625–9. doi: 10.1089/jmf.2010.1233.
  • Ren, N. N., H. J. Chen, Y. Li, E. Mcgowan, and Y. G. Lin. 2017. A clinical study on the effect of nattokinase on carotid artery atherosclerosis and hyperlipidaemia. Zhonghua yi Xue za Zhi 97 (26):2038–42.
  • Sanyanga, T. A., and O. Tastan Bishop. 2020. Structural characterization of carbonic anhydrase VIII and effects of missense single nucleotide variations to protein structure and function. International Journal of Molecular Sciences 21 (8):2764. doi: 10.3390/ijms21082764.
  • Sasmita, I. R. A., A. Sutrisno, E. Zubaidah, and A. K. Wardani. 2018. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents. IOP Conference Series: Earth and Environmental Science 131:012041. doi: 10.1088/1755-1315/131/1/012041.
  • Selvarajan, E., and N. Bhatnagar. 2017. Nattokinase: An updated critical review on challenges and perspectives. Cardiovascular and Hematological Agents in Medicinal Chemistry. doi: 10.2174/1871525716666171207153332.
  • Seo, J. H., and S. P. Lee. 2004. Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. Journal of Medicinal Food 7 (4):442–9. doi: 10.1089/jmf.2004.7.442.
  • Sharma, C., A. Nigam, and R. Singh. 2021. Computational-approach understanding the structure-function prophecy of Fibrinolytic Protease RFEA1 from Bacillus cereus RSA1. PeerJ 9:e11570. doi: 10.7717/peerj.11570.
  • Sharma, C., A. Osmolovskiy, and R. Singh. 2021. Microbial fibrinolytic enzymes as anti-thrombotics: Production, characterisation and prodigious biopharmaceutical applications. Pharmaceutics 13 (11):1880. doi: 10.3390/pharmaceutics13111880.
  • Sharma, C., G. E. M. Salem, N. Sharma, P. Gautam, and R. Singh. 2019. Thrombolytic potential of novel thiol-dependent fibrinolytic protease from Bacillus cereus RSA1. Biomolecules 10 (1):3. doi: 10.3390/biom10010003.
  • Shirasaka, N., M. Naitou, K. Okamura, Y. Fukuta, T. Terashita, and M. Kusuda. 2012. Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience 53 (5):354–64. doi: 10.1007/S10267-011-0179-3.
  • Singh, S., and B. K. Bajaj. 2017. Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecology & Environment 2:370–86.
  • Sugimoto, S., T. Fujii, T. Morimiya, O. Johdo, and T. Nakamura. 2007. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB. Bioscience, Biotechnology, and Biochemistry 71 (9):2184–9. doi: 10.1271/bbb.70153.
  • Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43 (10):1110–1. doi: 10.1007/BF01956052.
  • Suwanmanon, K., and P. C. Hsieh. 2014. Effect of gamma-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Journal of Food and Drug Analysis 22 (4):485–91. doi: 10.1016/j.jfda.2014.03.005.
  • Suzuki, Y., K. Kondo, H. Ichise, Y. Tsukamoto, T. Urano, and K. Umemura. 2003. Dietary supplementation with fermented soybeans suppresses intimal thickening. Nutrition 19 (3):261–4. doi: 10.1016/S0899-9007(02)00853-5.
  • Suzuki, Y., K. Kondo, Y. Matsumoto, B.-Q. Zhao, K. Otsuguro, T. Maeda, Y. Tsukamoto, T. Urano, and K. Umemura. 2003. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sciences 73 (10):1289–98. doi: 10.1016/S0024-3205(03)00426-0.
  • Syahbanu, F., P. E. Giriwono, R. R. Tjandrawinata, and M. T. Suhartono. 2020. Molecular analysis of a fibrin-degrading enzyme from Bacillus subtilis K2 isolated from the Indonesian soybean-based fermented food moromi. Molecular Biology Reports 47 (11):8553–63. doi: 10.1007/s11033-020-05898-2.
  • Syahbanu, F., E. Kezia, N. Puera, P. E. Giriwono, R. R. Tjandrawinata, and M. T. Suhartono. 2020. Fibrinolytic bacteria of Indonesian fermented soybean: Preliminary study on enzyme activity and protein profile. Food Science and Technology 40 (suppl 2):458–65. doi: 10.1590/fst.23919.
  • Takabayashi, T., Y. Imoto, M. Sakashita, Y. Kato, T. Tokunaga, K. Yoshida, N. Narita, T. Ishizuka, and S. Fujieda. 2017. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus. Allergology International 66 (4):594–602. doi: 10.1016/j.alit.2017.03.007.
  • Tang, Y., Y. Yang, X. Lu, Q. Liu, Q. Li, X. Song, M. Wang, H. Hu, L. Zhou, and Y. Wang. 2022. Oral therapy of recombinant Subtilisin QK-2 potentiates thrombolytic effect in a carrageenan-induced thrombosis animal model. Journal of Functional Foods 88:104896. doi: 10.1016/j.jff.2021.104896.
  • Tanikawa, T., Y. Kiba, J. Yu, K. Hsu, S. Chen, A. Ishii, T. Yokogawa, R. Suzuki, Y. Inoue, and M. Kitamura. 2022. Degradative effect of nattokinase on spike protein of SARS-CoV-2. Molecules 27 (17):5405. doi: 10.3390/molecules27175405.
  • Tungekar, A. A., A. Castillo-Corujo, and L. W. Ruddock. 2021. So you want to express your protein in Escherichia coli? Essays in Biochemistry 65 (2):247–60. doi: 10.1042/EBC20200170.
  • Undas, A., and R. A. Ariens. 2011. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (12):e88–99. doi: 10.1161/ATVBAHA.111.230631.
  • Vianney, Y. M., S. E. E. Tjoa, R. Aditama, and S. E. D. Putra. 2019. Designing a less immunogenic nattokinase from Bacillus subtilis subsp. natto: A computational mutagenesis. Journal of Molecular Modeling 25 (11):337. doi: 10.1007/s00894-019-4225-y.
  • Wang, C., M. Du, D. Zheng, F. Kong, G. Zu, and Y. Feng. 2009. Purification and characterization of nattokinase from Bacillus subtilis natto B-12. Journal of Agricultural and Food Chemistry 57 (20):9722–9. doi: 10.1021/jf901861v.
  • Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. Journal of Industrial Microbiology & Biotechnology 33 (9):750–8. doi: 10.1007/s10295-006-0111-6.
  • Wang, J.-K., H.-H. Chiu, and C.-S. Hsieh. 2009. Optimization of the medium components by statistical experimental methods to enhance nattokinase activity. Fooyin Journal of Health Sciences 1 (1):21–7. doi: 10.1016/S1877-8607(09)60004-7.
  • Wang, K., and L. Tull. 2014. Expression of blood clot‐dissolving proteins in transgenic plant (LB852). The FASEB Journal 28 (S1):LB852. doi: 10.1096/fasebj.28.1_supplement.lb852.
  • Wang, S. H., C. Zhang, Y. L. Yang, M. Diao, and M. F. Bai. 2008. Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World Journal of Microbiology and Biotechnology 24 (4):475–82. doi: 10.1007/s11274-007-9496-2.
  • Wei, X., M. Luo, Y. Xie, L. Yang, H. Li, L. Xu, and H. Liu. 2012. Strain screening, fermentation, separation, and encapsulation for production of nattokinase functional food. Applied Biochemistry and Biotechnology 168 (7):1753–64. doi: 10.1007/s12010-012-9894-2.
  • Wei, X., M. Luo, L. Xu, Y. Zhang, X. Lin, P. Kong, and H. Liu. 2011. Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas. Journal of Agricultural and Food Chemistry 59 (8):3957–63. doi: 10.1021/jf1049535.
  • Weng, M., Z. Zheng, W. Bao, Y. Cai, Y. Yin, G. Zou, and G. Zou. 2009. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochimica et Biophysica Acta 1794 (11):1566–72. doi: 10.1016/j.bbapap.2009.07.007.
  • Weng, Y., J. Yao, S. Sparks, and K. Y. Wang. 2017. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease. International Journal of Molecular Sciences 18 (3):523. doi: 10.3390/ijms18030523.
  • Wu, H., Y. Wang, Y. Zhang, F. Xu, J. Chen, L. Duan, T. Zhang, J. Wang, and F. Zhang. 2020. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biology 32:101500. doi: 10.1016/j.redox.2020.101500.
  • Yan, G. B., M. Shu, W. Shen, L. X. Ma, C. Zhai, Y. P. Wang, and Z. X. Huang. 2021. Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity. BMC Biotechnology 21 (1):49. doi: 10.1186/s12896-021-00708-4.
  • Yan, Y., Y. Wang, J. Qian, S. Wu, Y. Ji, Y. Liu, J. Zeng, and A. Gong. 2019. Nattokinase crude extract inhibits hepatocellular carcinoma growth in mice. Journal of Microbiology and Biotechnology 29 (8):1281–7. doi: 10.4014/jmb.1812.12058.
  • Yanagisawa, Y., T. Chatake, K. Chiba-Kamoshida, S. Naito, T. Ohsugi, H. Sumi, I. Yasuda, and Y. Morimoto. 2010. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 66 (Pt 12):1670–3. doi: 10.1107/S1744309110043137.
  • Yang, H. L., L. Yang, X. Li, H. Li, Z. C. Tu, and X. L. Wang. 2020. Genome sequencing, purification, and biochemical characterization of a strongly fibrinolytic enzyme from Bacillus amyloliquefaciens Jxnuwx-1 isolated from Chinese traditional douchi. The Journal of General and Applied Microbiology 66 (3):153–62. doi: 10.2323/jgam.2019.04.005.
  • Yao, J., Y. Weng, A. Dickey, and K. Y. Wang. 2015. Plants as factories for human pharmaceuticals: Applications and challenges. International Journal of Molecular Sciences 16 (12):28549–65. doi: 10.3390/ijms161226122.
  • Yao, Z., H. S. Jeon, J. Y. Yoo, Y. J. Kang, M. J. Kim, T. J. Kim, and J. H. Kim. 2022. DNA shuffling of aprE genes to increase fibrinolytic activity and thermostability. Journal of Microbiology and Biotechnology 32 (6):800–7. doi: 10.4014/jmb.2202.02017.
  • Yao, Z., X. M. Liu, J. M. Shim, K. W. Lee, H. J. Kim, and J. H. Kim. 2017. Properties of a fibrinolytic enzyme secreted by Bacillus amyloliquefaciens RSB34, isolated from doenjang. Journal of Microbiology and Biotechnology 27 (1):9–18. doi: 10.4014/jmb.1608.08034.
  • Yao, Z., Y. Meng, H. G. Le, S. J. Lee, H. S. Jeon, J. Y. Yoo, H.-J. Kim, and J. H. Kim. 2020. Cloning of a novel vpr gene encoding a minor fibrinolytic enzyme from Bacillus subtilis SJ4 and the properties of Vpr. Journal of Microbiology and Biotechnology 30 (11):1720–8. doi: 10.4014/jmb.2006.06014.
  • Yao, Z., Y. Meng, H. G. Le, S. J. Lee, H. S. Jeon, J. Y. Yoo, and J. H. Kim. 2021. Increase of a fibrinolytic enzyme production through promoter replacement of aprE3-5 from Bacillus subtilis CH3-5. Journal of Microbiology and Biotechnology 31 (6):833–9. doi: 10.4014/jmb.2103.03027.
  • Yatagai, C., M. Maruyama, T. Kawahara, and H. Sumi. 2008. Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiology of Haemostasis and Thrombosis 36 (5):227–32. doi: 10.1159/000252817.
  • Yoo, H. J., M. Kim, M. Kim, A. Lee, C. Jin, S. P. Lee, T. S. Kim, S.-H. Lee, and J. H. Lee. 2019. The effects of nattokinase supplementation on collagen-epinephrine closure time, prothrombin time and activated partial thromboplastin time in nondiabetic and hypercholesterolemic subjects. Food & Function 10 (5):2888–93. doi: 10.1039/C8FO02324G.
  • Yuan, J., J. Yang, Z. Zhuang, Y. Yang, L. Lin, and S. Wang. 2012. Thrombolytic effects of Douchi fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo. BMC Biotechnology 12:36. doi: 10.1186/1472-6750-12-36.
  • Yuan, L., C. Liangqi, T. Xiyu, and L. Jinyao. 2022. Biotechnology, bioengineering and applications of Bacillus nattokinase. Biomolecules 12 (7):980. doi: 10.3390/biom12070980.
  • Zapata-Wainberg, G., S. Quintas, A. Ximénez-Carrillo Rico, L. Benavente Fernández, J. Masjuan Vallejo, J. Gállego Culleré, M. d M. Freijó Guerrero, J. Egido, J. C. Gómez Sánchez, A. Martínez Domeño, et al. 2018. Prognostic factors and analysis of mortality due to brain haemorrhages associated with vitamin K antagonist oral anticoagulants. Results from the TAC Registry. Neurología (English Edition) 33 (7):419–26. doi: 10.1016/j.nrleng.2018.06.001.
  • Zhang, B., Y. Liu, Q. Ji, M. Zhao, J. Zeng, L. Liu, X. Xu, Y. Yan, and A. Gong. 2017. Nattokinase crude extract enhances cutaneous wound healing. Journal of Biomaterials and Tissue Engineering 7 (12):1281–6. doi: 10.1166/jbt.2017.1697.
  • Zhang, J., Y. Tang, T. Yuan, M. Yang, W. Fang, L. Li, F. Fei, and A. Gong. 2021. Nattokinase crude extract enhances oral mucositis healing. BMC Oral Health 21 (1):555. doi: 10.1186/s12903-021-01914-4.
  • Zhang, R. H., L. Xiao, Y. Peng, H. Y. Wang, F. Bai, and Y. Z. Zhang. 2005. Gene expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Letters in Applied Microbiology 41 (2):190–5. doi: 10.1111/j.1472-765X.2005.01715.x.
  • Zhang, X., X. Lyu, Y. Tong, J. Wang, J. Ye, and R. Yang. 2020. Chitosan/casein based microparticles with a bilayer shell-core structure for oral delivery of nattokinase. Food & Function 11 (12):10799–816. doi: 10.1039/d0fo02349c.
  • Zhang, X., L. J. Yun, L. B. Peng, Y. Lu, K. P. Ma, and F. Tang. 2013. Optimization of Douchi fibrinolytic enzyme production by statistical experimental methods. Journal of Huazhong University of Science and Technology. Medical Sciences = Hua Zhong ke ji da Xue Xue Bao. Yi Xue Ying De Wen Ban = Huazhong Keji Daxue Xuebao. Yixue Yingdewen Ban 33 (1):153–8. doi: 10.1007/s11596-013-1089-8.
  • Zheng, Z. L., M. Q. Ye, Z. Y. Zuo, Z. G. Liu, K. C. Tai, and G. L. Zou. 2006. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. The Biochemical Journal 395 (3):509–15. doi: 10.1042/BJ20050772.
  • Zheng, Z. L., Z. Y. Zuo, Z. G. Liu, K. C. Tsai, A. F. Liu, and G. L. Zou. 2005. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase. Journal of Molecular Graphics & Modelling 23 (4):373–80. doi: 10.1016/j.jmgm.2004.10.002.
  • Zhong, Y., L. Yang, Z. Zhu, H. Chen, C. Liu, T. Dai, and E. S. Gong. 2022. Protective effect of ovalbumin-flavonoid hydrogel on thrombolytic activity and stability of nattokinase. Food Research International (Ottawa, Ont.) 156:111188. doi: 10.1016/j.foodres.2022.111188.
  • Zhou, H. M., H. X. Zhang, Y. H. Xie, T. T. Zhou, H. Liu, and Y. B. Luo. 2013. Optimization of liquid fermentation conditions and encapsulation for nattokinase production (G. P. R. I. G. U. Guangdong Univ Technol, Trans.). 3rd International Conference on Chemical Engineering and Advanced Materials (CEAM 2013) (Vol. 781–784, pp. 1403–+). Guangzhou, PEOPLES R CHINA. doi: 10.4028/www.scientific.net/AMR.781-784.1403.
  • Zhou, L., N. Hao, X. Li, J. Chen, R. Yang, C. Song, Y. Sun, and Q. Zhang. 2020. Nattokinase mitigated dextran sulfate sodium-induced chronic colitis by regulating microbiota and suppressing tryptophan metabolism via inhibiting IDO-1. Journal of Functional Foods 75:104251. doi: 10.1016/j.jff.2020.104251.
  • Zou, Y., L. Qiu, A. Xie, W. Han, S. Zhang, J. Li, S. Zhao, Y. Li, Y. Liang, and Y. Hu. 2022. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis. Microbial Cell Factories 21 (1):173. doi: 10.1186/s12934-022-01896-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.