754
Views
4
CrossRef citations to date
0
Altmetric
Review

Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements

, , ORCID Icon, ORCID Icon, ORCID Icon, & show all

References

  • Aldewachi, H., T. Chalati, M. N. Woodroofe, N. Bricklebank, B. Sharrack, and P. Gardiner. 2017. Gold nanoparticle-based colorimetric biosensors. Nanoscale 10 (1):18–33. doi: 10.1039/c7nr06367a.
  • Ali, A. A., A. B. Altemimi, N. Alhelfi, and S. A. Ibrahim. 2020. Application of biosensors for detection of pathogenic food bacteria: A review. Biosensors 10 (6):58. doi: 10.3390/bios10060058.
  • Avérous, L. 2008. Polylactic acid: Synthesis, properties and applications. Monomers, Polymers and Composites from Renewable Resources 284 (2):433–50. doi: 10.1016/B978-0-08-045316-3.00021-1.
  • Bacchu, M. S., M. R. Ali, S. Das, S. Akter, H. Sakamoto, S. I. Suye, M. M. Rahman, K. Campbell, and M. Z. H. Khan. 2022. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Analytica Chimica Acta 1192:339332. doi: 10.1016/j.aca.2021.339332.
  • Bai, H., S. Bu, W. Liu, C. Wang, Z. Li, Z. Hao, J. Wan, and Y. Han. 2020. Electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. The Analyst 145 (22):7340–8. doi: 10.1039/d0an01258k.
  • Besharati, M., M. A. Tabrizi, F. Molaabasi, R. Saber, M. Shamsipur, J. Hamedi, and S. Hosseinkhani. 2022. Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in milk. Biotechnology and Applied Biochemistry 69 (1):41–50. doi: 10.1002/bab.2078.
  • Bhandari, D., F. C. Chen, and R. C. Bridgman. 2019. Detection of Salmonella Typhimurium in romaine lettuce using a surface plasmon resonance biosensor. Biosensors 9 (3):94. doi: 10.3390/bios9030094.
  • Brady, D., and J. Jordaan. 2009. Advances in enzyme immobilisation. Biotechnology Letters 31 (11):1639–50. doi: 10.1007/s10529-009-0076-4.
  • Bustamante, S. E., S. Vallejos, B. S. Pascual-Portal, A. Muñoz, A. Mendia, B. L. Rivas, F. C. García, and J. M. García. 2019. Polymer films containing chemically anchored diazonium salts with long-term stability as colorimetric sensors. Journal of Hazardous Materials 365:725–32. doi: 10.1016/j.jhazmat.2018.11.066.
  • Chiriacò, M. S., I. Parlangeli, F. Sirsi, P. Poltronieri, and E. Primiceri. 2018. Impedance sensing platform for detection of the food pathogen listeria monocytogenes. Electronics (Switzerland) 7 (12):347–11. doi: 10.3390/electronics7120347.
  • Chung, S., K. Cho, and T. Lee. 2019. Recent progress in inkjet‐printed thin‐film transistors. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 6 (6):1801445. doi: 10.1002/advs.201801445.
  • Dester, E., K. Kao, and E. C. Alocilja. 2022. Detection of unamplified E. coli O157 DNA extracted from large food samples using a gold nanoparticle colorimetric biosensor. Biosensors 12 (5):274. doi: 10.3390/bios12050274.
  • Dias, A. D., D. M. Kingsley, and D. T. Corr. 2014. Recent advances in bioprinting and applications for biosensing. Biosensors 4 (2):111–36. doi: 10.3390/bios4020111.
  • Díaz-Amaya, S., M. Zhao, L. K. Lin, C. Ostos, J. P. Allebach, G. T. C. Chiu, A. J. Deering, and L. A. Stanciu. 2019. Inkjet printed nanopatterned aptamer-based sensors for improved optical detection of foodborne pathogens. Small 15 (24):1805342–14. doi: 10.1002/smll.201805342.
  • Dou, X., K. Sun, H. Chen, Y. Jiang, L. Wu, J. Mei, Z. Ding, and J. Xie. 2021. Nanoscale metal-organic frameworks as fluorescence sensors for food safety. Antibiotics 10 (4):358. doi: 10.3390/antibiotics10040358.
  • Du, J., Z. Yu, Z. Hu, J. Chen, J. Zhao, and Y. Bai. 2021. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. Journal of Microbiological Methods 180 (12):106110. doi: 10.1016/j.mimet.2020.106110.
  • Duan, N., S. Wu, X. Ma, Y. Xia, and Z. Wang. 2014. A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Analytical Biochemistry 454 (1):1–6. doi: 10.1016/j.ab.2014.03.005.
  • El-Moghazy, A. Y., N. Wisuthiphaet, X. Yang, G. Sun, and N. Nitin. 2022. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 135 (108811):108811. doi: 10.1016/j.foodcont.2022.108811.
  • Eyvazi, S., B. Baradaran, A. Mokhtarzadeh, and M. de la Guardia. 2021. Recent advances on development of portable biosensors for monitoring of biological contaminants in foods. Trends in Food Science & Technology 114:712–21. doi: 10.1016/j.tifs.2021.06.024.
  • Fan, Z., Z. Zhou, W. Zhang, X. Zhang, and J. M. Lin. 2021. Inkjet printing based ultra-small MnO2 nanosheets synthesis for glutathione sensing. Talanta 225:121989. doi: 10.1016/j.talanta.2020.121989.
  • Farka, Z., T. Juřík, M. Pastucha, and P. Skládal. 2016. Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk. Analytical Chemistry 88 (23):11830–6. doi: 10.1021/acs.analchem.6b03511.
  • Farooq, U., M. W. Ullah, Q. Yang, A. Aziz, J. Xu, L. Zhou, and S. Wang. 2020. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosensors & Bioelectronics 157:112163. doi: 10.1016/j.bios.2020.112163.
  • Fu, X., J. Sun, R. Liang, H. Guo, L. Wang, and X. Sun. 2021. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends in Food Science & Technology 116:115–29. doi: 10.1016/j.tifs.2021.07.006.
  • Golmohammadi, H., E. Morales-Narváez, T. Naghdi, and A. Merkoçi. 2017. Nanocellulose in sensing and biosensing. Chemistry of Materials 29 (13):5426–46. doi: 10.1021/acs.chemmater.7b01170.
  • González-Guerrero, A. B., M. Alvarez, A. G. Castaño, C. Domínguez, and L. M. Lechuga. 2013. A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors. Journal of Colloid and Interface Science 393 (1):402–10. doi: 10.1016/j.jcis.2012.10.040.
  • Gonzalez-Macia, L., A. Morrin, M. R. Smyth, and A. J. Killard. 2010. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. The Analyst 135 (5):845–67. doi: 10.1039/b916888e.
  • Guo, R., F. Huang, G. Cai, L. Zheng, L. Xue, Y. Li, M. Liao, M. Wang, and J. Lin. 2020. A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification. Microchimica Acta 187 (4):1–9. doi: 10.1007/s00604-020-4169-z.
  • Hao, L., H. Gu, N. Duan, S. Wu, X. Ma, Y. Xia, H. Wang, and Z. Wang. 2017. A chemiluminescent aptasensor based on rolling circle amplification and Co2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta 164:275–82. doi: 10.1016/j.talanta.2016.11.053.
  • Hong, L., M. Pan, X. Xie, K. Liu, J. Yang, S. Wang, and S. Wang. 2021. Aptamer-based fluorescent biosensor for the rapid and sensitive detection of allergens in food matrices. Foods 10 (11):2598. doi: 10.3390/foods10112598.
  • Jabrane, T., M. Dubé, M. Griffiths, and P. J. Mangin. 2011. Towards a commercial production of phage-based bioactive paper. J for Journal Ofence & Technology for Forest Products & Processes 1 (1):6–13. doi: 10.1515/HF.2011.093.
  • Jabrane, T., J. Jeaidi, M. Dubé, and P. J. Mangin. 2008. Gravure printing of enzymes and phages. Advances in Printing and Media Technology 35:279–88.
  • Jang, M. J., and Y. Nam. 2015. Agarose-assisted micro-contact printing for high-quality biomolecular micro-patterns. Macromolecular Bioscience 15 (5):613–21. doi: 10.1002/mabi.201400407.
  • Khan, S., L. Lorenzelli, and R. S. Dahiya. 2015. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sensors Journal 15 (6):3164–85. doi: 10.1109/JSEN.2014.2375203.
  • Kim, D. W., H. J. Chun, J. H. Kim, H. Yoon, and H. C. Yoon. 2019. A non-spectroscopic optical biosensor for the detection of pathogenic Salmonella Typhimurium based on a stem-loop DNA probe and retro-reflective signaling. Nano Convergence 6 (1):1–8. doi: 10.1186/s40580-019-0186-1.
  • Lanzalaco, S., and B. G. Molina. 2020. Polymers and plastics modified electrodes for biosensors: A review. Molecules 25 (10):2446. doi: 10.3390/MOLECULES25102446.
  • Lian, Y., F. He, H. Wang, and F. Tong. 2015. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosensors & Bioelectronics 65:314–9. doi: 10.1016/j.bios.2014.10.017.
  • Li, Y., J. Deng, L. Fang, K. Yu, H. Huang, L. Jiang, W. Liang, and J. Zheng. 2015. A novel electrochemical DNA biosensor based on HRP-mimicking hemin/G-quadruplex wrapped GOx nanocomposites as tag for detection of Escherichia coli O157: H7. Biosensors & Bioelectronics 63:1–6. doi: 10.1016/j.bios.2014.07.012.
  • Li, D., M. W. Frey, and A. J. Baeumner. 2006. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of Membrane Science 279 (1–2):354–63. doi: 10.1016/j.memsci.2005.12.036.
  • Li-Na, J. 2013. Study on preparation process and properties of polyethylene terephthalate (pet). Applied Mechanics and Materials 312:406–10. doi: 10.4028/www.scientific.net/AMM.312.406.
  • Lin, S. P., I. Loira Calvar, J. M. Catchmark, J. R. Liu, A. Demirci, and K. C. Cheng. 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose 20 (5):2191–219. doi: 10.1007/s10570-013-9994-3.
  • Li, J., F. Rossignol, and J. Macdonald. 2015. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab on a Chip 15 (12):2538–58. doi: 10.1039/c5lc00235d.
  • Liu, G., M. Lu, X. Huang, T. Li, and D. Xu. 2018. Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. Sensors 18 (12):4166. doi: 10.3390/s18124166.
  • Liu, J., J. Niu, L. Yin, and F. Jiang. 2011. In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring. The Analyst 136 (22):4802–8. doi: 10.1039/c1an15649g.
  • Lizardi-mendoza, J., W. M. A. Monal, and F. M. G. Valencia. 2016. Chemical characteristics and functional properties of chitosan. Chitosan in the preservation of agricultural commodities. 3–11. doi: 10.1016/B978-0-12-802735-6/00001-X.
  • Lowe, C. R. 1989. Biosensors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 324 (1224):487–96. doi: 10.1098/rstb.1989.0062.
  • Lu, D., G. Pang, and J. Xie. 2017. A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/GNPs-thionine/chitosan. Biomedical Microdevices 19 (1):12. doi: 10.1007/s10544-017-0149-4.
  • Ma, X., Y. Jiang, F. Jia, Y. Yu, J. Chen, and Z. Wang. 2014. An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods 98 (1):94–8. doi: 10.1016/j.mimet.2014.01.003.
  • Maddipatla, D., B. B. Narakathu, and M. Atashbar. 2020. Recent progress in manufacturing techniques of printed and flexible sensors: A review. Biosensors 10 (12):199. doi: 10.3390/bios10120199.
  • Mao, X., L. Yang, X. L. Su, and Y. Li. 2006. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors & Bioelectronics 21 (7):1178–85. doi: 10.1016/j.bios.2005.04.021.
  • Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40 (7):3941–94. doi: 10.1039/c0cs00108b.
  • Murariu, M., and P. Dubois. 2016. PLA composites: From production to properties. Advanced Drug Delivery Reviews 107:17–46. doi: 10.1016/j.addr.2016.04.003.
  • Muxika, A., A. Etxabide, J. Uranga, P. Guerrero, and K. de la Caba. 2017. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules 105:1358–68. doi: 10.1016/j.ijbiomac.2017.07.087.
  • Naseri, M., M. Maliha, M. Dehghani, G. P. Simon, and W. Batchelor. 2022. Rapid detection of gram-positive and-negative bacteria in water samples using mannan-binding lectin-based visual biosensor. ACS Sensors 7 (4):951–9. doi: 10.1021/acssensors.1c01748.
  • Nguyen, H. H., J. Park, S. Kang, and M. Kim. 2015. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Basel, Switzerland) 15 (5):10481–510. doi: 10.3390/s150510481.
  • Niles, W. D., and P. J. Coassin. 2008. Cyclic olefin polymers: Innovative materials for high-density multiwell plates. Assay and Drug Development Technologies 6 (4):577–90. doi: 10.1089/adt.2008.134.
  • Parashkov, R., E. Becker, T. Riedl, H. H. Johannes, and W. Kowalsky. 2005. Large area electronics using printing methods. Proceedings of the IEEE 93 (7):1321–9. doi: 10.1109/JPROC.2005.850304.
  • Pavinatto, F. J., C. W. A. Paschoal, and A. C. Arias. 2015. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Biosensors & Bioelectronics 67:553–9. doi: 10.1016/j.bios.2014.09.039.
  • Qi, X., Y. Ye, H. Wang, B. Zhao, L. Xu, Y. Zhang, X. Wang, and N. Zhou. 2022. An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@Au-Teicoplanin and aptamer functionalized Au@Ag nanoparticles for detection of Staphylococcus aureus. Talanta 250:123648–10. doi: 10.1016/j.talanta.2022.123648.
  • Qian, X., Q. Qu, L. Li, X. Ran, L. Zuo, R. Huang, and Q. Wang. 2018. Ultrasensitive electrochemical detection of Clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products. Sensors 18 (6):1878. doi: 10.3390/s18061878.
  • Ranjbar, S., and S. Shahrokhian. 2018. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry (Amsterdam, Netherlands) 123:70–6. doi: 10.1016/j.bioelechem.2018.04.018.
  • Ren, W., A. Cabush, and J. Irudayaraj. 2020. Checkpoint enrichment for sensitive detection of target bacteria from large volume of food matrices. Analytica Chimica Acta 1127:114–21. doi: 10.1016/j.aca.2020.06.025.
  • Ropero-Vega, J. L., J. F. Redondo-Ortega, J. P. Rodríguez-Caicedo, P. Rondón-Villarreal, and J. M. Flórez-Castillo. 2022. New PEPTIR-2.0 peptide designed for use as recognition element in electrochemical biosensors with improved specificity towards E.coli O157: H7. Molecules 27 (9):2704. doi: 10.3390/molecules27092704.
  • Saddow, S. E., C. L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, and M. Jarosezski. 2011. Single-crystal silicon carbide: A biocompatible and hemocompatible semiconductor for advanced biomedical applications. Materials Science Forum 1246:193–8. doi: 10.1557/PROC-1246-B08-08.
  • Salinas, R. A., A. Orduña-Díaz, O. Obregon-Hinostroza, and M. A. Dominguez. 2022. Biosensors based on zinc oxide thin-film transistors using recyclable plastic substrates as an alternative for real-time pathogen detection. Talanta 237:122970. doi: 10.1016/j.talanta.2021.122970.
  • Sang, S., and H. Witte. 2010. Biosensors and Bioelectronics A novel PDMS micro membrane biosensor based on the analysis of surface stress. Biosensors & Bioelectronics 25 (11):2420–4. doi: 10.1016/j.bios.2010.03.035.
  • Shi, F., B. Wang, L. Yan, B. Wang, Y. Niu, L. Wang, and W. Sun. 2022. In-situ growth of nitrogen-doped carbonized polymer dots on black phosphorus for electrochemical DNA biosensor of Escherichia coli O157: H7. Bioelectrochemistry (Amsterdam, Netherlands) 148:108226. doi: 10.1016/j.bioelechem.2022.108226.
  • Silva, N. F. D., M. M. P. S. Neves, J. M. C. S. Magalhães, C. Freire, and C. Delerue-Matos. 2020. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in Food Science & Technology 99:621–33. doi: 10.1016/j.tifs.2020.03.031.
  • Singh, A., G. Sinsinbar, M. Choudhary, V. Kumar, R. Pasricha, H. N. Verma, S. P. Singh, and K. Arora. 2013. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors and Actuators B: Chemical 185:675–84. doi: 10.1016/j.snb.2013.05.014.
  • Sobhan, A., K. Muthukumarappan, and L. Wei. 2020. Development of bio-nanocomposite films by combination of PLA and biochar for smart food packaging. ASABE 2020 Annual International Meeting, 1–9. doi: 10.13031/aim.202000566.
  • Soni, D. K., R. Ahmad, and S. K. Dubey. 2018. Biosensor for the detection of Listeria monocytogenes: Emerging trends. Critical Reviews in Microbiology 44 (5):590–608. doi: 10.1080/1040841X.2018.1473331.
  • Soon, J. M., A. K. M. Brazier, and C. A. Wallace. 2020. Determining common contributory factors in food safety incidents – A review of global outbreaks and recalls 2008–2018. Trends in Food Science & Technology 97:76–87. doi: 10.1016/j.tifs.2019.12.030.
  • Stasyuk, N., G. Gayda, A. Zakalskiy, O. Zakalska, R. Serkiz, and M. Gonchar. 2019. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chemistry 285:213–20. doi: 10.1016/j.foodchem.2019.01.117.
  • Su, X. L., and Y. Li. 2004. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics 19 (6):563–74. doi: 10.1016/S0956-5663(03)00254-9.
  • Suaifan, G. A., S. Alhogail, and M. Zourob. 2017. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors & Bioelectronics 90:230–7. doi: 10.1016/j.bios.2016.11.047.
  • Sun, Y., N. Duan, P. Ma, Y. Liang, X. Zhu, and Z. Wang. 2019. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for vibrio parahemolyticus determination. Journal of Agricultural and Food Chemistry 67 (8):2313–20. doi: 10.1021/acs.jafc.8b06893.
  • Sun, D., T. Fan, F. Liu, F. Wang, D. Gao, and J. M. Lin. 2022. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7. Biosensors & Bioelectronics 212:114390. doi: 10.1016/j.bios.2022.114390.
  • Suni, I. I. 2021. Substrate materials for biomolecular immobilization within electrochemical biosensors. Biosensors 11 (7):239. doi: 10.3390/bios11070239.
  • Tan, T. T. M., Y. Y. Gan, L. H. Gan, T. Yong, B. Zhou, Y. L. Lam, and Y. Zhou. 1999. Coating of polystyrene thin film on glass for protein immobilization in optical biosensor applications. Advanced Photonic Sensors and Applications 3897:150–7. doi: 10.1117/12.369299.
  • Umapathi, R., S. Sonwal, M. J. Lee, G. Mohana Rani, E. S. Lee, T. J. Jeon, S. M. Kang, M. H. Oh, and Y. S. Huh. 2021. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews 446:214061. doi: 10.1016/j.ccr.2021.214061.
  • Vaisocherová-Lísalová, H., I. Víšová, M. L. Ermini, T. Špringer, X. C. Song, J. Mrázek, J. Lamačová, N. Scott Lynn, P. Šedivák, and J. Homola. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors & Bioelectronics 80:84–90. doi: 10.1016/j.bios.2016.01.040.
  • Wang, D., D. Ba, Z. Hao, Y. Li, F. Sun, K. Liu, G. Du, and Q. Mei. 2018. A novel approach for PDMS thin films production towards application as substrate for flexible biosensors. Materials Letters 221:228–31. doi: 10.1016/j.matlet.2018.03.114.
  • Wang, B., B. Koo, L. W. Huang, and H. G. Monbouquette. 2018. Microbiosensor fabrication by polydimethylsiloxane stamping for combined sensing of glucose and choline. The Analyst 143 (20):5008–13. doi: 10.1039/c8an01343h.
  • Wang, L., W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu. 2008. Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochemistry Communications 10 (4):673–6. doi: 10.1016/j.elecom.2008.02.009.
  • Wang, S., J. Xie, M. Jiang, K. Chang, R. Chen, L. Ma, J. Zhu, Q. Guo, H. Sun, and J. Hu. 2016. The development of a portable SPR bioanalyzer for sensitive detection of Escherichia coli O157:H7. Sensors 16 (11):1856–9. doi: 10.3390/s16111856.
  • Wang, X., Y. Yang, L. Li, M. Sun, H. Yin, and W. Qin. 2014. A polymeric liquid membrane electrode responsive to 3,3′,5,5′- tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing. Analytical Chemistry 86 (9):4416–22. doi: 10.1021/ac500281r.
  • Wang, A., X. You, H. Liu, J. Zhou, Y. Chen, C. Zhang, K. Ma, Y. Liu, P. Ding, Y. Qi, et al. 2022. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chemistry 366 (15):130573. doi: 10.1016/j.foodchem.2021.130573.
  • Wu, W., J. Li, D. Pan, J. Li, S. Song, M. Rong, Z. Li, J. Gao, and J. Lu. 2014. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of salmonella typhimurium. ACS Applied Materials & Interfaces 6 (19):16974–81. doi: 10.1021/am5045828.
  • Wu, Y., Y. Sun, F. Xiao, Z. Wu, and R. Yu. 2017. Sensitive inkjet printing paper-based colormetric strips for acetylcholinesterase inhibitors with indoxyl acetate substrate. Talanta 162:174–9. doi: 10.1016/j.talanta.2016.10.011.
  • Xiaoyi, M., Z. Guo, Z. Mao, Y. Tang, and P. Miao. 2018. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Microchimica Acta 185 (1):1–7. doi: 10.1007/s00604-017-2606-4.
  • Xie, Y., and X. Jiang. 2011. Microcontact printing. Methods in Molecular Biology (Clifton, NJ) 671:239–48. doi: 10.1007/978-1-59745-551-0_14.
  • Xing, G., N. Li, H. Lin, Y. Shang, Q. Pu, and J.-M. Lin. 2022. Microfluidic biosensor for one-step detection of multiple foodborne bacteria ssDNA simultaneously by smartphone. Talanta 253 (123980):123980. doi: 10.1016/j.talanta.2022.123980.
  • Xu, L., Z. Lu, L. Cao, H. Pang, Q. Zhang, Y. Fu, Y. Xiong, Y. Li, X. Wang, J. Wang, et al. 2017. In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system. Food Control 75:21–8. doi: 10.1016/j.foodcont.2016.12.018.
  • Yousefi, H., M. M. Ali, H. M. Su, C. D. M. Filipe, and T. F. Didar. 2018. Sentinel wraps: Real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano 12 (4):3287–94. doi: 10.1021/acsnano.7b08010.
  • Yousefi, H., H. M. Su, S. M. Imani, K. M. Alkhaldi, C. D. Filipe, and T. F. Didar. 2019. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors 4 (4):808–21. doi: 10.1021/acssensors.9b00440.
  • Yu, T., H. Xu, Y. Zhao, Y. Han, Y. Zhang, J. Zhang, C. Xu, W. Wang, Q. Guo, and J. Ge. 2020. Aptamer based high throughput colorimetric biosensor for detection of Staphylococcus aureus. Scientific Reports 10 (1):1–6. doi: 10.1038/s41598-020-66105-7.
  • Zhang, Y., and L. T. Lim. 2016. Inkjet-printed CO2 colorimetric indicators. Talanta 161:105–13. doi: 10.1016/j.talanta.2016.08.014.
  • Zhang, G. X., Y. L. Liu, M. Yang, W. S. Huang, and J. H. Xu. 2020. An aptamer-based, fluorescent and radionuclide dual-modality probe. Biochimie 171–172:55–62. doi: 10.1016/j.biochi.2020.02.007.
  • Zhang, Q., L. Zhang, W. Wu, and H. Xiao. 2020. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers 229:115454. doi: 10.1016/j.carbpol.2019.115454.
  • Zheng, T., X. Jiang, N. Li, X. Jiang, C. Liu, J.-J. Xu, and P. Wu. 2021. A portable, battery-powered photoelectrochemical aptasesor for field environment monitoring of E. coli O157:H7. Sensors and Actuators B: Chemical 346:130520. doi: 10.1016/j.snb.2021.130520.
  • Zhou, C., H. Zou, M. Li, C. Sun, D. Ren, and Y. Li. 2018. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosensors & Bioelectronics 117:347–53. doi: 10.1016/j.bios.2018.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.