728
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent advances in simultaneous detection strategies for multi-mycotoxins in foods

ORCID Icon, , , , , & show all

References

  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, M. A. Nameghi, T. S. Zavvar, and S. M. Taghdisi. 2021. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta 1165:338549. doi: 10.1016/j.aca.2021.338549.
  • Abreu, D., C. P. F. A. Da Silva Oliveira, E. A. Vargas, F. D. Madureira, E. J. Magalhaes, L. P. d Silva, and A. A. Saczk. 2020. Methodology development based on “dilute and shoot” and QuEChERS for determination of multiple mycotoxins in cocoa by LC-MS/MS. Analytical and Bioanalytical Chemistry 412 (8):1757–67. doi: 10.1007/s00216-020-02390-5.
  • Alsharif, A., A. M. Y. M. Choo, and G. H. Tan. 2019. Detection of five mycotoxins in different food matrices in the Malaysian market by using validated liquid chromatography electrospray lonization triple quadrupole mass spectrometry. Toxins 11 (4):196. doi: 10.3390/toxins11040196.
  • Anfossi, L., F. Di Nardo, S. Cavalera, C. Giovannoli, G. Spano, E. S. Speranskaya, I. Y. Goryacheva, and C. Baggiani. 2018. A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Mikrochimica Acta 185 (2):94. doi: 10.1007/s00604-017-2642-0.
  • Badie Bostan, H., N. M. Danesh, G. Karimi, M. Ramezani, S. A. Mousavi Shaegh, K. Youssefi, F. Charbgoo, K. Abnous, and S. M. Taghdisi. 2017. Ultrasensitive detection of ochratoxin A using aptasensors. Biosensors & Bioelectronics 98:168–79. doi: 10.1016/j.bios.2017.06.055.
  • Beloglazova, N., P. Lenain, M. Tessier, I. Goryacheva, Z. Hens, and S. De Saeger. 2019. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone. Talanta 192:169–74. doi: 10.1016/j.talanta.2018.09.042.
  • Beloglazova, N. V., E. S. Speranskaya, A. Wu, Z. Wang, M. Sanders, V. V. Goftman, D. Zhang, I. Yu. Goryacheva, and S. De Saeger. 2014. Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosensors & Bioelectronics 62:59–65. doi: 10.1016/j.bios.2014.06.021.
  • H. Bhardwaj., C. A. Marquette, P. Dutta, G., and Sumana, Rajesh. 2020. Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection. Analytical and Bioanalytical Chemistry 412 (25):7029–41. doi: 10.1007/s00216-020-02840-0.
  • Charlermroj, R., S. Phuengwas, M. Makornwattana, T. Sooksimuang, S. Sahasithiwat, W. Panchan, W. Sukbangnop, C. T. Elliott, and N. Karoonuthaisiri. 2021. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta 233:122540. doi: 10.1016/j.talanta.2021.122540.
  • Chen, J.-H., Z.-Y. Fang, J. Liu, and L.-W. Zeng. 2012. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 25 (2):555–60. doi: 10.1016/j.foodcont.2011.11.039.
  • Chen, L., Z.-H. Cheng, M. Luo, T. Wang, L. Zhang, J.-C. Wei, Y.-T. Wang, and P. Li. 2021. Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1990010.
  • Chen, P.-F., C.-B. Li, X.-Y. Ma, Z.-P. Wang, and Y. Zhang. 2022. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control 134:108748. doi: 10.1016/j.foodcont.2021.108748.
  • Chen, Q., Y.-P. Jin, S.-L. Luo, L.-D. He, R.-Q. Fan, S.-W. Zhang, C.-J. Yang, and Y.-Q. Chen. 2021. Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chemistry 336:127718. doi: 10.1016/j.foodchem.2020.127718.
  • Chen, R., S. Li, Y. Sun, B. Huo, Y. Xia, Y. Qin, S. Li, B. Shi, D. He, J. Liang, et al. 2021. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Mikrochimica Acta 188 (8):281. doi: 10.1007/s00604-021-04919-6.
  • Chen, R., Y. Sun, B. Huo, Z. Mao, X. Wang, S. Li, R. Lu, S. Li, J. Liang, and Z. Gao. 2021. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Analytica Chimica Acta 1180:338888. doi: 10.1016/j.aca.2021.338888.
  • Chen, X., H.-M. Wu, X.-Q. Tang, Z.-W. Zhang, and P.-W. Li. 2021. Recent advances in electrochemical sensors for mycotoxin detection in food. Electroanalysis. doi: 10.1002/elan.202100223.
  • Chen, Y.-Q., X.-R. Meng, Y.-Z. Zhu, M.-J. Shen, Y. Lu, J. Cheng, and Y.-C. Xu. 2018. Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system. Talanta 186:299–305. doi: 10.1016/j.talanta.2018.04.064.
  • Chotchuang, T., W. Cheewasedtham, T. J. Jayeoye, and T. Rujiralai. 2019. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis. Mikrochimica Acta 186 (9):655. doi: 10.1007/s00604-019-3778-x.
  • Clydesdale, F. M, and E. M. Ahmed. 1978. Colorimetry–methodology and applications. CRC Critical Reviews in Food Science and Nutrition 10 (3):243–301. doi: 10.1080/10408397809527252.
  • Costa, G. B., D. D. S. Fernandes, V. E. Almeida, T. S. P. Araújo, J. P. Melo, P. H. G. Dias Diniz, and G. Véras. 2015. Digital image-based classification of biodiesel. Talanta 139:50–5. doi: 10.1016/j.talanta.2015.02.043.
  • Da Silva, L., P. F. Madureira, E. De Azevedo Vargas, A. F. Faria, and R. Augusti. 2019. Development and validation of a multianalyte method for quantification of mycotoxins and pesticides in rice using a simple dilute and shoot procedure and UHPLC-MS/MS. Food Chemistry 270:420–7. doi: 10.1016/j.foodchem.2018.07.126.
  • Dai, S.-L., S.-J. Wu, N. Duan, and Z.-P. Wang. 2016. A luminescence resonance energy transfer based aptasensor for the mycotoxin ­ochratoxin A using upconversion nanoparticles and gold nanorods. Microchimica Acta 183 (6):1909–16. doi: 10.1007/s00604-016-1820-9.
  • De Girolamo, A., B. Ciasca, M. Pascale, V. M, and T. Lattanzio. 2020. Determination of zearalenone and ttrichothecenes, including deoxynivalenol and its acetylated derivatives, nivalenol, T-2 and HT-2 toxins, in wheat and wheat products by LC-MS/MS: A collaborative study. Toxins 12 (12):786. doi: 10.3390/toxins12120786.
  • De Girolamo, A., B. Ciasca, J. Stroka, S. Bratinova, M. Pascale, A. Visconti, V. M, and T. Lattanzio. 2017. Performance evaluation of LC–MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international proficiency testing. TrAC Trends in Analytical Chemistry 86:222–34. doi: 10.1016/j.trac.2016.11.005.
  • De Ruyck, K., M. De Boevre, I. Huybrechts, and S. De Saeger. 2015. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutation Research. Reviews in Mutation Research 766:32–41. doi: 10.1016/j.mrrev.2015.07.003.
  • Deng, Y.-J., Y.-L. Wang, Q. Deng, L.-J. Sun, R.-D. Wang, X.-B. Wang, J.-M. Liao, and R. Gooneratne. 2020. Simultaneous quantification of aflatoxin B1, T-2 Toxin, ochratoxin A and deoxynivalenol in dried seafood products by LC-MS/MS. Toxins 12 (8):488. doi: 10.3390/toxins12080488.
  • Di Nardo, F., E. Alladio, C. Baggiani, S. Cavalera, C. Giovannoli, G. Spano, and L. Anfossi. 2019. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single test line. Talanta 192:288–94. doi: 10.1016/j.talanta.2018.09.037.
  • Dong, H.-W., X.-S. An, Y.-D. Xiang, F.-K. Guan, Q. Zhang, Q.-Q. Yang, X. Sun, and Y.-M. Guo. 2020. Novel time-resolved fluorescence immunochromatography paper-based sensor with signal amplification strategy for detection of deoxynivalenol. Sensors 20 (22):6577. doi: 10.3390/s20226577.
  • Dong, H., Y.-P. Xian, K.-J. Xiao, Y.-L. Wu, L. Zhu, and J.-P. He. 2019. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chemistry 274:471–9. doi: 10.1016/j.foodchem.2018.09.035.
  • Dong, S.-Q., J.-X. Yan, S. Zhou, and Q. Zhou. 2022. Mycotoxins detection based on electrochemical approaches. Electroanalysis 34 (2):132–47. doi: 10.1002/elan.202100349.
  • Du, L., S. Wang, J. Huang, C. Chu, R. Li, Q. Li, Q. Wang, Y. Hu, J. Cao, Y. Chen, et al. 2018. Determination of aflatoxin M1 and B1 in milk and jujube by miniaturized solid-phase extraction coupled with ultra high performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry. Journal of Separation Science 41 (19):3677–85. doi: 10.1002/jssc.201800185.
  • Duan, H., Y. Li, Y.-N. Shao, X.-L. Huang, and Y.-H. Xiong. 2019. Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensors and Actuators B: Chemical 291:411–7. doi: 10.1016/j.snb.2019.04.101.
  • Fan, Y.-J., J.-W. Li, Y.-P. Guo, L.-W. Xie, and G. Zhang. 2021. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement 171:108829. doi: 10.1016/j.measurement.2020.108829.
  • Fink-Gremmels, J, and D. Van der Merwe. 2019. Mycotoxins in the food chain: Contamination of foods of animal origin. Chemical Hazards in Foods of Animal Origin 7:241–61. doi: 10.3920/978-90-8686-877-3_10.
  • Fleischmann, M., P. J. Hendra, and A. J. Mcquillan. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26 (2):163–6. doi: 10.1016/0009-2614(74)85388-1.
  • Foubert, A., N. V. Beloglazova, and S. De Saeger. 2017. Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection. Analytica Chimica Acta 955:48–57. doi: 10.1016/j.aca.2016.11.042.
  • Foubert, A., N. V. Beloglazova, A. V. Gordienko, M. D. Tessier, E. Drijvers, Z. Hens, and S. De Saeger. 2017. Development of a rainbow lateral flow immunoassay for the simultaneous detection of four mycotoxins. Journal of Agricultural and Food Chemistry 65 (33):7121–30. doi: 10.1021/acs.jafc.6b04157.
  • Gan, X.-R., H.-M. Zhao, and X. Quan. 2017. Two-dimensional MoS2: A promising building block for biosensors. Biosensors & Bioelectronics 89 (Pt 1):56–71. doi: 10.1016/j.bios.2016.03.042.
  • Gardner, K., M. Aghajamali, S. Vagin, J. Pille, W. Morrish, J. G. C. Veinot, B. Rieger, and A. Meldrum. 2018. Ultrabright fluorescent and lasing microspheres from a conjugated polymer. Advanced Functional Materials 28 (33):1802759. doi: 10.1002/adfm.201802759.
  • Gonzalez-Jartin, J. M., A. Alfonso, I. Rodriguez, M. J. Sainz, M. R. Vieytes, and L. M. Botana. 2019. A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chemistry 275:703–10. doi: 10.1016/j.foodchem.2018.09.162.
  • Gonzalez-Jartin, J. M., I. Rodriguez-Canas, A. Alfonso, M. J. Sainz, M. R. Vieytes, A. Gomes, I. Ramos, and L. M. Botana. 2021. Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC-MS/MS analysis. Food Chemistry 356:129647. doi: 10.1016/j.foodchem.2021.129647.
  • Goud, K. Y., S. K. Kailasa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, and K. H. Kim. 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors & Bioelectronics 121:205–22. doi: 10.1016/j.bios.2018.08.029.
  • Guo, W.-B., K. Fan, D.-X. Nie, J.-J. Meng, Q.-W. Huang, J.-H. Yang, Y.-Y. Shen, E.-K. Tangni, Z.-H. Zhao, Y.-J. Wu, et al. 2019. Development of a QuEChERS-Based UHPLC-MS/MS method for simultaneous determination of six alternaria toxins in grapes. Toxins. Toxins 11 (2):87. doi: 10.3390/toxins11020087.
  • Han, X.-X., B. Zhao, and Y. Ozaki. 2012. Label-free detection in biological applications of surface-enhanced Raman scattering. TrAC Trends in Analytical Chemistry 38:67–78. doi: 10.1016/j.trac.2012.05.006.
  • Han, Z., Z.-M. Tang, K.-Q. Jiang, Q.-W. Huang, J.-J. Meng, D.-X. Nie, and Z.-H. Zhao. 2020. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and AuNPs (rMoS2-Au) for multiplex detection of mycotoxins. Biosensors & Bioelectronics 150:111894. doi: 10.1016/j.bios.2019.111894.
  • Hao, N., L. Jiang, J. Qian, and K. Wang. 2016. Ultrasensitive electrochemical ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation. Journal of Electroanalytical Chemistry 781:332–8. doi: 10.1016/j.jelechem.2016.09.053.
  • Hao, N., J.-W. Lu, Z. Zhou, R. Hua, and K. Wang. 2018. A pH-resolved colorimetric biosensor for simultaneous multiple target detection. ACS Sensors 3 (10):2159–65. doi: 10.1021/acssensors.8b00717.
  • He, D.-Y., Z.-Z. Wu, B. Cui, Z.-Y. Jin, and E.-B. Xu. 2020. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles. Mikrochimica Acta 187 (4):254. doi: 10.1007/s00604-020-04236-4.
  • He, H.-R., D.-W. Sun, H.-B. Pu, and L.-J. Huang. 2020. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 324:126832. doi: 10.1016/j.foodchem.2020.126832.
  • He, Y., F.-Y. Tian, J. Zhou, Q.-Y. Zhao, R.-J. Fu, and B.-N. Jiao. 2020. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. Journal of Hazardous Materials 388:121758. doi: 10.1016/j.jhazmat.2019.121758.
  • Hong, J.-I, and B.-Y. Chang. 2014. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab on a Chip 14 (10):1725–32. doi: 10.1039/c3lc51451j.
  • Hou, M.-J., Y. Huang, L.-W. Ma, and Z.-J. Zhang. 2015. Sensitivity and reusability of SiO2 NRs@ AuNPs SERS substrate in trace monochlorobiphenyl detection. Nanoscale Research Letters 10 (1):444. doi: 10.1186/s11671-015-1147-1.
  • Hou, Y.-J., B.-Y. Jia, P. Sheng, X.-F. Liao, L.-C. Shi, L. Fang, L.-D. Zhou, and W.-J. Kong. 2022. Aptasensors for mycotoxins in foods: Recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 21 (2):2032–73. doi: 10.1111/1541-4337.12858.
  • Hu, W.-J., J.-X. Yan, K.-H. You, T.-L. Wei, Y.-P. Li, and Q.-H. He. 2020. Streptococcal protein G based fluorescent universal probes and biosynthetic mimetics for Fumonisin B1 immunochromatographic assay. Food Control 118:107442. doi: 10.1016/j.foodcont.2020.107442.
  • Hu, W., H. Chen, H. Zhang, G. He, X. Li, X. Zhang, Y. Liu, and C. M. Li. 2014. Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. Journal of Colloid and Interface Science 431:71–6. doi: 10.1016/j.jcis.2014.06.007.
  • Hu, W.-Y., L. Xia, Y.-F. Hu, and G.-K. Li. 2022. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchemical Journal 172:106908. doi: 10.1016/j.microc.2021.106908.
  • Jia, M., X. Liao, L. Fang, B. Jia, M. Liu, D. Li, L. Zhou, and W. Kong. 2021. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends in Analytical Chemistry 136:116193. doi: 10.1016/j.trac.2021.116193.
  • Jiang, D.-F., C. Huang, L.-J. Shao, X.-L. Wang, Y.-N. Jiao, W. Li, J.-D. Chen, and X.-W. Xu. 2020. Magneto-controlled aptasensor for simultaneous detection of ochratoxin A and fumonisin B1 using inductively coupled plasma mass spectrometry with multiple metal nanoparticles as element labels. Analytica Chimica Acta 1127:182–9. doi: 10.1016/j.aca.2020.06.057.
  • Jiang, F., P. Li, C. Zong, and H. Yang. 2020. Surface-plasmon-coupled chemiluminescence amplification of silver nanoparticles modified immunosensor for high-throughput ultrasensitive detection of multiple mycotoxins. Analytica Chimica Acta 1114:58–65. doi: 10.1016/j.aca.2020.03.052.
  • Jiang, K., Q. Huang, K. Fan, L. Wu, D. Nie, W. Guo, Y. Wu, and Z. Han. 2018. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chemistry 264:218–25. doi: 10.1016/j.foodchem.2018.05.041.
  • Jiang, K.-Q., D.-X. Nie, Q.-W. Huang, K. Fan, Z.-M. Tang, Y.-J. Wu, and Z. Han. 2019. Thin-layer MoS2 and thionin composite-based electrochemical sensing platform for rapid and sensitive detection of zearalenone in human biofluids. Biosensors & Bioelectronics 130:322–9. doi: 10.1016/j.bios.2019.02.003.
  • Jiang, Q., J.-D. Wu, K. Yao, Y.-L. Yin, M.-M. Gong, C.-B. Yang, and F. Lin. 2019. Paper-based microfluidic device (DON-chip) for rapid and low-cost deoxynivalenol quantification in food, feed, and feed ingredients. ACS Sensors 4 (11):3072–9. doi: 10.1021/acssensors.9b01895.
  • Hidalgo-Ruiz, J. L., R. Romero-González, J. L. Martínez Vidal, and A. Garrido Frenich. 2019. A rapid method for the determination of mycotoxins in edible vegetable oils by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry 288:22–8. doi: 10.1016/j.foodchem.2019.03.003.
  • Khan, I. M., S. Niazi, Y. Yu, A. Mohsin, B. S. Mushtaq, M. W. Iqbal, A. Rehman, W. Akhtar, and Z.-P. Wang. 2019. Aptamer induced multicolored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxin B1 and zearalenone. Analytical Chemistry 91 (21):14085–92. doi: 10.1021/acs.analchem.9b03880.
  • Kholová, A., I. Lhotská, A. Uhrová, I. Špánik, A. Machyňáková, P. Solich, F. Švec, and D. Šatínský. 2020. Determination of ochratoxin A and ochratoxin B in archived tokaj wines (vintage 1959–2017) using on-line solid phase extraction coupled to liquid chromatography. Toxins 12 (12):739. doi: 10.3390/toxins12120739.
  • Kutsanedzie, F. Y. H., A. A. Agyekum, V. Annavaram, and Q.-S. Chen. 2020. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chemistry 315:126231. doi: 10.1016/j.foodchem.2020.126231.
  • Lago, L. O., T. H. Nievierowski, L. P. Mallmann, E. Rodrigues, and J. E. Welke. 2021. QuEChERS-LC-QTOFMS for the simultaneous determination of legislated and emerging mycotoxins in malted barley and beer using matrix-matched calibration as a solution to the commercial unavailability of internal standards for some mycotoxins. Food Chemistry 345:128744. doi: 10.1016/j.foodchem.2020.128744.
  • Leite, M., A. Freitas, A. S. Silva, J. Barbosa, and F. Ramos. 2020. Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends in Food Science & Technology 99:542–65. doi: 10.1016/j.tifs.2020.03.023.
  • Lerdsri, J., J. Soongsong, P. Laolue, and J. Jakmunee. 2021. Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold ­nanoprobes for highly sensitive detection of aflatoxin M1 in milk. Journal of Food Composition and Analysis 102:103992. doi: 10.1016/j.jfca.2021.103992.
  • Li, C., K. Wen, T. Mi, X. Zhang, H. Zhang, S. Zhang, J. Shen, and Z. Wang. 2016. A universal multi-wavelength fluorescence polarization immunoassay for multiplexed detection of mycotoxins in maize. Biosensors & Bioelectronics 79:258–65. doi: 10.1016/j.bios.2015.12.033.
  • Li, H., D. Wang, X.-Q. Tang, W. Zhang, Q. Zhang, and P.-W. Li. 2020. Time-resolved fluorescence immunochromatography assay (TRFICA) for aflatoxin: Aiming at increasing strip method sensitivity. Frontiers in Microbiology 11:676. doi: 10.3389/fmicb.2020.00676.
  • Li, J.-J., H. Yan, X.-C. Tan, Z.-C. Lu, and H.-Y. Han. 2019. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Analytical Chemistry 91 (6):3885–92. doi: 10.1021/acs.analchem.8b04622.
  • Li, J.-J., J.-J. Zhu, and K. Xu. 2014. Fluorescent metal nanoclusters: From synthesis to applications. TrAC Trends in Analytical Chemistry 58:90–8. doi: 10.1016/j.trac.2014.02.011.
  • Li, K., P. Li, Z.-T. Jia, B. Qi, J.-W. Xu, D.-Y. Kang, M.-L. Liu, and Y.-B. Fan. 2018. Enhanced fluorescent intensity of magnetic-fluorescent bifunctional PLGA microspheres based on Janus electrospraying for bioapplication. Scientific Reports 8 (1):17117. doi: 10.1038/s41598-018-34856-z.
  • Li, M., H.-M. Wang, J.-D. Sun, J. Ji, Y.-L. Ye, X. Lu, Y.-Z. Zhang, and X.-L. Sun. 2021. Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control. 121:107616. doi: 10.1016/j.foodcont.2020.107616.
  • Li, N., J. Qiu, and Y.-Z. Qian. 2021. Polyethyleneimine-modified magnetic carbon nanotubes as solid-phase extraction adsorbent for the analysis of multi-class mycotoxins in milk via liquid chromatography-tandem mass spectrometry. Journal of Separation Science 44 (2):636–44. doi: 10.1002/jssc.202000821.
  • Li, Q., Z.-C. Lu, X.-C. Tan, X.-Y. Xiao, P. Wang, L. Wu, K. Shao, W.-M. Yin, and H.-Y. Han. 2017. Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosensors & Bioelectronics 97:59–64. doi: 10.1016/j.bios.2017.05.031.
  • Li, R.-X., Y. Wen, F.-L. Wang, and P.-L. He. 2021. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. Journal of Animal Science and Biotechnology 12 (1):108. doi: 10.1186/s40104-021-00629-4.
  • Li, S.-J., J.-P. Wang, W. Sheng, W.-J. Wen, Y. Gu, and S. Wang. 2018. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Mikrochimica Acta 185 (8):388. doi: 10.1007/s00604-018-2916-1.
  • Li, Y.-S., S.-X. Lin, Y.-H. Wang, X. Mao, Y.-N. Wu, Y.-G. Liu, and D.-Q. Chen. 2020. Broad-specific monoclonal antibody based IACs purification coupled UPLC-MS/MS method for T-2 and HT-2 toxin determination in maize and cherry samples. Food and Agricultural Immunology 31 (1):291–302. doi: 10.1080/09540105.2020.1724895.
  • Li, Y.-S., Y. Yu, Q. Zhang, Y.-H. Zha, S.-Y. Lu, Y. Yang, P.-W. Li, and Y. Zhou. 2022. Colorimetric immunoassay via smartphone based on Mn2+-mediated aggregation of AuNPs for convenient detection of fumonisin B1. Food Control 132:108481. doi: 10.1016/j.foodcont.2021.108481.
  • Liang, J.-Y., Y.-J. Dong, X.-X. Yuan, L.-X. Fan, S.-C. Zhao, and L. Wang. 2019. Fast determination of 14 mycotoxins in chestnut by dispersive solid-phase extraction coupled with ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Separation Science 42 (13):2191–201. doi: 10.1002/jssc.201900050.
  • Liang, Y., X.-L. Huang, R.-J. Yu, Y.-F. Zhou, and Y.-H. Xiong. 2016. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Analytica Chimica Acta 936:195–201. doi: 10.1016/j.aca.2016.06.018.
  • Liu, B.-S., R.-L. Huang, Y.-J. Yu, R.-X. Su, W. Qi, and Z.-M. He. 2018. Gold nanoparticle-aptamer-based LSPR sensing of ochratoxin A at a widened detection range by double calibration curve method. Frontiers in Chemistry 6:94. doi: 10.3389/fchem.2018.00094.
  • Liu, B., N. Zhang, X. Cui, Y. Li, J. Tang, H. Wang, D. Zhang, and Z. Li. 2021. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 223 (Pt 1):121729. doi: 10.1016/j.talanta.2020.121729.
  • Liu, H.-M., A.-X. Lu, H.-L. Fu, B.-R. Li, M.-H. Yang, J.-H. Wang, and Y.-X. Luan. 2018. Affinity capture of aflatoxin B1 and B2 by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC. Mikrochimica Acta 185 (7):326. doi: 10.1007/s00604-018-2849-8.
  • Liu, J., S.-S. Jiao, J.-L. Sun, Y.-W. Chang, S.-W. Wang, S.-J. Dai, R.-M. Xu, M.-H. Dou, Q.-J. Li, J. Wang, et al. 2022. A highly sensitive and reproducible multiplex mycotoxin SERS array based on AuNPs-loaded inverse opal silica photonic crystal microsphere. Sensors and Actuators B: Chemical 355:131245. doi: 10.1016/j.snb.2021.131245.
  • Liu, Q.-H., J. Liu, J.-C. Guo, X.-L. Yan, D.-H. Wang, L. Chen, F.-Y. Yan, and L.-G. Chen. 2009. Preparation of polystyrene fluorescent microspheres based on some fluorescent labels. Journal of Materials Chemistry 19 (14):2018–25. doi: 10.1039/b816963b.
  • Liu, R.-J., H. Wu, L. Lv, X.-J. Kang, C.-B. Cui, J. Feng, and Z.-J. Guo. 2018. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Mikrochimica Acta 185 (5):254. doi: 10.1007/s00604-018-2786-6.
  • Liu, R.-J., Y.-Y. Zhao, W.-Y. Sun, L. Lv, and Z.-J. Guo. 2018. Ochratoxin A detection platform based on signal amplification by Exonuclease III and fluorescence quenching by gold nanoparticles. Sensors and Actuators B: Chemical 255:1640–5. doi: 10.1016/j.snb.2017.08.176.
  • Lu, L, and S. Gunasekaran. 2019. Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta 194:709–16. doi: 10.1016/j.talanta.2018.10.091.
  • Luo, J.-Y., W.-J. Zhou, X.-W. Dou, J.-A. Qin, M. Zhao, and M.-H. Yang. 2018. Occurrence of multi-class mycotoxins in menthae haplocalycis analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry. Journal of Separation Science 41 (21):3974–84. doi: 10.1002/jssc.201800557.
  • Lv, L., D. Li, R. Liu, C. Cui, and Z. Guo. 2017. Label-free aptasensor for ochratoxin A detection using SYBR gold as a probe. Sensors and Actuators B: Chemical 246:647–52. doi: 10.1016/j.snb.2017.02.143.
  • Ma, B., Y. Xu, E.-J. Chen, X.-P. Yu, Z.-H. Ye, C.-X. Sun, and M.-Z. Zhang. 2021. Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chemistry 336:127713. doi: 10.1016/j.foodchem.2020.127713.
  • Ma, S., L.-G. Pan, T.-Y. You, and K. Wang. 2021. g-C3N4/Fe3O4 nanocomposites as adsorbents analyzed by UPLC-MS/MS for highly sensitive simultaneous determination of 27 mycotoxins in maize: Aiming at increasing purification efficiency and reducing time. Journal of Agricultural and Food Chemistry 69 (16):4874–82. doi: 10.1021/acs.jafc.1c00141.
  • Ma, S., M. Wang, T.-Y. You, and K. Wang. 2019. Using magnetic multiwalled carbon nanotubes as modified QuEChERS adsorbent for simultaneous determination of multiple mycotoxins in grains by UPLC-MS/MS. Journal of Agricultural and Food Chemistry 67 (28):8035–44. doi: 10.1021/acs.jafc.9b00090.
  • Man, Y., X.-X. Jin, H.-L. Fu, and L.-G. Pan. 2019. A magnetic nanoparticle based immunoassay for alternariol monomethyl ether using hydrogen peroxide-mediated fluorescence quenching of CdTe quantum dots. Mikrochimica Acta 186 (4):221. doi: 10.1007/s00604-019-3334-8.
  • Man, Y., G. Liang, A. Li, and L. Pan. 2017. Recent advances in mycotoxin determination for food monitoring via microchip. Toxins 9 (10):324. doi: 10.3390/toxins9100324.
  • Martinez, L, and L.-L. He. 2021. Detection of mycotoxins in food using surface-enhanced Raman spectroscopy: A review. ACS Applied Bio Materials 4 (1):295–310. doi: 10.1021/acsabm.0c01349.
  • McMaster, N., B. Acharya, K. Harich, J. Grothe, H. L. Mehl, D. G, and Schmale, I. I. I. 2019. Quantification of the mycotoxin deoxynivalenol (DON) in Sorghum using GC-MS and a stable isotope dilution assay (SIDA). Food Analytical Methods 12 (10):2334–43. doi: 10.1007/s12161-019-01588-3.
  • Miro-Abella, E., P. Herrero, N. Canela, L. Arola, F. Borrull, R. Ras, and N. Fontanals. 2017. Determination of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography-tandem mass spectrometry. Food Chemistry 229:366–72. doi: 10.1016/j.foodchem.2017.02.078.
  • Moez, E., D. Noel, S. Brice, G. Benjamin, A. Pascaline, and M. Didier. 2020. Aptamer assisted ultrafiltration cleanup with high performance liquid chromatography-fluorescence detector for the determination of OTA in green coffee. Food Chemistry 310:125851. doi: 10.1016/j.foodchem.2019.125851.
  • Moskovits, M. 2005. Surface-enhanced Raman spectroscopy: A brief retrospective. Journal of Raman Spectroscopy 36 (6–7):485–96. doi: 10.1002/jrs.1362.
  • Neng, J., Q. Zhang, and P.-L. Sun. 2020. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics 167:112480. doi: 10.1016/j.bios.2020.112480.
  • Niazi, S., I. M. Khan, L. Yan, M. I. Khan, A. Mohsin, N. Duan, S.-J. Wu, and Z.-P. Wang. 2019. Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry 411 (7):1453–65. doi: 10.1007/s00216-019-01580-0.
  • Niazi, S., X.-L. Wang, I. Pasha, I. M. Khan, S. Zhao, M. Shoaib, S.-J. Wu, and Z.-P. Wang. 2018. A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF4: Ce/Tb nanoparticles as signal probe. Talanta 186:97–103. doi: 10.1016/j.talanta.2018.04.013.
  • Ning, B.-A., Y. Wang, Y. Peng, J.-L. Bai, M. Liu, X.-J. Fan, Z.-Y. Sun, Z.-Q. Lv, C.-H. Zhou, and Z.-X. Gao. 2013. Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut. Biosensors & Bioelectronics 41:391–6. doi: 10.1016/j.bios.2012.08.057.
  • Nouri, N., H. Sereshti, and A. Farahani. 2018. Graphene-coated magnetic-sheet solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection for the determination of aflatoxins B1, B2, G1, and G2 in soy-based samples. Journal of Separation Science 41 (16):3258–66. doi: 10.1002/jssc.201800471.
  • Pan, T.-T., D.-W. Sun, H.-Y. Pu, and Q.-Y. Wei. 2018. Simple approach for the rapid detection of alternariol in pear fruit by surface-enhanced Raman scattering with pyridine-modified silver nanoparticles. Journal of Agricultural and Food Chemistry 66 (9):2180–7. doi: 10.1021/acs.jafc.7b05664.
  • Pandey, A. K., Y. S. Rajput, R. Sharma, and D. Singh. 2017. Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1. Applied Nanoscience 7 (8):893–903. doi: 10.1007/s13204-017-0629-0.
  • Pi, J.-J., P.-Y. Jin, S.-Y. Zhou, L.-P. Wang, H.-P. Wang, J.-L. Huang, L. Gan, T.-F. Yuan, and H.-J. Fan. 2022. Combination of ultrasonic-assisted aqueous two-phase extraction with solidifying organic drop-dispersive liquid–liquid microextraction for simultaneous determination of nine mycotoxins in medicinal and edible foods by HPLC with in-series DAD and FLD. Food Analytical Methods 15 (2):428–39. doi: 10.1007/s12161-021-02134-w.
  • Qi, Y., J. Zhao, G-j Weng, J-j Li, X. Li, J. Zhu, and J-w Zhao. 2018. A colorimetric/SERS dual-mode sensing method for the detection of mercury(ii) based on rhodanine-stabilized gold nanobipyramids. Journal of Materials Chemistry C 6 (45):12283–93. doi: 10.1039/C8TC03980A.
  • Qian, J., C. Ren, C. Wang, W. Chen, X. Lu, H. Li, Q. Liu, N. Hao, H. Li, and K. Wang. 2018. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Analytica Chimica Acta 1019:119–27. doi: 10.1016/j.aca.2018.02.063.
  • Qileng, A., H.-Z. Liang, S.-L. Huang, W.-P. Liu, Z.-L. Xu, and Y.-J. Liu. 2020. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sensors and Actuators B: Chemical 314:128066. doi: 10.1016/j.snb.2020.128066.
  • Qu, C.-L., L.-Y. Zhao, X. He, S.-C. Yu, and M. Wei. 2021. Magnetic beads-assisted fluorescence aptasensing approach based on dual DNA tweezers for detection of ochratoxin A and fumonisin B1 in wine and corn. Analytical and Bioanalytical Chemistry 413 (26):6677–85. doi: 10.1007/s00216-021-03635-7.
  • Qu, J.-W., H.-J. Xie, S.-Y. Zhang, P.-J. Luo, P. Guo, X.-X. Chen, Y.-B. Ke, J.-Y. Zhuang, F.-M. Zhou, and W.-X. Jiang. 2019. Multiplex flow cytometric immunoassays for high-throughput screening of multiple mycotoxin residues in milk. Food Analytical Methods 12 (4):877–86. doi: 10.1007/s12161-018-01412-4.
  • Rahmani, A., S. Jinap, and F. Soleimany. 2009. Qualitative and quantitative analysis of mycotoxins. Comprehensive Reviews in Food Science and Food Safety 8 (3):202–51. doi: 10.1111/j.1541-4337.2009.00079.x.
  • Rausch, A. K., R. Brockmeyer, and T. Schwerdtle. 2020. Development and validation of a QuEChERS-based liquid chromatography tandem mass spectrometry multi-method for the determination of 38 native and modified mycotoxins in cereals. Journal of Agricultural and Food Chemistry 68 (16):4657–69. doi: 10.1021/acs.jafc.9b07491.
  • Rausch, A. K., R. Brockmeyer, and T. Schwerdtle. 2021. Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer. Food Chemistry 338:127801. doi: 10.1016/j.foodchem.2020.127801.
  • Renikuntla, B. R., H. C. Rose, J. Eldo, A. S. Waggoner, and B. A. Armitage. 2004. Improved photostability and fluorescence properities through polyfluorination of a cyanine dye. Organic Letters 6 (6):909–12. doi: 10.1021/ol036081w.
  • Rodriguez, R. S., V. M. Szlag, T. M. Reineke, and C. L. Haynes. 2020. Multiplex surface-enhanced Raman scattering detection of deoxynivalenol and ochratoxin A with a linear polymer affinity agent. Materials Advances 1 (9):3256–66. doi: 10.1039/d0ma00608d.
  • Sadhasivam, S., M. Britzi, V. Zakin, M. Kostyukovsky, A. Trostanetsky, E. Quinn, and E. Sionov. 2017. Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 9 (10):302. doi: 10.3390/toxins9100302.
  • Salim, S. A., R. Sukor, M. N. Ismail, and J. Selamat. 2021. Dispersive liquid-liquid microextraction (DLLME) and LC-MS/MS analysis for multi-mycotoxin in rice bran: Method development, optimization and validation. Toxins 13 (4):280. doi: 10.3390/toxins13040280.
  • Scarpino, V., A. Reyneri, and M. Blandino. 2019. Development and comparison of two multiresidue methods for the determination of 17 Aspergillus and Fusarium mycotoxins in cereals using HPLC-ESI-TQ-MS/MS. Frontiers in Microbiology 10:361. doi: 10.3389/fmicb.2019.00361.
  • Schlegel, K. M, and P. W. Elsinghorst. 2020. Myco-DES: Enabling remote extraction of mycotoxins for robust and reliable quantification by stable isotope dilution LC-MS/MS. Analytical Chemistry 92 (7):5387–95. doi: 10.1021/acs.analchem.0c00087.
  • Shang, L., S.-J. Dong, and G. U. Nienhaus. 2011. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6 (4):401–18. doi: 10.1016/j.nantod.2011.06.004.
  • Shao, Y.-N., H. Duan, L. Guo, Y.-K. Leng, W.-H. Lai, and Y.-H. Xiong. 2018. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Analytica Chimica Acta 1025:163–71. doi: 10.1016/j.aca.2018.03.041.
  • Shao, Y.-N., H. Duan, S. Zhou, T.-T. Ma, L. Guo, X.-L. Huang, and Y.-H. Xiong. 2019. Biotin-streptavidin system-mediated ratiometric multiplex immunochromatographic assay for simultaneous and accurate quantification of three mycotoxins. Journal of Agricultural and Food Chemistry 67 (32):9022–31. doi: 10.1021/acs.jafc.9b03222.
  • Sharma, A., R. Khan, G. Catanante, T. A. Sherazi, S. Bhand, A. Hayat, and J. L. Marty. 2018. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 10 (5):197. doi: 10.3390/toxins10050197.
  • Sheini, A. 2020. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Mikrochimica Acta 187 (3):167. doi: 10.1007/s00604-020-4147-5.
  • Song, D., R. Yang, S.-Y. Fang, Y.-P. Liu, and F. Long. 2018. A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Mikrochimica Acta 185 (11):508. doi: 10.1007/s00604-018-3046-5.
  • Song, S., N. Liu, Z. Zhao, E. Njumbe Ediage, S. Wu, C. Sun, S. De Saeger, and A. Wu. 2014. Multiplex lateral flow immunoassay for mycotoxin determination. Analytical Chemistry 86 (10):4995–5001. doi: 10.1021/ac500540z.
  • Sun, J.-D., L.-Z. Wang, J.-D. Shao, D.-D. Yang, X.-R. Fu, and X.-L. Sun. 2021. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Analytical and Bioanalytical Chemistry 413 (26):6489–502. doi: 10.1007/s00216-021-03612-0.
  • Sun, J, and Y.-D. Jin. 2014. Fluorescent Au nanoclusters: Recent progress and sensing applications. Journal of Materials Chemistry C 2 (38):8000–11. doi: 10.1039/C4TC01489H.
  • Sun, J., W. Li, X. Zhu, S. Jiao, Y. Chang, S. Wang, S. Dai, R. Xu, M. Dou, Q. Li, et al. 2021. A novel multiplex mycotoxin surface-enhanced Raman spectroscopy immunoassay using functional gold nanotags on a silica photonic crystal microsphere biochip. Journal of Agricultural and Food Chemistry 69 (38):11494–501. doi: 10.1021/acs.jafc.1c03469.
  • Sun, S.-M., R. Zhao, S.-M. Feng, and Y.-L. Xie. 2018. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Mikrochimica Acta 185 (12):535. doi: 10.1007/s00604-018-3078-x.
  • Sun, Y.-J., S.-S. Song, A.-H. Wu, L.-Q. Liu, H. Kuang, and C.-L. Xu. 2021. A fluorescent paper biosensor for the rapid and ultrasensitive detection of zearalenone in corn and wheat. Analytical Methods: Advancing Methods and Applications 13 (35):3970–7. doi: 10.1039/d1ay01149a.
  • Suo, Z.-G., X.-J. Liang, H.-L. Jin, B.-S. He, and M. Wei. 2021. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1. Analytical and Bioanalytical Chemistry 413 (30):7587–95. doi: 10.1007/s00216-021-03723-8.
  • Taghdisi, S. M., N. M. Danesh, M. Ramezani, A. S. Emrani, and K. Abnous. 2018. Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Applied Materials & Interfaces 10 (15):12504–9. doi: 10.1021/acsami.8b02349.
  • Tahoun, I. F., M. A. Gab-Allah, R. N. Yamani, and A. B. Shehata. 2021. Development and validation of a reliable LC-MS/MS method for simultaneous determination of deoxynivalenol and T-2 toxin in maize and oats. Microchemical Journal 169:106599. doi: 10.1016/j.microc.2021.106599.
  • Tang, Y., L. Mu, J.-X. Cheng, Z.-X. Du, and Y.-Y. Yang. 2020. Determination of multi-class mycotoxins in apples and tomatoes by combined use of QuEChERS method and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Analytical Methods 13 (7):1381–90. doi: 10.1007/s12161-020-01753-z.
  • Tao, F.-F., H.-B. Yao, Z. Hruska, L. W. Burger, K. Rajasekaran, and D. Bhatnagar. 2018. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products. TrAC Trends in Analytical Chemistry 100:65–81. doi: 10.1016/j.trac.2017.12.017.
  • Tegegne, W. A., M. L. Mekonnen, A. B. Beyene, W.-N. Su, and B. J. Hwang. 2020. Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@polydopamine substrate. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 229:117940. doi: 10.1016/j.saa.2019.117940.
  • Tian, F.-Y., J. Zhou, R.-J. Fu, Y.-L. Cui, Q.-Y. Zhao, B.-N. Jiao, and Y. He. 2020. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chemistry 320:126607. doi: 10.1016/j.foodchem.2020.126607.
  • Tolosa, J., Y. Rodriguez-Carrasco, G. Graziani, A. Gaspari, E. Ferrer, J. Manes, and A. Ritieni. 2021. Mycotoxin occurrence and risk assessment in gluten-free pasta through UHPLC-Q-exactive orbitrap MS. Toxins 13 (5):305. doi: 10.3390/toxins13050305.
  • Tsagkaris, A. S., N. Prusova, Z. Dzuman, J. Pulkrabova, and J. Hajslova. 2021. Regulated and non-regulated mycotoxin detection in cereal matrices using an ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) method. Toxins 13 (11):783. doi: 10.3390/toxins13110783.
  • Wang, C., Y.-P. Li, and Q. Zhao. 2019. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosensors & Bioelectronics 144:111641. doi: 10.1016/j.bios.2019.111641.
  • Wang, C.-Q., X.-Y. Huang, X.-Y. Tian, X.-R. Zhang, S.-S. Yu, X.-H. Chang, Y. Ren, and J. Qian. 2019. A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. The Analyst 144 (20):6004–10. doi: 10.1039/c9an01593k.
  • Wang, L., Z. Yan, H.-Y. Zhou, Y.-Y. Fan, C. Wang, J.-B. Zhang, Y.-C. Liao, and A.-B. Wu. 2021. Validation of LC-MS/MS coupled with a chiral column for the determination of 3- or 15-acetyl deoxynivalenol mycotoxins from Fusarium graminearum in wheat. Toxins 13 (9):659. doi: 10.3390/toxins13090659.
  • Wang, X.-K., S. G. Park, J. H. Ko, X.-F. Xiao, V. Giannini, S. A. Maier, D. H. Kim, and J. Choo. 2018. Sensitive and reproducible immunoassay of multiple mycotoxins using surface-enhanced Raman scattering mapping on 3D plasmonic nanopillar arrays. Small 14 (39):1801623. doi: 10.1002/smll.201801623.
  • Wei, F., X.-F. Liu, X.-F. Liao, L.-C. Shi, S.-W. Zhang, J.-H. Lu, L.-D. Zhou, and W.-J. Kong. 2019. Simultaneous determination of 19 mycotoxins in lotus seed using a multimycotoxin UFLC-MS/MS method. The Journal of Pharmacy and Pharmacology 71 (7):1172–83. doi: 10.1111/jphp.13101.
  • Wei, M., L.-K. Xin, S. Feng, and Y. Liu. 2020. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Mikrochimica Acta 187 (2):102. doi: 10.1007/s00604-019-4089-y.
  • Wei, T., P.-P. Ren, L.-L. Huang, Z.-C. Ouyang, Z.-Y. Wang, X.-F. Kong, T.-J. Li, Y.-L. Yin, Y.-N. Wu, and Q.-H. He. 2019. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chemistry 300:125176. doi: 10.1016/j.foodchem.2019.125176.
  • Welke, J. E., M. Hoeltz, H. A. Dottori, and I. B. Noll. 2009. Quantitative analysis of patulin in apple juice by thin-layer chromatography using a charge coupled device detector. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 26 (5):754–8. doi: 10.1080/02652030802662746.
  • Wu, Y.-H., Y.-F. Zhou, H. Huang, X.-R. Chen, Y.-K. Leng, W.-H. Lai, X.-L. Huang, and Y.-H. Xiong. 2020. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors and Actuators B: Chemical 316:128107. doi: 10.1016/j.snb.2020.128107.
  • Wu, Z.-H., H.-B. Pu, and D.-W. Sun. 2021. Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: Principles and recent applications. Trends in Food Science & Technology 110:393–404. doi: 10.1016/j.tifs.2021.02.013.
  • Wu, Z.-Z., D.-Y. He, B. Cui, Z.-Y. Jin, E.-B. Xu, C. Yuan, P.-F. Liu, Y.-S. Fang, and Q.-Q. Chai. 2020. Trimer-based aptasensor for simultaneous determination of multiple mycotoxins using SERS and fluorimetry. Mikrochimica Acta 187 (9):495. doi: 10.1007/s00604-020-04487-1.
  • Wu, Z.-Z., E.-B. Xu, M. F. J. Chughtai, Z.-Y. Jin, and J. Irudayaraj. 2017. Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chemistry 230:673–80. doi: 10.1016/j.foodchem.2017.03.100.
  • Xiao, M.-W., X.-L. Bai, Y.-M. Liu, L. Yang, and X. Liao. 2018. Simultaneous determination of trace Aflatoxin B1 and Ochratoxin A by aptamer-based microchip capillary electrophoresis in food samples. Journal of Chromatography. A 1569:222–8. doi: 10.1016/j.chroma.2018.07.051.
  • Xing, F.-G., H.-B. Yao, Y. Liu, X.-F. Dai, R. L. Brown, and D. Bhatnagar. 2019. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products. Critical Reviews in Food Science and Nutrition 59 (1):173–80. doi: 10.1080/10408398.2017.1363709.
  • Xing, K.-Y., J. Peng, W.-Y. Chen, B.-L. Fang, D.-F. Liu, S. Shan, G.-G. Zhang, Y.-N. Huang, and W.-H. Lai. 2022. Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chemistry 370:131365. doi: 10.1016/j.foodchem.2021.131365.
  • Xing, L.-J., L.-J. Zou, R.-F. Luo, and Y. Wang. 2020. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry 311:125975. doi: 10.1016/j.foodchem.2019.125975.
  • Xiong, Z.-W., Q. Wang, Y.-J. Xie, N. Li, W. Yun, and L.-Z. Yang. 2021. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chemistry 338:128122. doi: 10.1016/j.foodchem.2020.128122.
  • Xu, L., Z. Zhang, Q. Zhang, W. Zhang, L. Yu, D. Wang, H. Li, and P. Li. 2018. An on-site simultaneous semi-quantification of aflatoxin B1, zearalenone, and T-2 toxin in maize- and cereal-based feed via multicolor immunochromatographic assay. Toxins 10 (2):87. doi: 10.3390/toxins10020087.
  • Xu, S.-J., D. Li, and P.-Y. Wu. 2015. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials 25 (7):1127–36. doi: 10.1002/adfm.201403863.
  • Xu, Y., M. M. Hassan, A. S. Sharma, H.-H. Li, and Q.-S. Chen. 2021. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1950117.
  • Xue, Z.-H., Y.-X. Zhang, W.-C. Yu, J.-C. Zhang, J.-Y. Wang, F. Wan, Y. Kim, Y.-D. Liu, and X.-H. Kou. 2019. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-a review. Analytica Chimica Acta 1069:1–27. doi: 10.1016/j.aca.2019.04.032.
  • Yadav, N., S. S. Yadav, A. K. Chhillar, and J. S. Rana. 2021. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 152:112201. doi: 10.1016/j.fct.2021.112201.
  • Yang, M.-X., G. Liu, H. M. Mehedi, Q. Ouyang, and Q.-S. Chen. 2017. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of Aflatoxin B1. Analytica Chimica Acta 986:122–30. doi: 10.1016/j.aca.2017.07.016.
  • Yang, S., Y.-J. Luo, L. Mu, Y.-Y. Yang, and Y.-T. Yang. 2021. Risk screening of mycotoxins and their derivatives in dairy products using a stable isotope dilution assay and LC-MS/MS. Journal of Separation Science 44 (4):782–92. doi: 10.1002/jssc.202000822.
  • Yang, X.-X., X.-P. Zhou, X. Zhang, Y. Qing, M. Luo, X. Liu, C.-R. Li, Y.-L. Li, H.-M. Xia, and J.-F. Qiu. 2015. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan. Electroanalysis 27 (11):2679–87. doi: 10.1002/elan.201500169.
  • Yang, Y., Z.-Q. Su, D. Wu, J.-H. Liu, X.-L. Zhang, Y.-N. Wu, and G.-L. Li. 2022. Low background interference SERS aptasensor for highly sensitive multiplex mycotoxin detection based on polystyrene microspheres-mediated controlled release of Raman reporters. Analytica Chimica Acta 1218:340000. doi: 10.1016/j.aca.2022.340000.
  • Ye, Z.-L., P. Cui, Y. Wang, H.-B. Yan, X. Wang, S.-Q. Han, and Y. Zhou. 2019. Simultaneous determination of four aflatoxins in dark tea by Multifunctional purification column and immunoaffinity column coupled to liquid chromatography tandem mass spectrometry. Journal of Agricultural and Food Chemistry 67 (41):11481–8. doi: 10.1021/acs.jafc.9b04933.
  • Yu, C., H.-T. Zhong, R.-F. Gao, J. Chen, Y.-J. Yu, Y.-Q. Geng, Y.-L. Wen, and J.-L. He. 2019. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosensors & Bioelectronics 144:111635. doi: 10.1016/j.bios.2019.111635.
  • Yuan, J., C.-W. Sun, X.-Y. Guo, T.-X. Yang, H. Wang, S.-Y. Fu, C.-C. Li, and H.-F. Yang. 2017. A rapid Raman detection of deoxynivalenol in agricultural products. Food Chemistry 221:797–802. doi: 10.1016/j.foodchem.2016.11.101.
  • Yuan, L., W.-Y. Lin, and H. Chen. 2013. Analogs of Changsha near-infrared dyes with large Stokes shifts for bioimaging. Biomaterials 34 (37):9566–71. doi: 10.1016/j.biomaterials.2013.08.081.
  • Zhai, W.-L., T.-Y. You, X.-H. Ouyang, and M. Wang. 2021. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 20 (2):1887–909. doi: 10.1111/1541-4337.12686.
  • Zhang, L.-L., Z.-Y. Zhang, Y. Tian, M.-H. Cui, B.-B. Huang, T. Luo, S.-F. Zhang, and H.-J. Wang. 2021. Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Analytical and Bioanalytical Chemistry 413 (14):3683–93. doi: 10.1007/s00216-021-03316-5.
  • Zhang, M., S.-T. Zheng, X.-J. Liu, Y. Long, and B.-Q. Yang. 2016. A series of novel NIR fluorescent dyes: Synthesis, theoretical calculations and fluorescence imaging applications in living cells. Dyes and Pigments 125:220–8. doi: 10.1016/j.dyepig.2015.10.028.
  • Zhang, W.-J., S.-S. Tang, Y.-P. Jin, C.-J. Yang, L.-D. He, J.-Y. Wang, and Y.-Q. Chen. 2020. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines. Journal of Hazardous Materials 393:122348. doi: 10.1016/j.jhazmat.2020.122348.
  • Zhang, X., X. Wang, M.-J. Sun, X.-F. Zhang, H.-H. Song, Y.-X. Yan, J.-H. Sun, X.-L. Li, and W.-H. Fang. 2015. A magnetic nanoparticle based enzyme-linked immunosorbent assay for sensitive quantification of zearalenone in cereal and feed samples. Toxins 7 (10):4216–31. doi: 10.3390/toxins7104216.
  • Zhang, X.-Y., Q.-Q. Tang, T.-J. Mi, S.-J. Zhao, K. Wen, L.-C. Guo, J.-F. Mi, S.-X. Zhang, W.-M. Shi, J.-Z. Shen, et al. 2018. Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: Applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control 87:100–8. doi: 10.1016/j.foodcont.2017.12.002.
  • Zhang, X.-Y., X.-Z. Yu, J.-Y. Wang, Q. Wang, H. Meng, and Z.-H. Wang. 2018. One-step core/multishell quantum dots-based fluoroimmunoassay for screening of deoxynivalenol in maize. Food Analytical Methods 11 (9):2569–78. doi: 10.1007/s12161-018-1198-x.
  • Zhang, Y.-Y., F. Pei, Y. Fang, P. Li, Y. Zhao, F. Shen, Y.-Y. Zou, and Q.-H. Hu. 2019. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chemistry 275:763–9. doi: 10.1016/j.foodchem.2018.09.127.
  • Zhao, X.-S., D. Liu, L. Zhang, Y.-K. Zhou, and M.-H. Yang. 2021. Development and optimization of a method based on QuEChERS-dSPE followed by UPLC-MS/MS for the simultaneous determination of 21 mycotoxins in nutmeg and related products. Microchemical Journal 168:106499. doi: 10.1016/j.microc.2021.106499.
  • Zhao, Y., Y.-X. Yang, Y.-D. Luo, X. Yang, M.-L. Li, and Q.-J. Song. 2015. Double detection of mycotoxins based on SERS labels embedded Ag@Au core-shell nanoparticles. ACS Applied Materials & Interfaces 7 (39):21780–6. doi: 10.1021/acsami.5b07804.
  • Zheng, B.-H., Y.-H. Yu, M.-L. Wang, J.-W. Wang, and H.-L. Xu. 2022. Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. Journal of Separation Science 45 (2):432–40. doi: 10.1002/jssc.202100641.
  • Zhou, H.-Y., N. Liu, Z. Yan, D.-Z. Yu, L. Wang, K.-B. Wang, X.-L. Wei, and A.-B. Wu. 2021. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chemistry 354:129497. doi: 10.1016/j.foodchem.2021.129497.
  • Zhou, H.-Y., Z. Yan, S. Yu, A.-B. Wu, and N. Liu. 2022. Development of a novel UPLC-MS/MS method for the simultaneous determination of 16 mycotoxins in different tea categories. Toxins 14 (3):169. doi: 10.3390/toxins14030169.
  • Zhou, J., Z. Liu, Q. Yang, W. Qian, Y. Chen, Y. Qi, and A. Wang. 2021. Multiple fluorescence immunoassay for the simultaneous detection of zearalenone and ochratoxin A. Analytical Biochemistry 628:114288. doi: 10.1016/j.ab.2021.114288.
  • Zhou, Q, and D.-P. Tang. 2020. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry 124:115814. doi: 10.1016/j.trac.2020.115814.
  • Zhu, C.-X., D. Liu, Y.-Y. Li, S. Ma, M. Wang, and T.-Y. You. 2021. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosensors & Bioelectronics 174:112654. doi: 10.1016/j.bios.2020.112654.
  • Zhu, C.-X., D. Liu, Y.-Y. Li, X.-L. Shen, S. Ma, Y. Liu, and T.-Y. You. 2020. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosensors & Bioelectronics 150:111814. doi: 10.1016/j.bios.2019.111814.
  • Zhu, W.-R., L.-B. Li, Z. Zhou, X.-D. Yang, N. Hao, Y.-S. Guo, and K. Wang. 2020. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chemistry 319:126544. doi: 10.1016/j.foodchem.2020.126544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.