366
Views
2
CrossRef citations to date
0
Altmetric
Review

Lactobacillus group and arterial hypertension: A broad review on effects and proposed mechanisms

, ORCID Icon, , , , , , , ORCID Icon, , , & show all

References

  • Ahrén, I. L., J. Xu, G. Önning, C. Olsson, S. Ahrné, and G. Molin. 2015. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats. Clinical Nutrition 34 (4):719–26. doi: 10.1016/j.clnu.2014.08.009.
  • Alauddin, M., H. Shirakawa, T. Koseki, N. Kijima, Ardiansyah, S. Budijanto, J. Islam, T. Goto, and M. Komai. 2016. Fermented rice bran supplementation mitigates metabolic syndrome in stroke prone spontaneously hypertensive rats. BMC Complementary and Alternative Medicine 16 (1):442. doi: 10.1186/s12906-016-1427-z.
  • Almeida, A., A. L. Mitchell, M. Boland, S. C. Forster, G. B. Gloor, A. Tarkowska, T. D. Lawley, and R. D. Finn. 2019. A new genomic blueprint of the human gut microbiota. Nature 568 (7753):499–504. doi: 10.1038/s41586-019-0965-1.
  • Aoyagi, Y., S. Park, S. Matsubara, Y. Honda, R. Amamoto, A. Kushiro, K. Miyazaki, and R. J. Shephard. 2017. Habitual intake of fermented milk products containing Lactobacillus casei strain Shirota and a reduced risk of hypertension in older people. Beneficial Microbes 8 (1):23–9. doi: 10.3920/bm2016.0135.
  • Bajic, S. S., J. Djokic, M. Dinic, K. Veljovic, N. Golic, S. Mihajlovic, and M. Tolinacki. 2019. GABA-producing natural dairy isolate from artisanal Zlatar cheese attenuates gut inflammation and strengthens gut epithelial barrier in vitro. Frontiers in Microbiology 10:527. doi: 10.3389/fmicb.2019.00527.
  • Bao, Z., and Y. Chi. 2016. In vitro and in vivo assessment of angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk by Lactobacillus casei strains. Current Microbiology 73 (2):214–9. doi: 10.1007/s00284-016-1051-7.
  • Boonstra, E., R. de Kleijn, L. S. Colzato, A. Alkemade, B. U. Forstmann, and S. Nieuwenhuis. 2015. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Frontiers in Psychology 6:1520. doi: 10.3389/fpsyg.2015.01520.
  • Braga, V. A., I. A. Medeiros, T. P. Ribeiro, M. S. França-Silva, M. S. Botelho-Ono, and D. D. Guimarães. 2011. Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: Implications in neurogenic hypertension. Brazilian Journal of Medical and Biological Research 44 (9):871–6. doi: 10.1590/S0100-879X2011007500088.
  • Brandão, L. R., J. L. de Brito Alves, W. K. A. da Costa, G. d A. H. Ferreira, M. P. de Oliveira, A. Gomes da Cruz, V. A. Braga, J. S. Aquino, H. Vidal, M. F. Noronha, et al. 2021. Live and ultrasound-inactivated Lacticaseibacillus casei modulate the intestinal microbiota and improve biochemical and cardiovascular parameters in male rats fed a high-fat diet. Food & Function 12 (12):5287–300. doi: 10.1039/d1fo01064f.
  • Bruneval, P., N. Hinglais, F. Alhenc-Gelas, V. Tricottet, P. Corvol, J. Menard, J. P. Camilleri, and J. Bariety. 1986. Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 85 (1):73–80. doi: 10.1007/BF00508656.
  • Buford, T. W., Y. Sun, L. M. Roberts, A. Banerjee, S. Peramsetty, A. Knighton, A. Verma, D. Morgan, G. E. Torres, Q. Li, et al. 2020. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. GeroScience 42 (5):1307–21. doi: 10.1007/s11357-020-00196-y.
  • Caroff, M., and D. Karibian. 2003. Structure of bacterial lipopolysaccharides. Carbohydrate Research 338 (23):2431–47. doi: 10.1016/j.carres.2003.07.010.
  • Carter, C. S., D. Morgan, A. Verma, G. Lobaton, V. Aquino, E. Sumners, M. Raizada, O. Li, and T. W. Buford. 2020. Therapeutic delivery of Ang(1-7) via genetically modified probiotic: A dosing study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 75 (7):1299–303. doi: 10.1093/gerona/glz222.
  • Cataldo, P. G., J. M. Villegas, G. S. De Giori, L. Saavedra, and E. M. Hebert. 2020. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation. International Journal of Food Microbiology 333:108792. doi: 10.1016/j.ijfoodmicro.2020.108792.
  • Cavalcante, R. G. S., T. M. R. Albuquerque, M. O. L. Freire, G. A. H. Ferreira, L. A. C. Santos, M. Magnani, J. C. Cruz, V. A. Braga, E. L. De Souza, and J. L. De Brito Alves. 2019. The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 29 (12):1408–17. doi: 10.1016/j.numecd.2019.08.003.
  • Cavalcanti Neto, M. P., J. S. Aquino, L. F. Romão da Silva, R. De Oliveira Silva, K. S. L. Guimaraes, Y. D. Oliveira, E. L. Souza, M. Magnani, H. Vidal, and J. L. De Brito Alves. 2018. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacological Research 130:152–63. doi: 10.1016/j.phrs.2018.01.020.
  • Chen, Y., W. Liu, J. Xue, J. Yang, X. Chen, Y. Shao, K. L. Kwok, M. Bilige, L. Mang, and H. Zhang. 2014. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. Journal of Dairy Science 97 (11):6680–92. doi: 10.3168/jds.2014-7962.
  • Cheng, M.-C., and T.-M. Pan. 2017. Prevention of hypertension-induced vascular dementia by Lactobacillus paracasei subsp. paracasei NTU 101-fermented products. Pharmaceutical Biology 55 (1):487–96. doi: 10.1080/13880209.2016.1253109.
  • Cheng, C. P., S. W. Tsai, C. P. Chiu, T. M. Pan, and T. Y. Tsai. 2013. The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. Journal of the Science of Food and Agriculture 93 (5):1219–25. doi: 10.1002/jsfa.5880.
  • Chi, C., C. Li, D. Wu, N. Buys, W. Wang, H. Fan, and J. Sun. 2020. Effects of probiotics on patients with hypertension: A systematic review and meta-analysis. Current Hypertension Reports 22 (5):34. doi: 10.1007/s11906-020-01042-4.
  • Chiu, C. H., Y. K. Guu, C. H. Liu, T. M. Pan, and W. Cheng. 2007. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish & Shellfish Immunology 23 (2):364–77. doi: 10.1016/j.fsi.2006.11.010.
  • Chung, H. J., H. Lee, G. Na, H. Jung, D. G. Kim, S. I. Shin, S. E. Jung, I. D. Choi, J. H. Lee, J. H. Sim, et al. 2020. Metabolic and lipidomic profiling of vegetable juices fermented with various probiotics. Biomolecules 10 (5):725. doi: 10.3390/biom10050725.
  • Cook, K. L., and M. C. Chappell. 2021. Gut dysbiosis and hypertension: Is it cause or effect? Journal of Hypertension 39 (9):1768–70. doi: 10.1097/HJH.0000000000002908.
  • Cookson, T. A. 2021. Bacterial-induced blood pressure reduction: Mechanisms for the treatment of hypertension via the gut. Frontiers in Cardiovascular Medicine 8:1–13. doi: 10.3389/fcvm.2021.721393.
  • Corrêa-Oliveira, R.,J. L. Fachi,A. Vieira,F. T. Sato, andM. A. R. Vinolo. 2016. Regulation of immune cell function by short-chain fatty acids. Clinical & Translational Immunology 5 (4):e73 doi:10.1038/cti.2016.17.
  • Daliri, E. B. M., F. K. Ofosu, R. Chelliah, M. H. Park, J. H. Kim, and D. H. Oh. 2019. Development of a soy protein hydrolysate with an antihypertensive effect. International Journal of Molecular Sciences 20 (6):1496. doi: 10.3390/ijms20061496.
  • Das, B., and G. B. Nair. 2019. Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences 44 (5):117. doi: 10.1007/s12038-019-9926-y.
  • de la Visitación, N., I. Robles-Vera, J. Moleón-Moya, M. Sánchez, R. Jiménez, M. Gómez-Guzmán, C. González-Correa, M. Olivares, M. Toral, M. Romero, et al. 2021. Probiotics prevent hypertension in a murine model of systemic lupus erythematosus induced by Toll-Like Receptor 7 activation. Nutrients 13 (8):2669. doi: 10.3390/2Fnu13082669.
  • de la Visitación, N., I. Robles-Vera, M. Toral, F. O’Valle, J. Moleon, M. Gómez-Guzmán, M. Romero, M. Duarte, M. Sánchez, R. Jiménez, et al. 2020. Lactobacillus fermentum CECT5716 prevents renal damage in the NZBWF1 mouse model of systemic lupus erythematosus. Food & Function 11 (6):5266–74. doi: 10.1039/d0fo00578a.
  • Dixit, K., D. Chaudhari, D. Dhotre, Y. Shouche, and S. Saroj. 2021. Restoration of dysbiotic human gut microbiome for homeostasis. Life Sciences 278:119622. doi: 10.1016/j.lfs.2021.119622.
  • Do Nascimento, L. C. P., E. L. De Souza, M. O. L. Freire, V. A. Braga, T. M. R. De Albuqeurque, C. J. Lagranha, and J. L. De Brito Alves. 2022. Limosilactobacillus fermentum prevent gut-kidney oxidative damage and the rise in blood pressure in male rat offspring exposed to a maternal high-fat diet. Journal of Developmental Origins of Health and Disease 19:1–8. doi: 10.1017/S2040174422000198.
  • Donato, V., G. B. Pisani, L. Trumper, and L. A. Monasterolo. 2013. Effects of "in vivo" administration of baclofen on rat renal tubular function. European Journal of Pharmacology 715 (1-3):117–22. doi: 10.1016/j.ejphar.2013.05.042.
  • Ferrario, C. M., and A. E. Mullick. 2017. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological Research 125 (Pt A):57–71. doi: 10.1016/j.phrs.2017.05.020.
  • Ferreira, G., A. H. M. Magnani, L. Cabral, L. R. Brandão, M. F. Noronha, J. C. Cruz, E. L. D. Souza, and J. L. De Brito Alves. 2022. Potentially probiotic Limosilactobacillus fermentum fruit‑derived strains alleviate cardiometabolic disorders and gut microbiota impairment in male rats fed a high‑fat diet. Probiotics and Antimicrobial Proteins 14 (2):349–59. doi: 10.1007/s12602-021-09889-y.
  • Foltz, M., E. E. Meynen, V. Bianco, C. Van Platerink, T. M. Koning, and J. Kloek. 2007. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. The Journal of Nutrition 137 (4):953–8. doi: 10.1093/jn/137.4.953.
  • Freire, M. O. L., L. C. P. Do Nascimento, K. Á. R. D. Oliveira, A. M. D. Oliveira, M. D. S. Lima, T. H. Napoleão, J. H. Da Costa Silva, C. J. Lagranha, E. L. D. Souza, and J. L. D. Brito Alves. 2021b. Limosilactobacillus fermentum strains with claimed probiotic properties exert anti-oxidant and anti-inflammatory properties and prevent cardiometabolic disorder in female rats fed a high-fat diet. Probiotics and Antimicrobial Proteins. doi: 10.1007/s12602-021-09878-1.Online ahead of print.
  • Freire, M. O. L., L. C. P. Do Nascimento, K. Á. R. D. Oliveira, A. M. D. Oliveira, T. H. Napoleão, M. D. S. Lima, C. J. Lagranha, E. L. De Souza, and J. L. De Brito Alves. 2021a. Effects of a mixed Limosilactobacillus fermentum formulation with claimed probiotic properties on cardiometabolic variables, biomarkers of inflammation and oxidative stress in male rats fed a high-fat diet. Foods 10 (9):2202. doi: 10.3390/foods10092202.
  • Fuglsang, A., D. Nilsson, and N. C. B. Nyborg. 2002. Cardiovascular effects of fermented milk containing angiotensin-converting enzyme inhibitors evaluated in permanently catheterized, spontaneously ­hypertensive rats. Applied and Environmental Microbiology 68 (7):3566–9. doi: 10.1128/2FAEM.68.7.3566-3569.2002.
  • Fuglsang, A., F. P. Rattray, D. Nilsson, and N. C. B. Nyborg. 2003. Lactic acid bacteria: Inhibition of angiotensin coverting enzyme in vitro and vivo. Antonie Van Leeuwenhoek 83 (1):27–34. doi: http://doi.org/10.1023/a:1022993905778.
  • Furushiro, M., S. Hashimoto, M. Hamura, and T. Yokokura. 1993. Mechanism for the antihypertensive effect of a polysaccharide-glycopeptide complex from Lactobacillus casei in spontaneously hypertensive rats (SHR). Bioscience, Biotechnology, and Biochemistry 57 (6):978–81. doi: 10.1271/bbb.57.978.
  • Furushiro, M., S. Sawada, K. Hirai, M. Motoike, H. Sansawa, S. Kobayashi, M. Watanuki, and T. Yokokura. 1990. Blood pressure-lowering effect of extract from Lactobacillus casei in spontaneously hypertensive rats (SHR). Agricultural and Biological Chemistry 54 (9):2193–8. doi: 10.1080/00021369.1990.10870326.
  • Geeta and Yadav, A. S. 2017. Antioxidant and antimicrobial profile of chicken sausages prepared after fermentation of minced chicken meat with Lactobacillus plantarum and with additional dextrose and starch. LWT-Food Science and Technology 77:249–58. doi: 10.1016/2Fj.lwt.2016.11.050.
  • Gomez-Guzmán, M., M. Toral, M. Romero, R. Jimenez, P. Galindo, M. Sanchez, M. J. Zarzuelo, M. Olivares, J. Gálvez, and J. Duarte. 2015. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Molecular Nutrition & Food Research 59 (11):2326–36. doi: 10.1002/mnfr.201500290.
  • Grylls, A., K. Seidler, and J. Neil. 2021. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomedicine & Pharmacotherapy 137:111334. doi: 10.1016/j.biopha.2021.111334.
  • Guimarães, D. D., and V. A. Braga. 2012. Depressed baroreflex sensitivity in hypertensive rats: A role for reactive oxygen species. Journal of Hypertension 1 (2):e103. doi: 10.4172/2167-1095.1000e103.
  • Guimarães, K. S. D. L., V. A. Braga, S. I. S. R. De Noronha, W. K. A. Da Costa, K. Makki, J. C. Cruz, L. R. Brandão, D. A. Chianca Junior, E. Meugnier, F. Leulier, et al. 2020. Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food & Function 11 (10):8939–50. doi: 10.1039/d0fo01718c.
  • Hasegawa, M., D. Yamane, K. Funato, A. Yoshida, and Y. Sambongi. 2018. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. Journal of Bioscience and Bioengineering 125 (3):316–9. doi: 10.1016/j.jbiosc.2017.10.003.
  • Haspula, D., and M. A. Clark. 2018. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Autonomic Neuroscience: Basic & Clinical 210:10–7. doi: 10.1016/j.autneu.2018.01.002.
  • Hata, Y., M. Yamamoto, M. Ohni, K. Nakajima, Y. Nakamura, and T. Takano. 1996. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive. The American Journal of Clinical Nutrition 64 (5):767–71. doi: 10.1093/ajcn/64.5.767.
  • Hayakawa, K., M. Kimura, and K. Kamata. 2002. Mechanism underlying gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. European Journal of Pharmacology 438 (1–2):107–13. doi: 10.1016/S0014-2999(02)01294-3.
  • Hayakawa, K., M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa, and Y. Yamori. 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. The British Journal of Nutrition 92 (3):411–7. doi: 10.1079/bjn20041221.
  • Hsu, C.-N., Y.-J. Lin, C.-Y. Hou, and Y.-L. Tain. 2018. Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients 10 (9):1229. doi: 10.3390/nu10091229.
  • Hussin, F. S., S. Y. Chay, A. S. M. Hussin, W. Z. W. Ibadullah, B. J. Muhialdin, M. S. A. Ghani, and N. Saari. 2021. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Scientific Reports 11 (1):9417. doi: 10.1038/s41598-021-88436-9.
  • Hussin, F. S., S. Y. Chay, M. Zarei, A. S. Meor Hussin, W. Z. W. Ibadullah, N. D. Zaharuddin, H. Wazir, and N. Saari. 2020. Potentiality of self-cloned Lactobacillus plantarum Taj-Apis362 for enhancing GABA production in yogurt under glucose induction: Optimization and its cardiovascular effect on spontaneous hypertensive rats. Foods 9 (12):1826. doi: 10.3390/2Ffoods9121826.
  • Inoue, K.,T. Shirai,H. Ochiai,M. Kasao,K. Hayakawa,M. Kimura, andH. Sansawa. 2003. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition 57 (3):490–5. doi:10.1038/sj.ejcn.1601555.
  • Ivey, K. L., J. M. Hodgson, D. A. Kerr, P. L. Thompson, B. Stojceski, and R. L. Prince. 2015. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 25 (1):46–51. doi: 10.1016/j.numecd.2014.07.012.
  • Jauhiainen, T., L. Niittynen, M. Orešič, S. Järvenpää, T. P. Hiltunen, M. Rönnback, H. Vapaatalo, and R. Korpela. 2012. Effects of long-term intake of lactotripeptides on cardiovascular risk factors in hypertensive subjects. European Journal of Clinical Nutrition 66 (7):843–9. doi: 10.1038/ejcn.2012.44. Epub 2012 May 23.
  • Jauhiainen, T., M. Rönnback, H. Vapaatalo, K. Wuolle, H. Kautiainen, P. H. Groop, and R. Korpela. 2010. Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. European Journal of Clinical Nutrition 64 (4):424–31. doi: 10.1038/2Fejcn.2010.3.
  • Jauhiainen, T., M. Rönnback, H. Vapaatalo, K. Wuolle, H. Kautiainen, and R. Korpela. 2007a. Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects. International Dairy Journal 17 (10):1209–11. doi: 10.1016/j.idairyj.2007.03.002.
  • Jauhiainen, T., H. Vapaatalo, T. Poussa, S. Kyrönpalo, M. Rasmussen, and R. Korpela. 2005. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. American Journal of Hypertension 18 (12 Pt 1):1600–5. doi: 10.1016/j.amjhyper.2005.06.006.
  • Jauhiainen, T., K. Wuolle, H. Vapaatalo, O. Kerojoki, K. Nurmela, C. Lowrie, and R. Korpela. 2007b. Oral absorption, tissue distribution and excretion of a radiolabelled analog of a milk derived antihypertensive peptide Ile-Pro-Pro in the rat. International Dairy Journal 17 (10):1216–23. doi: 10.1016/j.idairyj.2007.02.004.
  • Kawakami, K., K. Yamada, T. Yamada, T. Nabika, and M. Nomura. 2018. Antihypertensive effect of γ-aminobutyric acid-enriched brown rice on spontaneously hypertensive rats. Journal of Nutritional Science and Vitaminology 64 (1):56–62. doi: 10.3177/jnsv.64.56.
  • Kharazmi, F., N. Soltani, S. Rezaei, M. Keshavarz, and L. Farsi. 2015. Role of GABAB receptor and L-Arg in GABA-induced vasorelaxation in non-diabetic and streptozotocin-induced diabetic rat vessels. Iranian Biomedical Journal 19 (2):91–5. doi: 10.6091/ibj.1461.2015.
  • Kim, S., R. Goel, A. Kumar, Y. Qi, G. Lobaton, K. Hosaka, M. Mohammed, E. M. Handberg, E. M. Richards, C. J. Pepine, et al. 2018. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clinical Science (London, England : 1979) 132 (6):701–18. doi: 10.1042/cs20180087.
  • Kim, J., M.-H. Lee, M.-S. Kim, G.-H. Kim, and S.-S. Yoon. 2022. Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. Journal of Microbiology and Biotechnology 32 (6):783–91. doi: 10.4014/jmb.2204.04029.
  • Kimura, M., K. Hayakawa, and H. Sansawa. 2002. Involvement of gamma-aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. Japanese Journal of Pharmacology 89 (4):388–94. doi: 10.1254/jjp.89.388.
  • Kong, C.-Y., Z.-M. Li, Y.-Q. Mao, H.-L. Chen, W. Hu, B. Han, and L.-S. Wang. 2021. Probiotic yogurt blunts the increase of blood pressure in spontaneously hypertensive rats via remodeling of the gut microbiota. Food & Function 12 (20):9773–83. doi: 10.1039/d1fo01836a.
  • Konopelski, P., M. Konop, K. Perlejewski, I. Bukowska-Osko, M. Radkowski, M. Onyszkiewicz, K. Jaworska, I. Mogilnicka, E. Samborowska, and M. Ufnal. 2021. Genetically determined hypertensive phenotype affects gut microbiota composition, but not vice versa. Journal of Hypertension 39 (9):1790–9. doi: 10.1097/HJH.0000000000002864.
  • Leclerc, P. R., S. F. Gauthier, H. Bachelard, M. Santure, and D. Roy. 2002. Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. International Dairy Journal 12 (12):995–1004. doi: 10.1016/S0958-6946(02)00125-5.
  • Lee, B.-J., J.-S. Kim, Y. M. Kang, J.-H. Lim, Y.-M. Kim, M.-S. Lee, M.-H. Jeong, C.-B. Ahn, and J.-Y. Je. 2010. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry 122 (1):271–6. doi: 10.1016/j.foodchem.2010.02.071.
  • Lewis, C. V., and W. R. Taylor. 2020. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. American Journal of Physiology. Heart and Circulatory Physiology 319 (6):H1227–H1233. doi: 10.1152/ajpheart.00612.2020.
  • Lewis-Mikhael, A. M., A. Davoodvandi, and S. Jafarnejad. 2020. Effect of Lactobacillus plantarum containing probiotics on blood pressure: A systematic review and meta-analysis. Pharmacological Research 153:104663. doi: 10.1016/j.phrs.2020.104663.
  • Ley, R. E., D. A. Peterson, and J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 (4):837–48. doi: 10.106/j.cell. 2006.02.017.
  • Lin, F. M., C. H. Chiu, and T. M. Pan. 2004. Fermentation of a milk-soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum. Journal of Industrial Microbiology & Biotechnology 31 (12):559–64. doi: 10.1007/s10295-004-0184-z.
  • Liu, T. H., J. Chiou, and T. Y. Tsai. 2016. Effects of Lactobacillus plantarum TWK10-fermented soy milk on deoxycorticosterone acetate-salt-induced hypertension and associated dementia in rats. Nutrients 8 (5):260. doi: 10.3390/2Fnu8050260.
  • Liu, J., T. Li, H. Wu, H. Shi, J. Bai, W. Zhao, D. Jiang, and X. Jiang. 2019. Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced hypertension in a high salt diet via regulating TMAO level and CD4+ T cell induced-type I inflammation. Biomedicine & Pharmacotherapy 112:108580. doi: 10.1016/j.biopha.2019.01.041.
  • Liu, C. F., and T. M. Pan. 2010. In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. Journal of Food and Drug Analysis 18 (2):77–86. doi: 10.38212/2224-6614.2287.
  • Liu, C. F., Y. T. Tung, C. L. Wu, B. H. Lee, W. H. Hsu, and T. M. Pan. 2011. Antihypertensive effects of lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 59 (9):4537–43. doi: 10.1021/jf104985v.
  • Liu, Y. Y., S. Y. Zeng, Y. L. Leu, and T. Y. Tsai. 2015. Antihypertensive effect of a combination of uracil and glycerol derived from Lactobacillus plantarum strain TWK10-fermented soy milk. Journal of Agricultural and Food Chemistry 63 (33):7333–42. doi: 10.1021/acs.jafc.5b01649.
  • Liu, J., D. Zhang, Y. Guo, H. Cai, K. Liu, Y. He, Y. Liu, and L. Guo. 2020. The effect of Lactobacillus consumption on human blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine 54:102547. doi: 10.1016/j.ctim.2020.102547.
  • Lloyd-Price, J., A. Mahurkar, G. Rahnavard, J. Crabtree, J. Orvis, A. B. Hall, A. Brady, H. H. Creasy, C. McCracken, M. G. Giglio, et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550 (7674):61–6. doi: 10.1038/nature23889.
  • Lugito, N. P., R. Djuwita, A. Adisasmita, and M. Simadibrata. 2022. Blood pressure lowering effect of Lactobacillus-containing probiotic. International Journal of Probiotics and Prebiotics 17 (1):1–13. doi: 10.37290/ijpp2641-7197.17:1-13.
  • Maeno, M., N. Yamamoto, and T. Takano. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. Journal of Dairy Science 79 (8):1316–21. doi: 10.3168/jds.S0022-0302(96)76487-1.
  • Mancia, G., R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, M. Böhm, T. Christiaens, R. Cifkova, G. De Backer, A. Dominiczak, et al. 2014. 2013 ESH/ESC Practice guidelines for the management of arterial hypertension. Blood Pressure 23 (1):3–16. doi: 10.3109/08037051.2014.868629.
  • Masi, S., M. Uliana, and A. Virdis. 2019. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascular Pharmacology 115:13–7. doi: 10.1016/j.vph.2019.01.004.
  • Masuda, O., Y. Nakamura, and T. Takano. 1996. Nutrient metabolismo antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. The Journal of Nutrition 126 (12):3063–8. doi: 10.1093/jn/126.12.3063.
  • Mehta, G., T. Gustot, R. P. Mookerjee, J. C. Garcia-Pagan, M. B. Fallon, V. H. Shah, R. Moreau, and R. Jalan. 2014. Inflammation and portal hypertension – The undiscovered country. Journal of Hepatology 61 (1):155–63. doi: 10.1016/j.jhep.2014.03.014.
  • Mell, B., V. R. Jala, A. V. Mathew, J. Byun, H. Waghulde, Y. Zhang, B. Haribabu, M. Vijay-Kumar, S. Pennathur, and B. Joe. 2015. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiological Genomics 47 (6):187–97. doi: 10.1152/physiolgenomics.00136.2014.
  • Miranda, P. M., G. De Palma, V. Serkis, J. Lu, M. P. Louis-Auguste, J. L. McCarville, E. F. Verdu, S. M. Collins, and P. Bercik. 2018. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6 (1):57. doi: 10.1186/s40168-018-0433-4.
  • Mizushima, S., K. Ohshige, J. Watanabe, M. Kimura, T. Kadowaki, Y. Nakamura, O. Tochikubo, and H. Ueshima. 2004. Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men. American Journal of Hypertension 17 (8):701–6. doi: 10.1016/j.amjhyper.2004.03.674.
  • Moura, C. S., P. C. B. Lollo, P. N. Morato, E. A. Esmerino, L. P. Margalho, V. A. Santos-Junior, P. T. Coimbra, L. P. Cappato, M. C. Silva, A. S. Garcia-Gomes, et al. 2016. Assessment of antioxidant activity, lipid profile, general biochemical and immune system responses of Wistar rats fed with dairy dessert containing Lactobacillus acidophilus La-5. Food Research International 90:275–80. doi: 10.1016/j.foodres.2016.10.042.
  • Muralitharan, R. R., H. A. Jama, L. Xie, A. Peh, M. Snelson, and F. Z. Marques. 2020. Microbial peer pressure: The role of the gut microbiota in hypertension and its complications. Hypertension 76 (6):1674–87. doi: 10.1161/hypertensionaha.120.14473.
  • Nagase, M., T. Shimosawa, K. Ando, and T. Fujita. 1996. Local renin-angiotensin system in sympathetic overactivity of spontaneously hypertensive rats. Hypertension Research 19 (3):171–7. doi: 10.1291/hypres.19.171.
  • Nakajima, K., Y. Hata, Y. Osono, M. Hamura, S. Kobayashi, and M. Watanuki. 1995. Antihypertensive effect of extracts of Lactobacillus casei in patients with hypertension. Journal of Clinical Biochemistry and Nutrition 18 (3):181–7. doi: 10.3164/jcbn.18.181.
  • Nakamura, T., J. Mizutani, K. Ohki, K. Yamada, N. Yamamoto, M. Takeshi, and K. Takazawa. 2011. Casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro improves central blood pressure and arterial stiffness in hypertensive subjects: A randomized, double-blind, placebo-controlled trial. Atherosclerosis 219 (1):298–303. doi: 10.1016/j.atherosclerosis.2011.06.007.
  • Nakamura, Y., N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano. 1995. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. Journal of Dairy Science 78 (4):777–83. doi: 10.3168/jds.s0022-0302(95)76689-9.
  • Noubiap, J. J., J. R. Nansseu, U. F. Nyaga, P. S. Sime, F. Innocent, and J. J. Bigna. 2019. Global prevalence of resistant hypertension: A meta-analysis of data from 3.2 million patients. Heart (British Cardiac Society) 105 (2):98–105. doi: 10.1136/heartjnl-2018-313599.
  • Oliveira, Y., R. G. S. Cavalcante, M. P. Cavalcanti Neto, M. Magnani, V. A. Braga, E. L. D. Souza, and J. L. D. Brito Alves. 2020. Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food & Function 11 (6):5581–94. doi: 10.1039/D0FO00514B.
  • Overby, H. B., and J. F. Ferguson. 2021. Gut microbiota-derived short-chain fatty acids facilitate microbiota: Host cross talk and modulate obesity and hypertension. Current Hypertension Reports 23 (2):8. doi: 10.1007/s11906-020-01125-2.
  • Palmu, J., L. Lahti, and T. Niiranen. 2021. Targeting gut microbiota to treat hypertension: A systematic review. International Journal of Environmental Research and Public Health 18 (3):1248. doi: 10.3390/ijerph18031248.
  • Palmu, J., A. Salosensaari, A. S. Havulinna, S. Cheng, M. Inouye, M. Jain, R. A. Salido, K. Sanders, C. Brennan, G. C. Humphrey, et al. 2020. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. Journal of the American Heart Association 9 (15):e016641. doi: 10.1161/JAHA.120.016641.
  • Pan, T. M., C. H. Chiu, and Y. K. Guu. 2002. Characterization of Lactobacillus isolates from pickled vegetables for use as dietary or pickle adjuncts. Foods & Food Ingredients Journal of Japan 206:45–51.
  • Pan, D., Y. Luo, and M. Tanokura. 2005. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chemistry 91 (1):123–9. doi: 10.1016/j.foodchem.2004.05.055.
  • Peluso, I., G. Morabito, L. Urban, F. Ioannone, and M. Serafini. 2012. Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocrine, Metabolic & Immune Disorders Drug Targets 12 (4):351–60. doi: 10.2174/187153012803832602.
  • Petersen, C., and J. L. Round. 2014. Defining dysbiosis and its influence on host immunity and disease. Cellular Microbiology 16 (7):1024–33. doi: 10.1111/cmi.12308.
  • Pihlanto, A., T. Virtanen, and H. Korhonen. 2010. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. International Dairy Journal 20 (1):3–10. doi: 10.1016/j.idairyj.2009.07.003.
  • Pimentel, T. C., W. K. A. da Costa, D. T. P. Chioda, S. M. L. de Oliveira, K. Sivieri, and M. Magnani. 2022. Foods and supplements as probiotic delivery vehicles. In Probiotics for Human Nutrition in Health and Disease, ed. E. Leite de Souza, J. L. de Brito Alves and V. Fusco, 115–42. 1st ed. Amsterdam: Academic Press. doi: 10.1016/B978-0-323-89908-6.00005-4.
  • Pluznick, J. L. 2017. Microbial short-chain fatty acids and blood pressure regulation. Current Hypertension Reports 19 (4):25. doi: 10.1007/s11906-017-0722-5.
  • Pluznick, J. L., R. J. Protzko, H. Gevorgyan, Z. Peterlin, A. Sipos, J. Han, I. Brunet, L. X. Wan, F. Rey, T. Wang, et al. 2013. Olfactory receptor responding to gut microbiotaderived signals plays a role in renin secretion and blood pressure regulation. Proceedings of the National Academy of Sciences 110 (11):4410–5. doi: 10.1073/pnas.1215927110.
  • Poll, B. G., M. U. Cheema, and J. L. Pluznick. 2020. Gut microbial metabolites and blood pressure regulation: Focus on SCFAs and TMAO. Physiology (Bethesda, Md.) 35 (4):275–84. doi: 10.1152/physiol.00004.2020.
  • Qi, D., X.-L. Nie, and J.-J. Zhang. 2020. The effect of probiotics supplementation on blood pressure: A systemic review and meta-analysis. Lipids in Health and Disease 19 (1):79. doi: 10.1186/s12944-020-01259-x.
  • Qin, L., Z. L. Wang, Y. Feng, Z. Z. Chen, and H. Yu. 2018. Analysis of structural features of gut microbiota in two-kidney-one-clip hypertensive rats based on high-throughput sequencing technology. ]. Zhonghua Xin Xue Guan Bing Za Zhi 46 (9):706–12. doi: 10.3760/cma.j.issn.0253-3758.2018.09.007.
  • Razavi, A. C., K. S. Potts, T. N. Kelly, and L. A. Bazzano. 2019. Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences 10 (1):29. doi: 10.1186/s13293-019-0240-z.
  • Robles-Vera, I., M. Toral, N. de la Visitación, M. Sánchez, M. Gómez-Guzmán, M. Romero, T. Yang, J. L. Izquierdo-Garcia, R. Jiménez, J. Ruiz-Cabello, et al. 2020. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short-chain fatty acids. Molecular Nutrition & Food Research 64 (6):e1900616. doi: 10.1002/mnfr.201900616.
  • Robles-Vera, I., M. Toral, N. de la Visitación, M. Sánchez, M. Romero, M. Olivares, R. Jiménez, and J. Duarte. 2018. The Probiotic Lactobacillus fermentum prevents dysbiosis and vascular oxidative stress in rats with hypertension induced by chronic nitric oxide blockade. Molecular Nutrition & Food Research 62 (19):e1800298. doi: 10.1002/mnfr.201800298.
  • Romão da Silva, L. F., Y. de Oliveira, E. L. de Souza, M. O. L. Freire, V. A. Braga, M. Magnani, and J. L. de Brito Alves. 2020. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: A randomized, triple-blind, placebo-controlled trial. Food & Function 11 (8):7152–63. doi: 10.1039/D0FO01661F.
  • Salvetti, E., H. M. B. Harris, G. E. Felis, and P. W. O’Toole. 2018. Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification. Applied and Environmental Microbiology 84:e00993–18. doi: 10.1128/AEM.00993-18.
  • Santisteban, M. M., Y. Qi, J. Zubcevic, S. Kim, T. Yang, V. Shenoy, C. T. Cole-Jeffrey, G. O. Lobaton, D. C. Stewart, A. Rubiano, et al. 2017. Hypertension-linked pathophysiological alterations in the gut. Circulation Research 120 (2):312–23. doi: 10.1161/circresaha.116.309006.
  • Santos-Espinosa, A., L. M. Beltrán-Barrientos, R. Reyes-Díaz, M. A. Mazorra-Manzano, A. Hernández-Mendoza, G. A. González-Aguilar, S. G. Sáyago-Ayerdi, B. Vallejo-Cordoba1, and A. F. González-Córdova. 2020. Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses. Annals of Microbiology 70 (1):1–11. doi: 10.1186/s13213-020-01542-3.
  • Sawada, H., M. Furushiro, K. Hirai, M. Motoike, T. Watanabe, and T. Yokokura. 1990. Purification and characterization of an antihypertensive compound from Lactobacillus casei. Agricultural and Biological Chemistry 54 (12):3211–9. doi: 10.1080/00021369.1990.10870492.
  • Seppo, L., T. Jauhiainen, T. Poussa, and R. Korpela. 2003. A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects1–3. The American Journal of Clinical Nutrition 77 (2):326–30. doi: 10.1093/ajcn/77.2.326.
  • Sharafedtinov, K. K., O. A. Plotnikova, R. I. Alexeeva, S. T. Sentsova, E. Songisepp, J. Stsepetova, I. Smidt, and M. Mikelsaar. 2013. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients–a randomized double-blind placebo-controlled pilot study. Nutrition Journal 12 (138):138. doi: 10.1186/1475-2891-12-138.
  • Silveira-Nunes, G., D. F. Durso, L. R. A. De Oliveira, Jr, E. H. M. Cunha, T. U. Maioli, A. T. Vieira, E. Speziali, R. Corrêa-Oliveira, O. A. Martins-Filho, A. Teixeira-Carvalho, et al. 2020. Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a brazilian population. Frontiers in Pharmacology 12 (11):258. doi: 10.3389/fphar.2020.00258.
  • Sipola, M., P. Finckenberg, R. Korpela, H. Vapaatalo, and M. L. Nurminen. 2002. Effect of long-term intake of milk products on blood pressure in hypertensive rats. The Journal of Dairy Research 69 (1):103–11. doi: 10.1017/s002202990100526x.
  • Sipola, M., P. Finckenberg, J. Santisteban, R. Korpela, H. Vapaatalo, and M. L. Nurminen. 2001. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. Journal of Physiology and Pharmacology : an Official Journal of the Polish Physiological Society 52 (4 Pt 2):745–54.
  • Sleight, P., S. Yusuf, J. Pogue, R. Tsuyuki, R. Diaz, and J. Probstfield. 2001. Blood-pressure reduction and cardiovascular risk in HOPE study. The Lancet 358 (9299):2130–1. doi: 10.1016/S0140-6736(01)07186-0.
  • Sperry, M., F. H. L. A. Silva, C. F. Balthazar, E. A. Esmerino, S. Verruck, E. S. Prudencio, R. P. C. Neto, M. I. B. Tavares, J. C. Peixoto, F. Nazzaro, et al. 2018. Probiotic Minas Frescal cheese added with L. casei 01: Physicochemical and bioactivity characterization and effects on hematological/biochemical parameters of hypertensive overweighted women - A randomized double­blind pilot trial. Journal of Functional Foods 45:435–43. doi: 10.1016/j.jff.2018.04.015.
  • Suzuki, R., R. Maehara, S. Kobuchi, R. Tanaka, M. Ohkita, and Y. Matsumura. 2012. Beneficial effects of γ-aminobutyric acid on right ventricular pressure and pulmonary vascular remodeling in experimental pulmonary hypertension. Life Sciences 91 (13–14):693–8. doi: 10.1016/j.lfs.2012.04.006.
  • Tanida, M., T. Yamano, K. Maeda, N. Okumura, Y. Fukushima, and K. Nagai. 2005. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neuroscience Letters 389 (2):109–14. doi: 10.1016/j.neulet.2005.07.036.
  • Toral, M., M. Gomez-Guzmán, R. Jimenez, M. Romero, M. Sanchez, M. P. Utrilla, N. Garrido-Mesa, M. E. Rodríguez-Cabezas, M. Olivares, J. Gálvez, et al. 2014. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clinical Science (London, England : 1979) 127 (1):33–45. doi: 10.1042/cs20130339.
  • Toral, M., I. Robles-Vera, N. de la Visitacion, M. Romero, T. Yang, M. Sanchez, M. Gómez-Guzmán, R. Jiménez, M. K. Raizada, and J. Duarte. 2019a. Critical role of the interaction gut microbiota – sympathetic nervous system in the regulation of blood pressure. Frontiers in Physiology 10:231. doi: 10.3389/fphys.2019.00231.
  • Toral, M., I. Robles‐Vera, M. Romero, N. Visitación, M. Sánchez, F. O’Valle, A. Rodriguez‐Nogales, J. Gálvez, J. Duarte, and R. Jiménez. 2019b. Lactobacillus fermentum CECT5716: A novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. The FASEB Journal 33 (9):10005–18. doi: 10.1096/fj.201900545RR.
  • Toral, M., M. Romero, A. Rodríguez-Nogales, R. Jiménez, I. Robles-Vera, F. Algieri, N. Chueca-Porcuna, M. Sánchez, N. de la Visitación, and M. Olivares. 2018. Lactobacillus fermentum improves tacrolimus-induced hypertension by restoring vascular redox state and improving eNOS coupling. Molecular Nutrition & Food Research 30:e1800033. doi: 10.1002/mnfr.201800033.
  • Tsai, Y. T., P. C. Cheng, C. K. Fan, and T. M. Pan. 2008. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. International Journal of Food Microbiology 128 (2):219–25. doi: 10.1016/j.ijfoodmicro.2008.08.009.
  • Tuomilehto, J., J. Lindström, J. Hyyrynen, R. Korpela, M. L. Karhunen, L. Mikkola, L. T. Jauhiainen, L. Seppo, and A. Nissinen. 2004. Effect of ingesting sour milk fermented using Lactobacillus helveticus bacteria producing tripeptides on blood pressure in subjects with mild hypertension. Journal of Human Hypertension 18 (11):795–802. doi: 10.1038/sj.jhh.1001745.
  • Usinger, L., H. Ibsen, A. Linneberg, M. Azizi, B. Flambard, and L. T. Jensen. 2010. Human in vivo study of the renin-angiotensin-aldosterone system and the sympathetic activity after 8 weeks daily intake of fermented milk. Clinical Physiology and Functional Imaging 30 (2):162–8. doi: 10.1111/j.1475-097X.2009.00921.x.
  • Vallianou, N. G., E. Geladari, and D. Kounatidis. 2020. Microbiome and hypertension: Where are we now? Journal of Cardiovascular Medicine (Hagerstown) 21 (2):83–8. doi: 10.2459/jcm.000000000000090.
  • Whelton, P. K., R. M. Carey, W. S. Aronow, D. E. Casey, Jr, K. J. Collins, C. D. Himmelfarb, S. M. De Palma, S. Gidding, K. A. Jameson, D. W. Jones, et al. 2017. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71 (6):1269–324. doi: 10.1161/hyp.0000000000000066.
  • Wu, H., L. Jiang, T.-F. Shum, and J. Chiou. 2022. Elucidation of anti-hypertensive mechanism by a novel Lactobacillus rhamnosus AC1 fermented soymilk in the deoxycorticosterone acetate-salt hypertensive rats. Nutrients 14 (15):3174. doi: 10.3390/nu14153174.
  • Xia, Y., J. Yu, W. Xu, and W. Shuang. 2020. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. Journal of Dairy Science 103 (6):4919–28. doi: 10.3168/jds.2019-17594.
  • Xu, J., I. L. Ahrén, C. Olsson, B. Jeppsson, S. Ahrné, and G. Molin. 2015. Oral and faecal microbiota in volunteers with hypertension in a double blind, randomised placebo controlled trial with probiotics and fermented bilberries. Journal of Functional Foods 18:275–88. doi: 10.1016/j.jff.2015.07.005.
  • Xu, J., I. L. Ahrén, O. Prykhodko, C. Olsson, S. Ahrné, and G. Molin. 2013. Intake of blueberry fermented by Lactobacillus plantarum affects the gut microbiota of L-NAME treated rats. Evidence-Based Complementary and Alternative Medicine: eCAM 2013 (809128):809128. doi: 10.1155/2013/809128.
  • Yamamoto, N., A. Akino, and T. Takano. 1993. Purification and specificity of a cell-wall-associated proteinase from Lactobacillus helveticus CP790. Journal of Biochemistry 114 (5):740–5. doi: 10.1093/oxfordjournals.jbchem.a124247.
  • Yamamoto, N., A. Akino, and T. Takano. 1994. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. Journal of Dairy Science 77 (4):917–22. doi: 10.3168/jds.s0022-0302(94)77026-0.
  • Yamamoto, N., M. Maeno, and T. Takano. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. Journal of Dairy Science 82 (7):1388–93. doi: 10.3168/jds.s0022-0302(99)75364-6.
  • Yamori, Y. 1984. Development of the spontaneously hypertensive rat (SHR) and of various spontaneous rat models, and their implications. In Experimental and Genetic Models of Hypertension - Handbook of Hypertension, ed. W. De Jong, 224–39. Amsterdam: Elsevier.
  • Yang, G., Y. Jiang, W. Yang, F. Du, Y. Yao, C. Shi, and C. Wang. 2015. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microbial Cell Factories 14:202. doi: 10.1186/s12934-015-0394-2.
  • Yang, T., E. M. Richards, C. J. Pepine, and M. K. Raizada. 2018. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nature Reviews. Nephrology 14 (7):442–56. doi: 10.1038/s41581-018-0018-2.
  • Yang, T., M. M. Santisteban, V. Rodriguez, E. Li, N. Ahmari, J. M. Carvajal, M. Zadeh, M. Gong, Y. Qi, J. Zubcevic, et al. 2015. Gut dysbiosis is linked to hypertension. Hypertension 65 (6):1331–40. doi: 10.1161/hypertensionaha.115.05315.
  • Yap, W. B., F. M. Ahmad, Y. C. Lim, and S. Zainalabidin. 2016. Lactobacillus casei strain C1 attenuates vascular changes in spontaneously hypertensive rats. The Korean Journal of Physiology & Pharmacology 20 (6):621–8. doi: 10.4196/kjpp.2016.20.6.621.
  • Yokoyama, K., H. Chiba, and M. Yoshikawa. 1992. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Bioscience, Biotechnology, and Biochemistry 56 (10):1541–5. doi: 10.1271/bbb.56.1541.
  • Yuan, L., Y. Li, M. Chen, L. Xue, J. Wang, Y. Ding, J. Zhang, S. Wu, Q. Ye, S. Zhang, et al. 2022. Antihypertensive activity of milk fermented by Lactiplantibacillus plantarum SR37-3 and SR61-2 in L-NAME-induced hypertensive rats. Foods 11 (15):2332. doi: 10.3390/foods11152332.
  • Zareian, M., E. Oskoueian, B. Forghani, and M. Ebrahimi. 2015. Production of a wheat-based fermented rice enriched with γ-amino butyric acid using Lactobacillus plantarum MNZ and its antihypertensive effects in spontaneously hypertensive rats. Journal of Functional Foods 16:194–203. doi: 10.1016/j.jff.2015.04.015.
  • Zheng, J., S. Wittouck, E. Salvetti, C. Franz, H. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.
  • Zubcevic, J., E. M. Richards, T. Yang, S. Kim, C. Sumners, C. J. Pepine, and M. K. Raizada. 2019. Impaired autonomic nervous system-microbiome circuit in hypertension: A premise for hypertension therapy. Circulation Research 125 (1):104–16. doi: 10.1161/CIRCRESAHA.119.313965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.