609
Views
12
CrossRef citations to date
0
Altmetric
Review

Beneficial effects of butyrate on brain functions: A view of epigenetic

ORCID Icon, ORCID Icon, , &

References

  • Adams, J. B., L. J. Johansen, L. D. Powell, D. Quig, and R. A. Rubin. 2011. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology 11 (1):22. doi: 10.1186/1471-230X-11-22.
  • Alenghat, T. 2015. Epigenomics and the microbiota. Toxicologic Pathology 43 (1):101–6. doi: 10.1177/0192623314553805.
  • Alex, S., K. Lange, T. Amolo, J. S. Grinstead, A. K. Haakonsson, E. Szalowska, A. Koppen, K. Mudde, D. Haenen, S. Al-Lahham, et al. 2013. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Molecular and Cellular Biology 33 (7):1303–16. doi: 10.1128/MCB.00858-12.
  • Barichello, T., J. S. Generoso, L. R. Simões, C. J. Faller, R. A. Ceretta, F. Petronilho, J. Lopes-Borges, S. S. Valvassori, and J. Quevedo. 2015. Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Molecular Neurobiology 52 (1):734–40. doi: 10.1007/s12035-014-8914-3.
  • Baxter, N. T., A. W. Schmidt, A. Venkataraman, K. S. Kim, C. Waldron, and T. M. Schmidt. 2019. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 10 (1):e02566-18. doi: 10.1128/mBio.02566-18.
  • Blank, M., A. Werenicz, L. A. Velho, D. F. Pinto, A. C. Fedi, M. W. Lopes, T. V. Peres, R. B. Leal, A. S. Dornelles, and R. Roesler. 2015. Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neuroscience Letters 594:76–81. doi: 10.1016/j.neulet.2015.03.059.
  • Boets, E., L. Deroover, E. Houben, K. Vermeulen, S. V. Gomand, J. A. Delcour, and K. Verbeke. 2015. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7 (11):8916–29. doi: 10.3390/nu7115440.
  • Bourassa, M. W., I. Alim, S. J. Bultman, and R. R. Ratan. 2016. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters 625:56–63. doi: 10.1016/j.neulet.2016.02.009.
  • Braat, S., and R. F. Kooy. 2015. The GABAa receptor as a therapeutic target for neurodevelopmental disorders. Neuron 86 (5):1119–30. doi: 10.1016/j.neuron.2015.03.042.
  • Braniste, V., M. Al-Asmakh, C. Kowal, F. Anuar, A. Abbaspour, M. Tóth, A. Korecka, N. Bakocevic, L. Guan Ng, P. Gundu, et al. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine 6 (263):263ra158. doi: 10.1126/scitranslmed.3009759.
  • Canani, R., M. Costanzo, L. Leone, M. Pedata, R. Meli, and A. Calignano. 2011. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology 17 (12):1519–28. doi: 10.3748/wjg.v17.i12.1519.
  • Cantu-Jungles, T. M., H. E. Rasmussen, and B. R. Hamaker. 2019. Potential of prebiotic butyrogenic fibers in Parkinson’s disease. Frontiers in Neurology 10:663. doi: 10.3389/fneur.2019.00663.
  • Capuco, A., I. Urits, J. Hasoon, R. Chun, B. Gerald, J. K. Wang, A. L. Ngo, T. Simopoulos, A. D. Kaye, M. M. Colontonio, et al. 2020. Gut microbiome dysbiosis and depression: A comprehensive review. Current Pain and Headache Reports 24 (7):36. doi: 10.1007/s11916-020-00871-x.
  • Castellano, J. F., B. R. Fletcher, B. Kelley-Bell, D. H. Kim, M. Gallagher, and P. R. Rapp. 2012. Age-related memory impairment is associated with disrupted multivariate epigenetic coordination in the hippocampus. PLoS One 7 (3):e33249. doi: 10.1371/journal.pone.0033249.
  • Chambers, E. S. 2019. Gut‐derived short‐chain fatty acids: A friend or foe for hepatic lipid metabolism? Nutrition Bulletin 44 (2):154–9. doi: 10.1111/nbu.12377.
  • Chang, P. V., L. Hao, S. Offermanns, and R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America 111 (6):2247–52. doi: 10.1073/pnas.1322269111.
  • Chen, G., X. Ran, B. Li, Y. Li, D. He, B. Huang, S. Fu, J. Liu, and W. Wang. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30:317–25. doi: 10.1016/j.ebiom.2018.03.030.
  • Chen, J., and L. Vitetta. 2018. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clinical Colorectal Cancer 17 (3):e541–e544. doi: 10.1016/j.clcc.2018.05.001.
  • Codex Alimentarius. 2010. FAO, Rome: Joint FAO/WHO food standards programme, secretariat of the Codex Alimentarius Commission. Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Accessed October 14, 2022. https://www.fao.org/fao-who-codexalimentarius.
  • Cuervo-Zanatta, D., T. Syeda, V. Sánchez-Valle, M. Irene, Fierro, P. Torres, Aguilar, M. A. Torres, Ramos, M. Shibayama, Salas, A. Silva, Olivares, L. G. Noriega, et al. 2022. Dietary fiber modulates the release of gut bacterial products preventing cognitive decline in an Alzheimer’s mouse model. Cellular and Molecular Neurobiology 0:1–14. doi: 10.1007/s10571-022-01268-7.
  • D’Souza, W. N., J. Douangpanya, S. Mu, P. Jaeckel, M. Zhang, J. R. Maxwell, J. B. Rottman, K. Labitzke, A. Willee, H. Beckmann, et al. 2017. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One 12 (7):e0180190. doi: 10.1371/journal.pone.0180190.
  • Elce, A., F. Amato, F. Zarrilli, A. Calignano, R. Troncone, G. Castaldo, and R. B. Canani. 2017. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells. Beneficial Microbes 8 (5):841–7. doi: 10.3920/BM2016.0197.
  • Fattorusso, A., L. Di Genova, G. Dell’Isola, E. Mencaroni, and S. Esposito. 2019. Autism spectrum disorders and the gut microbiota. Nutrients 11 (3):521. doi: 10.3390/nu11030521.
  • Fernando, W. M. A. D. B., I. J. Martins, M. Morici, P. Bharadwaj, S. R. Rainey-Smith, W. L. F. Lim, and R. N. Martins. 2020. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. Journal of Alzheimer’s Disease: JAD 74 (1):91–9. doi: 10.3233/JAD-190120.
  • Ferrante, R. J., J. K. Kubilus, J. Lee, H. Ryu, A. Beesen, B. Zucker, K. Smith, N. W. Kowall, R. R. Ratan, R. Luthi-Carter, et al. 2003. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. The Journal of Neuroscience 23 (28):9418–27. doi: 10.1523/JNEUROSCI.23-28-09418.2003.
  • Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3 (4):289–306. doi: 10.4161/gmic.1989.
  • Gagliano, H., R. Delgado-Morales, A. Sanz-Garcia, and A. Armario. 2014. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology 79:75–82. doi: 10.1016/j.neuropharm.2013.10.031.
  • Gill, P. A., J. G. Muir, P. R. Gibson, and M. C. van Zelm. 2022. A randomized dietary intervention to increase colonic and peripheral blood short-chain fatty acids modulates the blood B- and T-cell compartments in healthy humans. The American Journal of Clinical Nutrition. doi: 10.1093/ajcn/nqac246.
  • Govindarajan, N., R. C. Agis-Balboa, J. Walter, F. Sananbenesi, and A. Fischer. 2011. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. Journal of Alzheimer’s Disease: JAD 26 (1):187–97. doi: 10.3233/JAD-2011-110080.
  • Grenham, S., G. Clarke, J. F. Cryan, and T. G. Dinan. 2011. Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2:94. doi: 10.3389/fphys.2011.00094.
  • Hald, S., A. G. Schioldan, M. E. Moore, A. Dige, H. N. Laerke, J. Agnholt, K. E. B. Knudsen, K. Hermansen, M. L. Marco, S. Gregersen, et al. 2016. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: A randomised crossover study. PLoS One 11 (7):e0159223. doi: 10.1371/journal.pone.0159223.
  • Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer. 2008. Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27 (2):104–19. doi: 10.1111/j.1365-2036.2007.03562.x.
  • Holscher, H. D. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8 (2):172–84. doi: 10.1080/19490976.2017.1290756.
  • Horwood, J. M., F. Dufour, S. Laroche, and S. Davis. 2006. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. The European Journal of Neuroscience 23 (12):3375–84. doi: 10.1111/j.1460-9568.2006.04859.x.
  • Ingerslev, A. K., P. K. Theil, M. S. Hedemann, H. N. Laerke, and K. E. B. Knudsen. 2014. Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. The British Journal of Nutrition 111 (9):1564–76. doi: 10.1017/s0007114513004066.
  • Intlekofer, K. A., N. C. Berchtold, M. Malvaez, A. J. Carlos, S. C. McQuown, M. J. Cunningham, M. A. Wood, and C. W. Cotman. 2013. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38 (10):2027–34. doi: 10.1038/npp.2013.104.
  • ISAAP. International Scientific Association for Probiotics and Prebiotics. 2016. Accessed October 14, 2022. https://isappscience.org/for-scientists/resources/prebiotics/.
  • Khan, M. T., S. H. Duncan, A. J. Stams, J. M. van Dijl, H. J. Flint, and H. J. Harmsen. 2012. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. The ISME Journal 6 (8):1578–85. doi: 10.1038/ismej.2012.5.
  • Kidd, S. K., and J. S. Schneider. 2010. Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research 1354:172–8. doi: 10.1016/j.brainres.2010.07.041.
  • Kimura, I., D. Inoue, T. Maeda, T. Hara, A. Ichimura, S. Miyauchi, M. Kobayashi, A. Hirasawa, and G. Tsujimoto. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America 108 (19):8030–5. doi: 10.1073/pnas.1016088108.
  • King, N., C. T. Hittinger, and S. B. Carroll. 2003. Evolution of key cell signaling and adhesion protein families predates animal origins. Science (New York, N.Y.) 301 (5631):361–3. doi: 10.1126/science.1083853.
  • Knudsen, K. E. B. 2015. Microbial degradation of whole-grain complex carbohydrates and impact on short- chain fatty acids and health. Advances in Nutrition 6 (2):206–13. doi: 10.3945/an.114.007450.
  • Knudsen, K. E. B., and H. N. Laerke. 2010. Review: Rye arabinoxylans: Molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract. Cereal Chemistry 87 (4):353–62. doi: 10.1094/CCHEM-87-4-0353.
  • Knudsen, K. B., H. Laerke, M. Hedemann, T. Nielsen, A. Ingerslev, D. Gundelund Nielsen, P. Theil, S. Purup, S. Hald, A. Schioldan, et al. 2018. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10 (10):1499. doi: 10.3390/nu10101499.
  • Kratsman, N., D. Getselter, and E. Elliott. 2016. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102:136–45. doi: 10.1016/j.neuropharm.2015.11.003.
  • Li, Z., C. X. Yi, S. Katiraei, S. Kooijman, E. Zhou, C. K. Chung, Y. Gao, J. K. van den Heuvel, O. C. Meijer, J. F. P. Berbée, et al. 2018. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67 (7):1269–79. doi: 10.1136/gutjnl-2017-314050.
  • Lin, H. V., A. Frassetto, E. J. Kowalik, Jr., A. R. Nawrocki, M. M. Lu, J. R. Kosinski, J. A. Hubert, D. Szeto, X. Yao, G. Forrest, et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7 (4):e35240. doi: 10.1371/journal.pone.0035240.
  • Liu, H., J. Wang, T. He, S. Becker, G. Zhang, D. Li, and X. Ma. 2018. Butyrate: A double-edged sword for health? Advances in Nutrition (Bethesda, MD) 9 (1):21–9. doi: 10.1093/advances/nmx009.
  • Liu, J., F. Wang, S. Liu, J. Du, X. Hu, J. Xiong, R. Fang, W. Chen, and J. Sun. 2017. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon-like peptide-1. Journal of the Neurological Sciences 381:176–81. doi: 10.1016/j.jns.2017.08.3235.
  • Liu, S., J. Gao, M. Zhu, K. Liu, and H. L. Zhang. 2020. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Molecular Neurobiology 57 (12):5026–43. doi: 10.1007/s12035-020-02073-3.
  • Louis, P., and H. J. Flint. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology 19 (1):29–41. doi: 10.1111/1462-2920.13589.
  • Man, H.-Y., Q. Wang, W.-Y. Lu, W. Ju, G. Ahmadian, L. Liu, S. D’Souza, T. P. Wong, C. Taghibiglou, J. Lu, et al. 2003. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38 (4):611–24. doi: 10.1016/S0896-6273(03)00228-9.
  • Matt, S. M., J. M. Allen, M. A. Lawson, L. J. Mailing, J. A. Woods, and R. W. Johnson. 2018. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Frontiers in Immunology 9:1832. doi: 10.3389/fimmu.2018.01832.
  • McLoughlin, R. F., B. S. Berthon, M. E. Jensen, K. J. Baines, and L. G. Wood. 2017. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. The American Journal of Clinical Nutrition 106 (3):930–45. doi: 10.3945/ajcn.117.156265.
  • Mokhtari, Z., D. L. Gibson, and A. Hekmatdoost. 2017. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Advances in Nutrition (Bethesda, MD) 8 (2):240–52. doi: 10.3945/an.116.013151.
  • Moshfegh, A. J., J. E. Friday, J. P. Goldman, and J. K. Ahuja. 1999. Presence of inulin and oligofructose in the diets of Americans. The Journal of Nutrition 129 (7 Suppl):1407S–11S. doi: 10.1093/jn/129.7.1407S.
  • Nakamura, S., N. Kondo, Y. Yamaguchi, M. Hashiguchi, K. Tanabe, C. Ushiroda, M. Kawahashi-Tokuhisa, K. Yui, M. Miyakoda, T. Oku, et al. 2014. Daily feeding of fructooligosaccharide or glucomannan delays onset of senescence in SAMP8 mice. Gastroenterology Research and Practice 2014:303184. doi: 10.1155/2014/303184.
  • Nielsen, T. S., H. N. Laerke, P. K. Theil, J. F. Sørensen, M. Saarinen, S. Forssten, and K. E. Knudsen. 2014. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. The British Journal of Nutrition 112 (11):1837–49. doi: 10.1017/S000711451400302X.
  • Nilsson, A. C., E. M. Östman, K. E. Knudsen, J. J. Holst, and I. M. Björck. 2010. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. The Journal of Nutrition 140 (11):1932–6. doi: 10.3945/jn.110.123604.
  • Paiva, I., R. Pinho, M. A. Pavlou, M. Hennion, P. Wales, A. L. Schütz, A. Rajput, É. M. Szego, C. Kerimoglu, E. Gerhardt, et al. 2017. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Human Molecular Genetics 26 (12):2231–46. doi: 10.1093/hmg/ddx114.
  • Patnala, R., T. V. Arumugam, N. Gupta, and S. T. Dheen. 2017. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Molecular Neurobiology 54 (8):6391–411. doi: 10.1007/s12035-016-0149-z.
  • Peng, L., Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition 139 (9):1619–25. doi: 10.3945/jn.109.104638.
  • Peterson, C. L., and M. A. Laniel. 2004. Histones and histone modifications. Current Biology: CB 14 (14):R546–R551. doi: 10.1016/j.cub.2004.07.007.
  • Qin, R., J. Wang, C. Chao, J. Yu, L. Copeland, S. Wang, and S. Wang. 2021. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota. Journal of Agricultural and Food Chemistry 69 (10):3209–18. doi: 10.1021/acs.jafc.0c08187.
  • Saw, G., K. Krishna, N. Gupta, T. W. Soong, K. Mallilankaraman, S. Sajikumar, and S. T. Dheen. 2020. Epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway involved in long-term potentiation and synaptic plasticity in rats. Glia 68 (3):656–69. doi: 10.1002/glia.23748.
  • Schmidt, K., P. J. Cowen, C. J. Harmer, G. Tzortzis, S. Errington, and P. W. Burnet. 2015. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232 (10):1793–801. doi: 10.1007/s00213-014-3810-0.
  • Schneeberger, M., R. Gomis, and M. Claret. 2014. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. The Journal of Endocrinology 220 (2):T25–T46. doi: 10.1530/JOE-13-0398.
  • Schönfeld, P., and L. Wojtczak. 2016. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research 57 (6):943–54. doi: 10.1194/jlr.R067629.
  • Sharma, S., R. Taliyan, and S. Singh. 2015. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behavioural Brain Research 291:306–14. doi: 10.1016/j.bbr.2015.05.052.
  • Sherry, C. L., S. S. Kim, R. N. Dilger, L. L. Bauer, M. L. Moon, R. I. Tapping, G. C. Fahey, Jr., K. A. Tappenden, and G. C. Freund. 2010. Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain, Behavior, and Immunity 24 (4):631–40. doi: 10.1016/j.bbi.2010.01.015.
  • Shukla, S., and B. L. Tekwani. 2020. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Frontiers in Pharmacology 11:537. doi: 10.3389/fphar.2020.00537.
  • Silva, P. F., V. A. Garcia, A. S. Dornelles, V. K. Silva, N. Maurmann, B. C. D. Portal, R. D. P. Ferreira, F. C. Piazza, R. Roesler, and N. Schröder. 2012. Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42–9. doi: 10.1016/j.neuroscience.2011.10.038.
  • Silva, Y. P., A. Bernardi, and R. L. Frozza. 2020. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology 11:25. doi: 10.3389/fendo.2020.00025.
  • Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (1):128–39. doi: 10.1016/j.immuni.2013.12.007.
  • Sleiman, S. F., M. Basso, L. Mahishi, A. P. Kozikowski, M. E. Donohoe, B. Langley, and R. R. Ratan. 2009. Putting the ‘HAT’ back on survival signalling: The promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opinion on Investigational Drugs 18 (5):573–84. doi: 10.1517/13543780902810345.
  • Srikantha, P., and M. H. Mohajeri. 2019. The Possible role of the microbiota-gut-brain-axis in autism spectrum disorder. International Journal of Molecular Sciences 20 (9):2115. doi: 10.3390/ijms20092115.
  • Steenbergen, L., R. Sellaro, S. van Hemert, J. A. Bosch, and L. S. Colzato. 2015. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity 48:258–64. doi: 10.1016/j.bbi.2015.04.003.
  • Stilling, R. M., M. van de Wouw, G. Clarke, C. Stanton, T. G. Dinan, and J. F. Cryan. 2016. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International 99:110–32. doi: 10.1016/j.neuint.2016.06.011.
  • Sun, M. F., and Y. Q. Shen. 2018. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Research Reviews 45:53–61. doi: 10.1016/j.arr.2018.04.004.
  • Takuma, K., Y. Hara, S. Kataoka, T. Kawanai, Y. Maeda, R. Watanabe, E. Takano, A. Hayata-Takano, H. Hashimoto, Y. Ago, et al. 2014. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacology, Biochemistry, and Behavior 126:43–9. doi: 10.1016/j.pbb.2014.08.013.
  • Tarini, J., and T. M. Wolever. 2010. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 35 (1):9–16. doi: 10.1139/H09-119.
  • Titgemeyer, E. C., L. D. Bourquin, G. C. Fahey, Jr., and K. A. Garleb. 1991. Fermentability of various fiber sources by human fecal bacteria in vitro. The American Journal of Clinical Nutrition 53 (6):1418–24. doi: 10.1093/ajcn/53.6.1418. PMID: 1852091.
  • Trachsel, J., D. O. Bayles, T. Looft, U. Y. Levine, and H. K. Allen. 2016. Function and phylogeny of bacterial butyryl coenzyme a: Acetate transferases and their diversity in the proximal colon of swine. Applied and Environmental Microbiology 82 (22):6788–98. doi: 10.1128/AEM.02307-16.
  • Tsitko, I., F. Wiik-Miettinen, O. Mattila, N. Rosa-Sibako, T. Seppänen-Laakso, J. Maukonen, E. Nordlund, and M. Saarela. 2019. A small in vitro fermentation model for screening the gut microbiota effects of different fiber preparations. International Journal of Molecular Sciences 20 (8):1925. doi: 10.3390/ijms20081925.
  • van de Wouw, M., H. Schellekens, T. G. Dinan, and J. F. Cryan. 2017. Microbiota-gut-brain axis: Modulator of host metabolism and appetite. The Journal of Nutrition 147 (5):727–45. doi: 10.3945/jn.116.240481.
  • van der Beek, C. M., C. H. C. Dejong, F. J. Troost, A. A. M. Masclee, and K. Lenaerts. 2017. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutrition Reviews 75 (4):286–305. doi: 10.1093/nutrit/nuw067.
  • Vital, M., A. Karch, and D. H. Pieper. 2017. Colonic butyrate-producing communities in humans: An overview using omics data. mSystems 2 (6):e00130-17. doi: 10.1128/mSystems.00130-17.
  • Walsh, M. E., A. Bhattacharya, K. Sataranatarajan, R. Qaisar, L. Sloane, M. M. Rahman, M. Kinter, and H. Van Remmen. 2015. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14 (6):957–70. doi: 10.1111/acel.12387.
  • Wei, Y., P. A. Melas, G. Wegener, A. A. Mathé, and C. Lavebratt. 2014. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. International Journal of Neuropsychopharmacology 18 (2):pyu032. doi: 10.1093/ijnp/pyu032.
  • Willemsen, L. E., M. A. Koetsier, S. J. van Deventer, and E. A. van Tol. 2003. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52 (10):1442–7. doi: 10.1136/gut.52.10.1442.
  • Xiong, R.-G., D.-D. Zhou, S.-X. Wu, S.-Y. Huang, A. Saimaiti, Z.-J. Yang, A. Shang, C.-N. Zhao, R.-Y. Gan, and H.-B. Li. 2022. Health benefits and side effects of short-chain fatty acids. Foods 11 (18):2863. doi: 10.3390/foods11182863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.