584
Views
8
CrossRef citations to date
0
Altmetric
Review

Crustacean shellfish allergens: influence of food processing and their detection strategies

, , , , ORCID Icon, , & show all

References

  • Abdel Rahman, A. M., S. D. Kamath, S. Gagne, A. L. Lopata, and R. Helleur. 2013. Comprehensive proteomics approach in ­characterizing and quantifying allergenic proteins from northern shrimp: Toward better occupational asthma prevention. Journal of Proteome Research 12 (2):647–56. doi: 10.1021/pr300755p.
  • Abramovitch, J. B., S. Kamath, N. Varese, C. Zubrinich, A. L. Lopata, R. E. O’Hehir, and J. M. Rolland. 2013. IgE reactivity of blue swimmer crab (Portunus pelagicus) tropomyosin, Por p 1, and other allergens; cross-reactivity with black tiger prawn and effects of heating. PloS One 8 (6):e67487. doi: 10.1371/journal.pone.0067487.
  • Amaya-González, S., N. De-los-Santos-Álvarez, A. J. Miranda-Ordieres, and M. J. Lobo-Castañón. 2013. Aptamer-based analysis: A promising alternative for food safety control. Sensors (Basel, Switzerland) 13 (12):16292–311. doi: 10.3390/s131216292.
  • Angulo-Ibáñez, A., U. Eletxigerra, X. Lasheras, S. Campuzano, and S. Merino. 2019. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta 1079:94–102. doi: 10.1016/j.aca.2019.06.030.
  • Arockiaraj, J., P. Vanaraja, S. Easwvaran, A. Singh, T. Alinejaid, R. Y. Othman, and S. Bhassu. 2011. Gene profiling and characterization of arginine kinase-1 (MrAK-1) from freshwater giant prawn (Macrobrachium rosenbergii). Fish & Shellfish Immunology 31 (1):81–9. doi: 10.1016/j.fsi.2011.04.004.
  • Asero, R., V. Pravettoni, E. Scala, and D. Villalta. 2020. House dust mite-shrimp allergen interrelationships. Current Allergy and Asthma Reports 20 (4):1–5. doi: 10.1007/s11882-020-0902-2.
  • Ayuso, R., G. Grishina, L. Bardina, T. Carrillo, C. Blanco, M. D. Ibáñez, H. A. Sampson, and K. Beyer. 2008. Myosin light chain is a novel shrimp allergen, Lit v 3. The Journal of Allergy and Clinical Immunology 122 (4):795–802. doi: 10.1016/j.jaci.2008.07.023.
  • Ayuso, R., G. Grishina, M. D. Ibáñez, C. Blanco, T. Carrillo, R. Bencharitiwong, S. Sánchez, A. Nowak-Wegrzyn, and H. A. Sampson. 2009. Sarcoplasmic calcium-binding protein is an EF-hand–type protein identified as a new shrimp allergen. The Journal of Allergy and Clinical Immunology 124 (1):114–20. doi: 10.1016/j.jaci.2009.04.016.
  • Ayuso, R., S. Sánchez-Garcia, J. Lin, Z. Fu, M. D. Ibáñez, T. Carrillo, C. Blanco, M. Goldis, L. Bardina, J. Sastre, et al. 2010. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. The Journal of Allergy and Clinical Immunology 125 (6):1286–93.e3. doi: 10.1016/j.jaci.2010.03.010.
  • Bae, S.-W., S.-Y. Choi, H.-S. Jin, C.-W. Kim, K.-E. Lee, E.-S. Kang, and J.-H. Jung. 2003. Changes of allergenecity of salted and fermented shrimp. Journal of Asthma, Allergy and Clinical Immunology 23 (1):44–52.
  • Bahadır, E. B, and M. K. Sezgintürk. 2016. Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry 82:286–306. doi: 10.1016/j.trac.2016.06.006.
  • Bauermeister, K., A. Wangorsch, L. P. Garoffo, A. Reuter, A. Conti, S. L. Taylor, J. Lidholm, A. M. Dewitt, E. Enrique, S. Vieths, et al. 2011. Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Molecular Immunology 48 (15–16):1983–92. doi: 10.1016/j.molimm.2011.06.216.
  • Binder, M., V. Mahler, B. Hayek, W. R. Sperr, M. Schöller, S. Prozell, G. Wiedermann, P. Valent, R. Valenta, and M. Duchêne. 2001. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. Journal of Immunology (Baltimore, Md.: 1950) 167 (9):5470–7. doi: 10.4049/jimmunol.167.9.5470.
  • Brassea-Estardante, H. A., O. Martínez-Cruz, J. L. Cárdenas-López, K. D. García-Orozco, A. Ochoa-Leyva, and A. A. López-Zavala. 2022. Identification of arginine kinase as an allergen of brown crab, Callinectes bellicosus, and in silico analysis of IgE-binding epitopes. Molecular Immunology 143:147–56. doi: 10.1016/j.molimm.2022.01.013.
  • Brenn, C., U. Schröder, R. Hanel, and P. M. Arbizu. 2021. A multiplex real-time PCR screening assay for routine species identification of four commercially relevant crustaceans. Food Control. 125:107986. doi: 10.1016/j.foodcont.2021.107986.
  • Byun, M.-W., J.-H. Kim, J.-W. Lee, J.-W. Park, C.-S. Hong, and I.-J. Kang. 2000. Effects of gamma radiation on the conformational and antigenic properties of a heat-stable major allergen in brown shrimp. Journal of Food Protection 63 (7):940–4. doi: 10.4315/0362-028X-63.7.940.
  • Byun, M.-W., J.-W. Lee, H.-S. Yook, C. Jo, and H.-Y. Kim. 2002. Application of gamma irradiation for inhibition of food allergy. Radiation Physics and Chemistry 63 (3-6):369–70. doi: 10.1016/S0969-806X(01)00528-X.
  • Cabanillas, B, and N. Novak. 2019. Effects of daily food processing on allergenicity. Critical Reviews in Food Science and Nutrition 59 (1):31–42. doi: 10.1080/10408398.2017.1356264.
  • Cao, J., B. Yu, L. Ma, Q. Zheng, X. Zhao, and J. Xu. 2011. Detection of shrimp-derived components in food by real-time fluorescent PCR. Journal of Food Protection 74 (10):1776–81. doi: 10.4315/0362-028X.JFP-11-020.
  • Carnés, J. 2023. Myosin heavy chain, an allergen involved in anaphylaxis to shrimp head. The Journal of Investigational Allergology and Clinical Immunology 33 (1) doi: 10.18176/jiaci.0807.
  • Carnes, J., A. Ferrer, A. J. Huertas, C. Andreu, C. H. Larramendi, and E. Fernandez-Caldas. 2007. The use of raw or boiled crustacean extracts for the diagnosis of seafood allergic individuals. Annals of Allergy Asthma & Immunology 98 (4):349–54. doi: 10.1016/S1081-1206(10)60881-2.
  • Castell-Perez, M. E, and R. G. Moreira. 2021. Irradiation and consumers acceptance. Innovative Food Processing Technologies 122:122–35. doi: 10.1016/B978-0-12-815781-7.00015-9.
  • Chao, E., H.-W. Kim, and D. L. Mykles. 2010. Cloning and tissue expression of eleven troponin-C isoforms in the American lobster, Homarus americanus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 157 (1):88–101. doi: 10.1016/j.cbpb.2010.05.007.
  • Chen, H. L., M. J. Cao, Q. F. Cai, W. J. Su, H. Y. Mao, and G. M. Liu. 2013. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii). Food Chemistry 139 (1–4):213–23. doi: 10.1016/j.foodchem.2013.01.119.
  • Chen, Q., X.-D. Pan, and B.-F. Huang. 2017. Authentication of shrimp muscle in complex foodstuff by in-solution digestion and high-resolution mass spectrometry. RSC Advances 7 (52):32903–8. doi: 10.1039/C7RA04967F.
  • Cheng, J. H., H. Wang, and D. W. Sun. 2022. An overview of tropomyosin as an important seafood allergen: Structure, cross‐reactivity, epitopes, allergenicity, and processing modifications. Comprehensive Reviews in Food Science and Food Safety 21 (1):127–47. doi: 10.1111/1541-4337.12889.
  • Chinnappan, R., A. A. Rahamn, R. AlZabn, S. Kamath, A. L. Lopata, K. M. Abu-Salah, and M. Zourob. 2020. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chemistry 314:126133. doi: 10.1016/j.foodchem.2019.126133.
  • Chuang, J. G., S. N. Su, B. L. Chiang, H. J. Lee, and L. P. Chow. 2010. Proteome mining for novel IgE‐binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10 (21):3854–67. doi: 10.1002/pmic.201000348.
  • Costa, J., C. Villa, K. Verhoeckx, T. Cirkovic-Velickovic, D. Schrama, P. Roncada, P. M. Rodrigues, C. Piras, L. Martín-Pedraza, L. Monaci, et al. 2022. Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy & Immunology 62 (1):1–36. doi: 10.1007/s12016-020-08826-1.
  • Davis, C. M., R. S. Gupta, O. N. Aktas, V. Diaz, S. D. Kamath, and A. L. Lopata. 2020. Clinical management of seafood allergy. The Journal of Allergy and Clinical Immunology. In Practice 8 (1):37–44. doi: 10.1016/j.jaip.2019.10.019.
  • De Marchi, L., A. Wangorsch, and G. Zoccatelli. 2021. Allergens from edible insects: Cross-reactivity and effects of processing. Current Allergy and Asthma Reports 21 (5):1–12. doi: 10.1007/s11882-021-01012-z.
  • Dong, X, and V. Raghavan. 2022. Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends in Food Science & Technology 124:334–44. doi: 10.1016/j.tifs.2022.04.024.
  • Dong, X., J. Wang, and V. Raghavan. 2020. Effects of high-intensity ultrasound processing on the physiochemical and allergenic ­properties of shrimp. Innovative Food Science & Emerging Technologies 65:102441. doi: 10.1016/j.ifset.2020.102441.
  • Dong, X., J. Wang, and V. Raghavan. 2021. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Critical Reviews in Food Science and Nutrition 61 (2):196–210. doi: 10.1080/10408398.2020.1722942.
  • Eischeid, A. C. 2016. Development and evaluation of a real-time PCR assay for detection of lobster, a crustacean shellfish allergen. Food Control. 59:393–9. doi: 10.1016/j.foodcont.2015.06.013.
  • Eischeid, A. C. 2022. Detection of krill in foods using real-time PCR. Food Analytical Methods doi: 10.1007/s12161-022-02357.
  • Eischeid, A. C., B-h Kim, and S. M. Kasko. 2013. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens. Journal of Agricultural and Food Chemistry 61 (24):5669–74. doi: 10.1021/jf3031524.
  • Eischeid, A. C, and S. R. Stadig. 2018. A group-specific, quantitative real-time PCR assay for detection of crab, a crustacean shellfish allergen, in complex food matrices. Food Chemistry 244:224–31. doi: 10.1016/j.foodchem.2017.10.045.
  • Eischeid, A. C., S. R. Stadig, and P. Rallabhandi. 2021. Comparison of real-time PCR and ELISA for the detection of crustacean shellfish allergens. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (4):563–72. doi: 10.1080/19440049.2021.1874061.
  • Ekezie, F.-G C., J.-H. Cheng, and D.-W. Sun. 2018. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science & Technology 74:12–25. doi: 10.1016/j.tifs.2018.01.007.
  • Ekezie, F. G. C., D. W. Sun, and J. H. Cheng. 2019. Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chemistry 300:125143. doi: 10.1016/j.foodchem.2019.125143.
  • Faisal, M., R. Buckow, T. Vasiljevic, and O. Donkor. 2019. Effect of simulated digestion on antigenicity of banana prawn (Fenneropenaeus merguiensis) after high pressure processing at different temperatures. Food Control. 104:187–92. doi: 10.1016/j.foodcont.2019.04.044.
  • Fan, S., J. Ma, C. Li, Y. Wang, W. Zeng, Q. Li, J. Zhou, L. Wang, Y. Wang, and Y. Zhang. 2022. Determination of tropomyosin in shrimp and crab by liquid chromatography–tandem mass spectrometry based on immunoaffinity purification. Frontiers in Nutrition 9:848294. doi: 10.3389/fnut.2022.848294.
  • FAO. 2020. The state of world fisheries and aquaculture 2020. Sustainability in Action, Food and Agriculture Organization of the United Nations, Rome doi: 10.4060/ca9229en.
  • Fernandes, T. J., J. Costa, M. B. P. Oliveira, and I. Mafra. 2018. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens. Journal of Food Composition and Analysis 72:7–14. doi: 10.3389/fnut.2022.848294.
  • Fu, L., C. Wang, Y. Zhu, and Y. Wang. 2019. Seafood allergy: Occurrence, mechanisms and measures. Trends in Food Science & Technology 88:80–92. doi: 10.1016/j.tifs.2019.03.025.
  • Fu, L., M. Xie, C. Wang, Y. Qian, J. Huang, Z. Sun, H. Zhang, and Y. Wang. 2020. Lactobacillus Casei Zhang alleviates shrimp tropomyosin‐induced food allergy by switching antibody isotypes through the NF‐κB‐dependent immune tolerance. Molecular Nutrition & Food Research 64 (10):1900496. doi: 10.1002/mnfr.201900496.
  • Fuller, H. R., P. R. Goodwin, and G. E. Morris. 2006. An enzyme-linked immunosorbent assay (ELISA) for the major crustacean allergen, tropomyosin, in food. Food and Agricultural Immunology 17 (1):43–52. doi: 10.1080/09540100600572651.
  • García-Orozco, K. D., E. Aispuro-Hernández, G. Yepiz-Plascencia, A. M. Calderón-de-la-Barca, and R. R. Sotelo-Mundo. 2007. Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. International Archives of Allergy and Immunology 144 (1):23–8. doi: 10.1159/000102610.
  • Gendel, S. M. 2012. Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology : RTP 63 (2):279–85. doi: 10.1016/j.yrtph.2012.04.007.
  • Guan, A., K. Mei, M. Lv, J. Lu, Q. Lou, and W. Yang. 2018. The effect of electron beam irradiation on IgG binding capacity and conformation of tropomyosin in shrimp. Food Chemistry 264:250–4. doi: 10.1016/j.foodchem.2018.05.051.
  • Guillen, D., A. Fiandor, V. Del Pozo, M. Pedrosa, E. Phillips-Angles, T. Caballero, and S. Quirce. 2014. Anaphylaxis caused by hemocyanin contained in shrimp cephalothorax. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology 113 (6):674–5.e672. doi: 10.1016/j.anai.2014.09.011.
  • Ha, A., R. Misnan, and M. Mudhafar. 2021. Major and minor allergen IgE reactivity of purple mud crab (Scylla tranquebarica) against a cross-reactive allergen in crustacean and molluscs in patients with a seafood allergy. Research Journal of Pharmacy and Technology 14 (1):239–44. doi: 10.5958/0974-360X.2021.00042.1.
  • Hazebrouck, S., N. Canon, and S. C. Dreskin. 2022. The effector function of allergens. Frontiers in Allergy 3:818732. doi: 10.3389/falgy.2022.818732.
  • Herrero, B., J. M. Vieites, and M. Espiñeira. 2012. Fast real-time PCR for the detection of crustacean allergen in foods. Journal of Agricultural and Food Chemistry 60 (8):1893–7. doi: 10.1021/jf2043532.
  • Hidayat, R, and P. Wulandari. 2021. Enzyme linked immunosorbent assay (ELISA) technique guideline. Bioscientia Medicina : Journal of Biomedicine and Translational Research 5 (5):447–53. doi: 10.32539/bsm.v5i5.228.
  • Ho, C.-W., J.-L. Hsu, S.-H. Chen, E.-T. Liaw, S.-S. Liu, E. S. Huang, Y.-K. Chen, C.-C. Jean Huang, and H.-S. Yu. 2021. Development and validation of mass spectrometry-based method for detecting shrimp allergen tropomyosin. LWT-Food Science and Technology 152:112367. doi: 10.1016/j.lwt.2021.112367.
  • Hoffman, D., E. Day, Jr, and J. Miller. 1981. The major heat stable allergen of shrimp. Annals of Allergy 47 (1):17–22.
  • Holmes, K. C, and W. Lehman. 2008. Gestalt-binding of tropomyosin to actin filaments. Journal of Muscle Research and Cell Motility 29 (6-8):213–9. doi: 10.1007/s10974-008-9157-6.
  • Holzhauser, T., P. Johnson, J. P. Hindley, G. O’Connor, C.-H. Chan, J. Costa, C. K. Faeste, B. J. Hirst, F. Lambertini, M. Miani, et al. 2020. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods? Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 145:111709. doi: 10.1016/j.fct.2020.111709.
  • Hoppe, S., H. Steinhart, and A. Paschke. 2006. Identification of a 28 kDa lychee allergen as a triose-phosphate isomerase. Food and Agricultural Immunology 17 (1):9–19. doi: 10.1080/09540100500538307.
  • Hu, M.-J., G.-Y. Liu, Y. Yang, T.-M. Pan, Y.-X. Liu, L.-C. Sun, M.-J. Cao, and G.-M. Liu. 2017. Cloning, expression, and the effects of processing on sarcoplasmic-calcium-binding protein: An important allergen in mud crab. Journal of Agricultural and Food Chemistry 65 (30):6247–57. doi: 10.1021/acs.jafc.7b02381.
  • Huan, F., T.-J. Han, M. Liu, M.-S. Li, Y. Yang, Q.-M. Liu, D. Lai, M.-J. Cao, and G.-M. Liu. 2021. Identification and characterization of Crassostrea angulata arginine kinase, a novel allergen that causes cross-reactivity among shellfish. Food & Function 12 (20):9866–79. doi: 10.1039/D1FO02042K.
  • James, J. K., D. H. Pike, K. I. John, and N. Vikas. 2018. Structural and dynamic properties of allergen and non-allergen forms of tropomyosin. Structure (London, England : 1993) 26 (7):997–1006.e5. doi: 10.1016/j.str.2018.05.002.
  • Jasim, H. A., R. Misnan, Z. H. M. Yadzir, N. Abdullah, F. Bakhtiar, M. Arip, H. M. Ateshan, and P. B. Keong. 2021. Identification of common and novel major crab allergens in Scylla tranquebarica and the allergen stability in untreated and vinegar-treated crab identification of major crab allergens in Scylla tranquebarica. Iranian Journal of Allergy, Asthma, and Immunology 20 (1):76–87. doi: 10.18502/ijaai.v20i1.5414.
  • Jeoung, B., G. Reese, P. Hauck, J. Oliver, C. Daul, and S. Lehrer. 1997. Quantification of the major brown shrimp allergen Pen a 1 (tropomyosin) by a monoclonal antibody-based sandwich ELISA. Journal of Allergy and Clinical Immunology 100 (2):229–34. doi: 10.1016/S0091-6749(97)70229-X.
  • Jiang, D., J. Ji, L. An, X. Sun, Y. Zhang, G. Zhang, and L. Tang. 2013. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin). Biosensors & Bioelectronics 50:150–6. doi: 10.1016/j.bios.2013.06.032.
  • Jiang, D., P. Zhu, H. Jiang, J. Ji, X. Sun, W. Gu, and G. Zhang. 2015. Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors & Bioelectronics 70:482–90. doi: 10.1016/j.bios.2015.03.058.
  • Johnson, P. E., I. Van der Plancken, A. Balasa, F. A. Husband, T. Grauwet, M. Hendrickx, D. Knorr, E. N. C. Mills, and A. R. Mackie. 2010. High pressure, thermal and pulsed electric‐field‐induced structural changes in selected food allergens. Molecular Nutrition & Food Research 54 (12):1701–10. doi: 10.1002/mnfr.201000006.
  • Kalyanasundaram, A, and T. C. Santiago. 2015. Identification and characterization of new allergen troponin C (Pen m 6.0101) from Indian black tiger shrimp Penaeus monodon. European Food Research and Technology 240 (3):509–15. doi: 10.1007/s00217-014-2349-y.
  • Kamath, S. D., A. M. A. Rahman, T. Komoda, and A. L. Lopata. 2013. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chemistry 141 (4):4031–9. doi: 10.1016/j.foodchem.2013.06.105.
  • Kamath, S. D., Rahman, A. M. A. Voskamp, A. Komoda, T. Rolland, J. M. O’Hehir, R. E, and Lopata, A. L. 2014. Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: A comprehensive allergenomic approach. Molecular Nutrition & Food Research 58 (5):1144–55. doi: 10.1002/mnfr.201300584.
  • Kamath, S. D., M. R. Thomassen, S. R. Saptarshi, H. M. Nguyen, L. Aasmoe, B. E. Bang, and A. L. Lopata. 2014. Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities. International Journal of Hygiene and Environmental Health 217 (7):740–50. doi: 10.1016/j.ijheh.2014.03.006.
  • Kang, T. S. 2019. Rapid and simple identification of two closely-related snow crabs (Chionoecetes opilio and C. japonicus) by direct triplex PCR. LWT- Food Science and Technology 99:562–7. doi: 10.1016/j.lwt.2018.09.078.
  • Khan, M. U., I. Ahmed, H. Lin, Z. Li, J. Costa, I. Mafra, Y. Chen, and Y.-N. Wu. 2019. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Critical Reviews in Food Science and Nutrition 59 (17):2807–30. doi: 10.1080/10408398.2018.1471658.
  • Khan, M. U., H. Lin, I. Ahmed, Y. Chen, J. Zhao, T. Hang, B. P. Dasanayaka, and Z. Li. 2021. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Comprehensive Reviews in Food Science and Food Safety 20 (5):4480–510. doi: 10.1111/1541-4337.12793.
  • Khanaruksombat, S., C. Srisomsap, D. Chokchaichamnankit, P. Punyarit, and P. Phiriyangkul. 2014. Identification of a novel allergen from muscle and various organs in banana shrimp (Fenneropenaeus merguiensis). Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology 113 (3):301–6. doi: 10.1016/j.anai.2014.06.002.
  • Khedri, M., M. Ramezani, H. Rafatpanah, and K. Abnous. 2018. Detection of food-born allergens with aptamer-based biosensors. TrAC Trends in Analytical Chemistry 103:126–36. doi: 10.1016/j.trac.2018.04.001.
  • Kim, D. G., Y. Choi, and H. S. Kim. 2021. Epitopes of protein binders are related to the structural flexibility of a target protein surface. Journal of Chemical Information and Modeling 61 (4):2099–107. doi: 10.1021/acs.jcim.0c01397.
  • Kim, M.-J., H.-I. Kim, J.-H. Kim, S.-M. Suh, and H.-Y. Kim. 2019. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system. Food Science and Biotechnology 28 (2):591–7. doi: 10.1007/s10068-018-0479-x.
  • Koeberl, M., D. Clarke, and A. L. Lopata. 2014. Next generation of food allergen quantification using mass spectrometric systems. Journal of Proteome Research 13 (8):3499–509. doi: 10.1021/pr500247r.
  • Koeberl, M., S. D. Kamath, S. R. Saptarshi, M. J. Smout, J. M. Rolland, R. E. O’Hehir, and A. L. Lopata. 2014. Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from King prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics. Journal of Immunological Methods 415:6–16. doi: 10.1016/j.jim.2014.10.008.
  • Koizumi, D., K. Shirota, R. Akita, H. Oda, and H. Akiyama. 2014. Development and validation of a lateral flow assay for the detection of crustacean protein in processed foods. Food Chemistry 150:348–52. doi: 10.1016/j.foodchem.2013.10.130.
  • Korte, R., J.-M. Monneuse, E. Gemrot, I. Metton, H.-U. Humpf, and J. Brockmeyer. 2016. New high-performance liquid chromatography coupled mass spectrometry method for the detection of lobster and shrimp allergens in food samples via multiple reaction monitoring and multiple reaction monitoring cubed. Journal of Agricultural and Food Chemistry 64 (31):6219–27. doi: 10.1021/acs.jafc.6b02620.
  • Laly, S. J., T. V. Sankar, and S. K. Panda. 2022. Effect of pressure cooking alone and in combination with other treatments on shrimp allergic protein, tropomyosin. Journal of Food Science and Technology 59 (3):1193–201. doi: 10.1007/s13197-021-05124-2.
  • Lasekan, A. O, and B. Nayak. 2016. Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen. Food Chemistry 200:146–53. doi: 10.1016/j.foodchem.2016.01.015.
  • Laurchan, P., T. E-kobon, P. Srisapoome, S. Unajak, and C. Sinthuvanich. 2021. Molecular characterization and cross-allergenicity of tropomyosin from freshwater crustaceans. Journal of Agricultural and Food Chemistry 69 (29):8247–56. doi: 10.1021/acs.jafc.1c00934.
  • Lee, C.-H., C.-C. Wu, Y.-C. Tyan, W.-T. Yu, E. S. HuanG, and H.-S. Yu. 2018. Identification of pyruvate kinase as a novel allergen in whiteleg shrimp (Litopenaeus vannamei) by specific-IgE present in patients with shrimp allergy. Food Chemistry 258:359–65. doi: 10.1016/j.foodchem.2018.03.088.
  • Leung, P. S., Y. C. Chen, D. L. Mykles, W. K. Chow, C. P. Li, and K. H. Chu. 1998. Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen. Molecular Marine Biology and Biotechnology 7 (1):12–20.
  • Li, H., T. Li, Y. Wang, S. Zhang, H. Sheng, and L. Fu. 2022. Liquid chromatography coupled to tandem mass spectrometry for comprehensive quantification of crustacean tropomyosin and arginine kinase in food matrix. Food Control. 140:109137. doi: 10.1016/j.foodcont.2022.109137.
  • Li, J., H. Wang, and J.-H. Cheng. 2021. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications. Critical Reviews in Food Science and Nutrition . doi: 10.1080/10408398.2021.1944977.
  • Li, M.-S., F. Xia, M. Liu, X.-R. He, Y.-Y. Chen, T.-L. Bai, G.-X. Chen, L. Wang, M.-J. Cao, and G.-M. Liu. 2019. Cloning, expression, and epitope identification of myosin light chain 1: An allergen in mud crab. Journal of Agricultural and Food Chemistry 67 (37):10458–69. doi: 10.1021/acs.jafc.9b04294.
  • Li, R., Y. Zhang, J. Zhao, Y. Wang, H. Wang, Z. Zhang, H. Lin, and Z. Li. 2022. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. Journal of Food Composition and Analysis 114:104776. doi: 10.1016/j.jfca.2022.104776.
  • Li, X., Z. Li, H. Lin, and H. Samee. 2011. Effect of power ultrasound on the immunoactivity and texture changes of shrimp (Penaeus vannamei). Czech Journal of Food Sciences 29 ( 5):508–14. doi: 10.17221/242/2009-CJFS.
  • Li, Z., H. Lin, L-m Cao, and K. Jameel. 2006. Effect of high intensity ultrasound on the allergenicity of shrimp. Journal of Zhejiang University. Science. B 7 (4):251–6.
  • Li, Z., L. Cao, and K. Jamil. 2006. Reduction of allergenic properties of shrimp (Penaeus vannamei) allergens by high intensity ultrasound. European Food Research and Technology 223 (5):639–44. doi: 10.1007/s00217-005-0246-0.
  • Li, Z., H. Lin, L. Cao, and K. Jamil. 2007. Impact of irradiation and thermal processing on the immunoreactivity of shrimp (Penaeus vannamei) proteins. Journal of the Science of Food and Agriculture 87 (6):951–6. doi: 10.1002/jsfa.2746.
  • Li, Z., Yiqun, Zhang, Y. Lin, H. Haider, S, and Jie, J. 2010. Quantitative analysis of shrimp allergen in food matrices using a protein chip based on sandwich immunoassay. European Food Research and Technology 231 (1):47–54. doi: 10.1007/s00217-010-1252-4.
  • Lin, S. Y., C. H. Lee, E. Huang, S. C. Sheu, and H. S. Yu. 2018. Quantification of crustacean tropomyosin, a major food allergen, in eight species of Taiwanese shrimp based on immunoassay. Food Analytical Methods 11 (9):2607–13. doi: 10.1007/s12161-018-1242-x.
  • Liu, G.-Y., X.-J. Mei, M.-J. Hu, Y. Yang, M. Liu, M.-S. Li, M.-L. Zhang, M.-J. Cao, and G.-M. Liu. 2018. Analysis of the allergenic epitopes of tropomyosin from mud crab using phage display and site-directed mutagenesis. Journal of Agricultural and Food Chemistry 66 (34):9127–37. doi: 10.1021/acs.jafc.8b03466.
  • Liu, G. M., H. Cheng, J. B. Nesbit, W. J. Su, M. J. Cao, and S. J. Maleki. 2010. Effects of boiling on the igE-binding properties of tropomyosin of shrimp (Litopenaeus vannamei). Journal of Food Science 75 (1):T1–T5. doi: 10.1111/j.1750-3841.2009.01391.x.
  • Liu, M., G.-Y. Liu, Y. Yang, X.-J. Mei, H. Yang, Y. Li, M.-J. Cao, and G.-M. Liu. 2018. Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain. Lwt 98:559–67. doi: 10.1016/j.lwt.2018.09.027.
  • Liu, M., S.-H. Liu, T.-J. Han, F. Xia, M.-S. Li, W.-Y. Weng, G.-X. Chen, M.-J. Cao, and G.-M. Liu. 2019. Effects of thermal processing on digestion stability and immunoreactivity of the Litopenaeus vannamei matrix. Food & Function 10 (9):5374–85. doi: 10.1039/C9FO00971J.
  • Liu, Y., Z. Li, T. Pavase, Z. Li, Y. Liu, and N. Wang. 2017. Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin. Food and Agricultural Immunology 28 (2):189–201. doi: 10.1080/09540105.2016.1251394.
  • Liu, Z., L. Xia, Y. Wu, Q. Xia, J. Chen, and K. H. Roux. 2009. Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. International Archives of Allergy and Immunology 150 (1):8–14. doi: 10.1159/000210375.
  • Long, F., X. Yang, R. Wang, X. Hu, and F. Chen. 2015. Effects of combined high pressure and thermal treatments on the allergenic potential of shrimp (Litopenaeus vannamei) tropomyosin in a mouse model of allergy. Innovative Food Science & Emerging Technologies 29:119–24. doi: 10.1016/j.ifset.2015.03.002.
  • Lopata, A. L, and M. F. Jeebhay. 2013. Airborne seafood allergens as a cause of occupational allergy and asthma. Current Allergy and Asthma Reports 13 (3):288–97. doi: 10.1007/s11882-013-0347-y.
  • Lopez-Zavala, A. A., R. R. Sotelo-Mundo, K. D. Garcia-Orozco, F. Isac-Martinez, L. G. Brieba, and E. Rudiño-Piñera. 2012. Crystallization and X-ray diffraction studies of arginine kinase from the white Pacific shrimp Litopenaeus vannamei. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68 (Pt 7):783–5. doi: 10.1107/S1744309112020180.
  • Mäde, D, and D. Rohmberger. 2017. Development of sensitive and specific real-time PCR systems for the detection of crustaceans in food. European Food Research and Technology 243 (12):2105–13. doi: 10.1007/s00217-017-2911-5.
  • Madesis, P., I. Ganopoulos, I. Sakaridis, A. Argiriou, and A. Tsaftaris. 2014. Advances of DNA-based methods for tracing the botanical origin of food products. Food Research International 60:163–72. doi: 10.1016/j.foodres.2013.10.042.
  • Lamara Mahammed, L., B. Belaid, L. M. Berkani, F. Merah, S. Y. Rahali, A. Ait Kaci, I. Berkane, W. Sayah, I. Allam, and R. Djidjik. 2022. Shrimp sensitization in house dust mite algerian allergic patients: A single center experience. The World Allergy Organization Journal 15 (4):100642. doi: 10.1016/j.waojou.2022.100642.
  • Mendes, C., J. Costa, A. A. Vicente, M. B. P. Oliveira, and I. Mafra. 2019. Cashew nut allergy: Clinical relevance and allergen characterisation. Clinical Reviews in Allergy & Immunology 57 (1):1–22. doi: 10.1007/s12016-016-8580-5.
  • Mfueni, E., A. P. Gama, P. Kabambe, M. Chimbaza, G. Matita, and L. Matumba. 2018. Food allergen labeling in developing countries: Insights based on current allergen labeling practices in Malawi. Food Control. 84:263–7. doi: 10.1016/j.foodcont.2017.08.007.
  • Mita, H., A. Koketsu, S. Ishizaki, and K. Shiomi. 2013. Molecular cloning and functional expression of allergenic sarcoplasmic calcium‐binding proteins from Penaeus shrimps. Journal of the Science of Food and Agriculture 93 (7):1737–42. doi: 10.1002/jsfa.5961.
  • Muanghorn, W., N. Konsue, H. Sham, Z. Othman, F. Mohamed, N. Mohd Noor, N. Othman, N. S. S. Mohd Noor Akmal, N. Ahmad Fauzi, M. M. Packiamuthu Dewaprigam Solomen, et al. 2018. Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii). Journal of Food Science and Technology 55 (5):1960–5. doi: 10.1007/s13197-018-3104-3.
  • Munera, M., D. Martinez, J. Wortmann, J. Zakzuk, W. Keller, L. Caraballo, and L. Puerta. 2022. Structural and allergenic properties of the fatty acid binding protein from shrimp Litopenaeus vannamei. Allergy 77 (5):1534–44. doi: 10.1111/all.15154.
  • Nagai, H., T. Minatani, and K. Goto. 2015. Development of a method for crustacean allergens using liquid chromatography/tandem mass spectrometry. Journal of AOAC International 98 (5):1355–65. doi: 10.5740/jaoacint.14-248.
  • Neethirajan, S., X. Weng, A. Tah, J. Cordero, and K. Ragavan. 2018. Nano-biosensor platforms for detecting food allergens–New trends. Sensing and Bio-Sensing Research 18:13–30. doi: 10.1016/j.sbsr.2018.02.005.
  • Noor Azam, N. F., N. F. Mohd-Naim, C. P. Kurup, and M. U. Ahmed. 2020. Electrochemiluminescence immunosensor for tropomyosin using carbon nanohorns/Nafion/Fe3O4@ Pd screen-printed electrodes. Microchimica Acta 187 (8):1–9. doi: 10.1007/s00604-020-04440-2.
  • Nowak-Wegrzyn, A, and A. Fiocchi. 2009. Rare, medium, or well done? The effect of heating and food matrix on food protein ­allergenicity. Current Opinion in Allergy and Clinical Immunology 9 (3):234–7. doi: 10.1097/ACI.0b013e32832b88e7.
  • Ogura, T., R. Clifford, and U. Oppermann. 2019. Simultaneous detection of 13 allergens in thermally processed food using targeted LC–MS/MS approach. Journal of AOAC International 102 (5):1316–29. doi: 10.1093/jaoac/102.5.1316.
  • Olianas, A., M. T. Sanna, I. Messana, M. Castagnola, D. Masia, B. Manconi, A. Cau, B. Giardina, and M. Pellegrini. 2006. The hemocyanin of the shamefaced crab Calappa granulata: Structural-functional characterization. Journal of Biochemistry 139 (6):957–66. doi: 10.1093/jb/mvj110.
  • Park, J.-G., H. Saeki, A. Nakamura, K.-B.-W.-R. Kim, J.-W. Lee, M.-W. Byun, and D.-H. Ahn. 2007. Allergenicity changes in raw shrimp (Acetes japonicus) and saeujeot (salted and fermented shrimp) in cabbage Kimchi due to fermentation conditions. Food Science and Biotechnology 16 (6):1011–7.
  • Pascal, M., G. Grishina, A. C. Yang, S. Sánchez-García, J. Lin, D. Towle, M. D. Ibañez, J. Sastre, H. A. Sampson, and R. Ayuso. 2015. Molecular diagnosis of shrimp allergy: Efficiency of several allergens to predict clinical reactivity. The Journal of Allergy and Clinical Immunology. In Practice 3 (4):521–9.e10. doi: 10.1016/j.jaip.2015.02.001.
  • Pastor, C., J. Cuesta-Herranz, B. Cases, M. Pérez-Gordo, E. Figueredo, M. De Las Heras, and F. Vivanco. 2009. Identification of major allergens in watermelon. International Archives of Allergy and Immunology 149 (4):291–8. doi: 10.1159/000205574.
  • Pi, X., Y. Yang, Y. Sun, Q. Cui, Y. Wan, G. Fu, H. Chen, and J. Cheng. 2022. Recent advances in alleviating food allergenicity through fermentation. Critical Reviews in Food Science and Nutrition 62 (26):7255–68. doi: 10.1080/10408398.2021.1913093.
  • Pi, X., Y. Yang, Y. Sun, X. Wang, Y. Wan, G. Fu, X. Li, and J. Cheng. 2022. Food irradiation: A promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition 62 (24):6698–713. doi: 10.1080/10408398.2021.1904822.
  • Piboonpocanun, S., O. Jirapongsananuruk, T. Tipayanon, S. Boonchoo, and R. E. Goodman. 2011. Identification of hemocyanin as a novel non‐cross‐reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii. Molecular Nutrition & Food Research 55 (10):1492–8. doi: 10.1002/mnfr.201000602.
  • Picariello, G., G. Mamone, F. Addeo, and P. Ferranti. 2011. The frontiers of mass spectrometry-based techniques in food allergenomics. Journal of Chromatography. A 1218 (42):7386–98. doi: 10.1016/j.chroma.2011.06.033.
  • Pilolli, R., L. Monaci, and A. Visconti. 2013. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends in Analytical Chemistry 47:12–26. doi: 10.1016/j.trac.2013.02.005.
  • Polinski, J. M., A. V. Zimin, K. F. Clark, A. B. Kohn, N. Sadowski, W. Timp, A. Ptitsyn, P. Khanna, D. Y. Romanova, P. Williams, et al. 2021. The American lobster genome reveals insights on longevity, neural, and immune adaptations. Science Advances 7 (26) eabe8290. doi: 10.1126/sciadv.abe8290.
  • Rahaman, T., T. Vasiljevic, and L. Ramchandran. 2016. Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science & Technology 49:24–34. doi: 10.1016/j.tifs.2016.01.001.
  • Rahman, A. M., A. Lopata, A. L. Randell, E. W, and Helleur, R. J. 2010. Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry. Analytica Chimica Acta 681 (1-2):49–55. doi: 10.1016/j.aca.2010.09.040.
  • Reese, G., R. Ayuso, and S. B. Lehrer. 1999. Tropomyosin: An invertebrate pan-allergen. International Archives of Allergy and Immunology 119 (4):247–58. doi: 10.1159/000024201.
  • Ruethers, T., A. C. Taki, E. B. Johnston, R. Nugraha, T. T. K. Le, T. Kalic, T. R. McLean, S. D. Kamath, and A. L. Lopata. 2018. Seafood allergy: A comprehensive review of fish and shellfish allergens. Molecular Immunology 100:28–57. doi: 10.1016/j.molimm.2018.04.008.
  • Saremnezhad, S., M. Soltani, A. Faraji, and A. A. Hayaloglu. 2021. Chemical changes of food constituents during cold plasma processing: A review. Food Research International (Ottawa, Ont.) 147:110552. doi: 10.1016/j.foodres.2021.110552.
  • Seiki, K., H. Oda, H. Yoshioka, S. Sakai, A. Urisu, H. Akiyama, and Y. Ohno. 2007. A reliable and sensitive immunoassay for the determination of crustacean protein in processed foods. Journal of Agricultural and Food Chemistry 55 (23):9345–50. doi: 10.1021/jf0715471.
  • Shanti, K. N., B. M. Martin, S. Nagpal, D. D. Metcalfe, and P. Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. Journal of Immunology (Baltimore, Md.: 1950) 151 (10):5354–63.
  • Shen, H.-W., M.-J. Cao, Q.-F. Cai, M.-M. Ruan, H.-Y. Mao, W.-J. Su, and G.-M. Liu. 2012. Purification, cloning, and immunological characterization of arginine kinase, a novel allergen of Octopus fangsiao. Journal of Agricultural and Food Chemistry 60 (9):2190–9. doi: 10.1021/jf203779w.
  • Sheu, S.-C., M.-T. Yu, Y.-Y. Lien, and M.-S. Lee. 2020. Development of a specific isothermal nucleic acid amplification for the rapid and sensitive detection of shrimp allergens in processed food. Food Chemistry 332:127389. doi: 10.1016/j.foodchem.2020.127389.
  • Shi, L., X. C. Wang, Y. Liu, and Y. Lu. 2011. Rapid detection of shellfish major allergen tropomyosin using superparamagnetic nanoparticle-based lateral flow immunoassay. Advanced Materials Research 311–313:436–45. doi: 10.4028/www.scientific.net/AMR.311-313.436.
  • Shiomi, K., Y. Sato, S. Hamamoto, H. Mita, and K. Shimakura. 2008. Sarcoplasmic calcium-binding protein: Identification as a new allergen of the black tiger shrimp Penaeus monodon. International Archives of Allergy and Immunology 146 (2):91–8. doi: 10.1159/000113512.
  • Shriver, S., W. Yang, S.-Y. Chung, and S. Percival. 2011. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract. International Journal of Environmental Research and Public Health 8 (7):2569–83. doi: 10.3390/ijerph8072569.
  • Sicherer, S. H., A. Muñoz-Furlong, and H. A. Sampson. 2004. Prevalence of seafood allergy in the United States determined by a random telephone survey. Journal of Allergy and Clinical Immunology 114 (1):159–65. doi: 10.1016/j.jaci.2004.04.018.
  • Soon, J. M., and I. R. A. Wahab. 2021. Global food recalls and alerts associated with labelling errors and its contributory factors. Trends in Food Science & Technology 118:791–8. doi: 10.1016/j.tifs.2021.11.001.
  • Sudharson, S., T. Kalic, C. Hafner, and H. Breiteneder. 2021. Newly defined allergens in the WHO/IUIS allergen nomenclature database during 01/2019–03/2021. Allergy 76 (11):3359–73. doi: 10.1111/all.15021.
  • Sun, X,Zhang, Yinz.,Shao, J.,Shen, L.,Qian, H.,Zhu, W. 2010. A quartz crystal microbalance-based immunosensor for shrimp allergen determination in food. European Food Research and Technology 231 (4):563–70. doi: 10.1007/s00217-010-1305-8.
  • Tabrizi, M. A., M. Shamsipur, R. Saber, S. Sarkar, and V. Ebrahimi. 2017. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosensors & Bioelectronics 98:113–8. doi: 10.1016/j.bios.2017.06.040.
  • Taylor, S. L, and S. L. Hefle. 2006. Food allergen labeling in the USA and Europe. Current Opinion in Allergy and Clinical Immunology 6 (3):186–90. doi: 10.1097/01.all.0000225158.75521.ad.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, and M. Hashemi. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition 58 (15):2583–97. doi: 10.1080/10408398.2017.1335689.
  • Torre, R., M. Freitas, E. ía Costa‐Rama, H. P. Nouws, and C. Delerue‐Matos. 2022. Food allergen control: Tropomyosin analysis through electrochemical immunosensing. Food Chemistry 396:133659. doi: 10.1016/j.foodchem.2022.133659.
  • Torre, R., M. Freitas, E. Costa-Rama, H. P. Nouws, and C. Delerue-Matos. 2021. Tropomyosin analysis in foods using an electrochemical immunosensing approach. Chemistry Proceedings, 5(1), 62. doi: 10.3390/CSAC2021-10471.
  • Uda, K., N. Fujimoto, Y. Akiyama, K. Mizuta, K. Tanaka, W. R. Ellington, and T. Suzuki. 2006. Evolution of the arginine kinase gene family. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics 1 (2):209–18. doi: 10.1016/j.cbd.2005.10.007.
  • Villa, C., J. Costa, and I. Mafra. 2020. Lupine allergens: Clinical relevance, molecular characterization, cross‐reactivity, and detection strategies. Comprehensive Reviews in Food Science and Food Safety 19 (6):3886–915. doi: 10.1111/1541-4337.12646.
  • Wai, C. Y. Y., N. Y. H. Leung, A. S. Y. Leung, S. M. Ngai, P. Pacharn, Y. S. Yau, J. S. D. Rosa Duque, M. Y. W. Kwan, O. Jirapongsananuruk, W. H. Chan, et al. 2022. Comprehending the allergen repertoire of shrimp for precision molecular diagnosis of shrimp allergy. Allergy 77 (10):3041–51. doi: 10.1111/all.15370.
  • Wai, C. Y, and P. S. Leung. 2022. Emerging approaches in the diagnosis and therapy in shellfish allergy. Current Opinion in Allergy and Clinical Immunology 22 (3):202–12. doi: 10.1097/ACI.0000000000000827.
  • Wang, J., M. Ge, L. Sun, I. Ahmed, W. Li, H. Lin, H. Lin, and Z. Li. 2021. Quantification of crustacean tropomyosin in foods using high‐performance liquid chromatography–tandem mass spectrometry method. Journal of the Science of Food and Agriculture 101 (12):5278–85. doi: 10.1002/jsfa.11177.
  • Wang, W., C. Qi, T-f Kang, Y. Niu, G. Jin, Y-q Ge, and Y. Chen. 2013. Analysis of the interaction between tropomyosin allergens and antibodies using a biosensor based on imaging ellipsometry. Analytical Chemistry 85 (9):4446–52. doi: 10.1021/ac303783j.
  • Wang, Y., L. Li, H. Li, Y. Peng, and L. Fu. 2022. A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control. 132:108552. doi: 10.1016/j.foodcont.2021.108552.
  • Wang, Y., Z. Li, H. Lin, P. N. Siddanakoppalu, J. Zhou, G. Chen, and Z. Yu. 2019. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control. 106:106714. doi: 10.1016/j.foodcont.2019.106714.
  • Wang, Y., J. Ma, H. Li, J. Zhou, H. Zhang, and L. Fu. 2021. A sensitive immunosensor based on FRET between gold nanoparticles and InP/ZnS quantum dots for arginine kinase detection. Food Chemistry 354:129536. doi: 10.1016/j.foodchem.2021.129536.
  • Wang, Y., Z. Rao, J. Zhou, L. Zheng, and L. Fu. 2019. A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish. Biosensors & Bioelectronics 132:84–9. doi: 10.1016/j.bios.2019.02.038.
  • Werner, M. T., C. K. Faeste, and E. Egaas. 2007. Quantitative sandwich ELISA for the determination of tropomyosin from crustaceans in foods. Journal of Agricultural and Food Chemistry 55 (20):8025–32. doi: 10.1021/jf070806j.
  • Wu, Y., Y. Zhou, Y. Leng, W. Lai, X. Huang, and Y. Xiong. 2020. Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosensors & Bioelectronics 157:112168. doi: 10.1016/j.bios.2020.112168.
  • Xia, F., M.-S. Li, Q.-M. Liu, M. Liu, Y. Yang, M.-J. Cao, G.-X. Chen, T. Jin, and G.-M. Liu. 2019. Crystal structure analysis and conformational epitope mutation of triosephosphate isomerase, a mud crab allergen. Journal of Agricultural and Food Chemistry 67 (46):12918–26. doi: 10.1021/acs.jafc.9b05279.
  • Xu, J., Y. Ye, J. Ji, J. Sun, and X. Sun. 2022. Advances on the rapid and multiplex detection methods of food allergens. Critical Reviews in Food Science and Nutrition 62 (25):6887–907. doi: 10.1080/10408398.2021.1907736.
  • Yang, W. W., S. K. Shriver, S-y Chung, S. Percival, M. J. Correll, and T. M. Rababah. 2012. In vitro gastric and intestinal digestions of pulsed light-treated shrimp extracts. Applied Biochemistry and Biotechnology 166 (6):1409–22. doi: 10.1007/s12010-011-9534-2.
  • Yang, Y., M.-J. Cao, M. Alcocer, Q.-M. Liu, D.-X. Fei, H.-Y. Mao, and G.-M. Liu. 2015. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain. Molecular Immunology 65 (2):310–20. doi: 10.1016/j.molimm.2015.02.010.
  • Yang, Y., Z.-W. Chen, B. K. Hurlburt, G.-L. Li, Y.-X. Zhang, D.-X. Fei, H.-W. Shen, M.-J. Cao, and G.-M. Liu. 2017. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Molecular Immunology 85:35–46. doi: 10.1016/j.molimm.2017.02.004.
  • Yang, Y., G.-Y. Liu, H. Yang, M.-J. Hu, M.-J. Cao, W.-J. Su, T. Jin, and G.-M. Liu. 2019. Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross-reactivity among invertebrates. Food Chemistry 271:597–605. doi: 10.1016/j.foodchem.2018.08.003.
  • Yang, Y., H. Liu, W. Zeng, Y. Yang, J. Zhang, J. Yin, J. Wu, and K. Lai. 2021. Characterization and epitope prediction of phosphopyruvate hydratase from Penaeus monodon (black tiger shrimp). Journal of Food Science 86 (8):3457–66. doi: 10.1111/1750-3841.15819.
  • Yang, Y., Y.-X. Zhang, M. Liu, S. J. Maleki, M.-L. Zhang, Q.-M. Liu, M.-J. Cao, W.-J. Su, and G.-M. Liu. 2017. Triosephosphate isomerase and filamin C share common epitopes as novel allergens of Procambarus clarkii. Journal of Agricultural and Food Chemistry 65 (4):950–63. doi: 10.1021/acs.jafc.6b04587.
  • Yao, K., Y. Yang, J. Liu, J. Zhang, B. Shao, and Y. Zhang. 2021. Labeled peptide-free UHPLC–MS/MS method used for simultaneous determination of shrimp and soybean in sauce products. Journal of Agricultural and Food Chemistry 69 (25):7149–57. doi: 10.1021/acs.jafc.1c02008.
  • Yohannes, S., R. Buckow, R. O’Hehir, and A. Lopata. 2008. Effects of heat treatment and high pressure processing on the allergenicity of tropomyosin from prawns. Internal Medicine Journal 38:A168.
  • Yu, C.-J., Y.-F. Lin, B.-L. Chiang, and L.-P. Chow. 2003. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. Journal of Immunology (Baltimore, Md.: 1950) 170 (1):445–53. doi: 10.4049/jimmunol.170.1.445.
  • Yu, H. L., M. J. Cao, Q. F. Cai, W. Y. Weng, W. J. Su, and G. M. Liu. 2011. Effects of different processing methods on digestibility of Scylla paramamosain allergen (tropomyosin). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 49 (4):791–8. doi: 10.1016/j.fct.2010.11.046.
  • Yu, Z., Y. Wang, Z. Li, S. N. Pramod, L. Zhang, and H. Lin. 2019. Development of ELISA method for detecting crustacean major ­allergen tropomyosin in processed food samples. Food Analytical Methods 12 (12):2719–29. doi: 10.1007/s12161-019-01627-z.
  • Zagon, J., J. Schmidt, A. S. Schmidt, H. Broll, A. Lampen, T. Seidler, and A. Braeuning. 2017. A novel screening approach based on six real-time PCR systems for the detection of crustacean species in food. Food Control. 79:27–34. doi: 10.1016/j.foodcont.2017.03.019.
  • Zeng, L., S. Song, Q. Zheng, P. Luo, X. Wu, and H. Kuang. 2019. Development of a sandwich ELISA and immunochromatographic strip for the detection of shrimp tropomyosin. Food and Agricultural Immunology 30 (1):606–19. doi: 10.1080/09540105.2019.1609912.
  • Zhang, H., Y. Lu, H. Ushio, and K. Shiomi. 2014. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody. Food Chemistry 150:151–7. doi: 10.1016/j.foodchem.2013.10.154.
  • Zhang, M., P. Wu, J. Wu, J. Ping, and J. Wu. 2019. Advanced DNA-based methods for the detection of peanut allergens in processed food. TrAC Trends in Analytical Chemistry 114:278–92. doi: 10.1016/j.trac.2019.01.021.
  • Zhang, Y.-X., H.-L. Chen, S. J. Maleki, M.-J. Cao, L.-J. Zhang, W.-J. Su, and G.-M. Liu. 2015. Purification, characterization, and analysis of the allergenic properties of myosin light chain in Procambarus clarkii. Journal of Agricultural and Food Chemistry 63 (27):6271–82. doi: 10.1021/acs.jafc.5b01318.
  • Zhang, Y., Q. Wu, X. Wei, J. Zhang, and S. Mo. 2017. DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta 184 (2):633–9. doi: 10.1007/s00604-016-2042-x.
  • Zhang, Z., X. Zhang, W. Chen, and P. Zhou. 2018. Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound. Food Chemistry 245:997–1009. doi: 10.1016/j.foodchem.2017.11.072.
  • Zhao, J., Y. Li, R. Li, V. Timira, B. P. Dasanayaka, Z. Zhang, J. Zhang, H. Lin, and Z. Li. 2022. Evaluation of poly-and monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) for their performance to detect crustacean residues in processed foods. Food Control. 138:108983. doi: 10.1016/j.foodcont.2022.108983.
  • Zhao, J., Y. Li, L. Xu, Y. Ji, J. Zeng, V. Timira, Z. Zhang, G. Chen, H. Lin, and Z. Li. 2022. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chemistry 381:132177. doi: 10.1016/j.foodchem.2022.132177.
  • Zhao, J., Y. Li, L. Xu, V. Timira, Z. Zhang, G. Chen, L. Zhang, H. Lin, and Z. Li. 2022. Improved protein extraction from thermally processed shrimp (Litopenaeus vannamei) for reliable immunodetection via a synergistic effect of buffer additives. LWT-Food Science and Technology 154:112790. doi: 10.1016/j.lwt.2021.112790.
  • Zhao, J., Y. Li, L. Xu, J. Zeng, Y. Liu, V. Timira, Z. Zhang, H. Lin, and Z. Li. 2022. Thermal induced the structural alterations, increased IgG/IgE binding capacity and reduced detectability of tropomyosin from shrimp (Litopenaeus vannamei). Food Chemistry 391:133215. doi: 10.1016/j.foodchem.2022.133215.
  • Zhao, J., W. Zhu, J. Zeng, Y. Liu, H. Li, H. Wang, Z. Zhang, H. Lin, and Z. Li. 2022. Insight into the mechanism of allergenicity decreasing in recombinant sarcoplasmic calcium-binding protein from shrimp (Litopenaeus vannamei) with thermal processing via spectroscopy and molecular dynamics simulation techniques. Food Research International (Ottawa, Ont.) 157:111427. doi: 10.1016/j.foodres.2022.111427.
  • Zhou, J., R. Ai, J. Weng, L. Li, C. Zhou, A. Ma, L. Fu, and Y. Wang. 2020. A “on-off-on” fluorescence aptasensor using carbon quantum dots and graphene oxide for ultrasensitive detection of the major shellfish allergen Arginine kinase. Microchemical Journal 158:105171. doi: 10.1016/j.microc.2020.105171.
  • Zhou, J., Y. Wang, Y. Qian, T. Zhang, L. Zheng, and L. Fu. 2020. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control. 107:106547. doi: 10.1016/j.foodcont.2019.02.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.