506
Views
9
CrossRef citations to date
0
Altmetric
Review

Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdullahi, A, and M. G. Jeschke. 2016. White adipose tissue browning: A double-edged sword. Trends in Endocrinology and Metabolism: TEM 27 (8):542–52. doi: 10.1016/j.tem.2016.06.006.
  • Al Nebaihi, H. M., R. Al Batran, J. R. Ussher, Z. H. Maayah, A. O. S. El-Kadi, and D. R. Brocks. 2020. Dietary-induced obesity, hepatic cytochrome p450, and lidocaine metabolism: Comparative effects of high-fat diets in mice and rats and reversibility of effects with normalization of diet. Journal of Pharmaceutical Sciences 109 (2):1199–210. doi: 10.1016/j.xphs.2019.11.007.
  • Ambasta, R. K., R. Gupta, D. Kumar, S. Bhattacharya, A. Sarkar, and P. Kumar. 2018. Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics 18 (4):230–9. doi: 10.1093/bfgp/ely036.
  • Amellal, M., C. Bronner, F. Briancon, M. Haag, R. Anton, and Y. Landry. 1985. Inhibition of mast cell histamine release by flavonoids and biflavonoids. Planta Medica 51 (1):16–20. doi: 10.1055/s-2007-969381.
  • Asadi, S, and T. C. Theoharides. 2012. Corticotropin-releasing hormone and extracellular mitochondria augment ige-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. Journal of Neuroinflammation 9:85. doi: 10.1186/1742-2094-9-85.
  • Asadi, S., B. Zhang, Z. Weng, A. Angelidou, D. Kempuraj, K. D. Alysandratos, and T. C. Theoharides. 2010. Luteolin and thiosalicylate inhibit hgcl(2) and thimerosal-induced vegf release from human mast cells. International Journal of Immunopathology and Pharmacology 23 (4):1015–20. doi: 10.1177/039463201002300406.
  • Baek, Y., M. N. Lee, D. Wu, and M. Pae. 2019. Luteolin reduces adipose tissue macrophage inflammation and insulin resistance in postmenopausal obese mice. The Journal of Nutritional Biochemistry 71:72–81. doi: 10.1016/j.jnutbio.2019.06.002.
  • Bais, S., R. Kumari, Y. Prashar, and N. S. Gill. 2017. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes & Metabolic Syndrome 11 Suppl 2:S1001–S1007. doi: 10.1016/j.dsx.2017.07.029.
  • Bawazeer, M. A, and T. C. Theoharides. 2019. Il-33 stimulates human mast cell release of ccl5 and ccl2 via mapk and nf-κb, inhibited by methoxyluteolin. European Journal of Pharmacology 865:172760. doi: 10.1016/j.ejphar.2019.172760.
  • Betz, M. J, and S. Enerback. 2018. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews. Endocrinology 14 (2):77–87. doi: 10.1038/nrendo.2017.132.
  • Bluher, M. 2014. Adipokines: Removing road blocks to obesity and diabetes therapy. Mol Metab 3:230–40. doi: 10.1016/j.molmet.2014.01.005.
  • Braune, A, and M. Blaut. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7 (3):216–34. doi: 10.1080/19490976.2016.1158395.
  • Braune, A., W. Engst, and M. Blaut. 2016. Identification and functional expression of genes encoding flavonoid o- and c-glycosidases in intestinal bacteria. Environmental Microbiology 18 (7):2117–29. doi: 10.1111/1462-2920.12864.
  • Brill, M. J. E.,J. Diepstraten,A. Van Rongen,S. Van Kralingen,J. N. Van Den Anker, andC. A. J. Knibbe. 2012. Impact of obesity on drug metabolism and elimination in adults and children. Clinical Pharmacokinetics 51 (5):277–304. doi: 10.2165/11599410-000000000-00000.
  • Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 (6):1470–81. doi: 10.2337/db07-1403.
  • Caporali, S., A. De Stefano, C. Calabrese, A. Giovannelli, M. Pieri, I. Savini, M. Tesauro, S. Bernardini, M. Minieri, and A. Terrinoni. 2022. Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-glucoside. Nutrients 14 (6):1155. doi: 10.3390/nu14061155.
  • Cassidy, A, and A. M. Minihane. 2017. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American Journal of Clinical Nutrition 105 (1):10–22. doi: 10.3945/ajcn.116.136051.
  • Che, D. N., J. Y. Shin, H. J. Kang, B. O. Cho, Y. S. Kim, and S. I. Jang. 2020. Luteolin suppresses il-31 production in il-33-stimulated mast cells through mapk and nf-kappab signaling pathways. International Immunopharmacology 83:106403. doi: 10.1016/j.intimp.2020.106403.
  • Cho, Y. C., J. Park, and S. Cho. 2020. Anti-inflammatory and anti-oxidative effects of luteolin-7-o-glucuronide in lps-stimulated murine macrophages through tak1 inhibition and nrf2 activation. International Journal of Molecular Sciences 21 (6):2007. doi: 10.3390/ijms21062007.
  • Cuaranta-Monroy, I, and L. Nagy. 2013. Ppargamma needs a helping hand to make fat. Cell Death and Differentiation 20 (12):1599–600. doi: 10.1038/cdd.2013.151.
  • Dai, J., K. Liang, S. Zhao, W. Jia, Y. Liu, H. Wu, J. Lv, C. Cao, T. Chen, S. Zhuang, et al. 2018. Chemoproteomics reveals baicalin activates hepatic cpt1 to ameliorate diet-induced obesity and hepatic steatosis. Proceedings of the National Academy of Sciences of the United States of America 115 (26):E5896–E5905. doi: 10.1073/pnas.1801745115.
  • Daily, J. W., S. Kang, and S. Park. 2021. Protection against alzheimer’s disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. BioFactors (Oxford, England) 47 (2):218–31. doi: 10.1002/biof.1703.
  • Ding, X., L. Zheng, B. Yang, X. Wang, and Y. Ying. 2019. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Design, Development and Therapy 13:3899–911. doi: 10.2147/DDDT.S207185.
  • Dong, J., O. Xu, J. Wang, C. Shan, and X. Ren. 2021. Luteolin ameliorates inflammation and th1/th2 imbalance via regulating the tlr4/nf-kappab pathway in allergic rhinitis rats. Immunopharmacology and Immunotoxicology 43 (3):319–27. doi: 10.1080/08923973.2021.1905659.
  • Eckel, R. H., S. M. Grundy, and P. Z. Zimmet. 2005. The metabolic syndrome. Lancet (London, England) 365 (9468):1415–28. doi: 10.1016/S0140-6736(05)66378-7.
  • El-Bassossy, H. M., S. M. Abo-Warda, and A. Fahmy. 2013. Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: Effect on lipid profile, ages and no generation. Phytotherapy Research : PTR 27 (11):1678–84. doi: 10.1002/ptr.4917.
  • Elieh Ali Komi, D., F. Shafaghat, and M. Christian. 2020. Crosstalk between mast cells and adipocytes in physiologic and pathologic conditions. Clinical Reviews in Allergy & Immunology 58 (3):388–400. doi: 10.1007/s12016-020-08785-7.
  • Engin, A. 2017. Non-alcoholic fatty liver disease. Advances in Experimental Medicine and Biology 960:443–67. doi: 10.1007/978-3-319-48382-5_19.
  • Farmer, S. R. 2006. Transcriptional control of adipocyte formation. Cell Metabolism 4 (4):263–73. doi: 10.1016/j.cmet.2006.07.001.
  • Fasshauer, M, and M. Bluher. 2015. Adipokines in health and disease. Trends in Pharmacological Sciences 36 (7):461–70. doi: 10.1016/j.tips.2015.04.014.
  • Finn, D. F, and J. J. Walsh. 2013. Twenty-first century mast cell stabilizers. British Journal of Pharmacology 170 (1):23–37. doi: 10.1111/bph.12138.
  • Ge, X., C. Wang, H. Chen, T. Liu, L. Chen, Y. Huang, F. Zeng, and B. Liu. 2020. Luteolin cooperated with metformin hydrochloride alleviates lipid metabolism disorders and optimizes intestinal flora compositions of high-fat diet mice. Food & Function 11 (11):10033–46. doi: 10.1039/d0fo01840f.
  • Gentile, D., M. Fornai, C. Pellegrini, R. Colucci, L. Benvenuti, E. Duranti, S. Masi, S. Carpi, P. Nieri, A. Nericcio, et al. 2018. Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with hfd-induced obesity. Frontiers in Pharmacology 9:1094. doi: 10.3389/fphar.2018.01094.
  • Gentile, D., M. Fornai, C. Pellegrini, R. Colucci, C. Blandizzi, and L. Antonioli. 2018. Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: A review. Nutrition Research Reviews 31 (2):239–47. doi: 10.1017/s0954422418000082.
  • Ghorbani, A., R. Rashidi, and R. Shafiee-Nick. 2019. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie 111:947–57. doi: 10.1016/j.biopha.2018.12.127.
  • Gong, B., Y. Zheng, J. Li, H. Lei, K. Liu, J. Tang, and Y. Peng. 2022. Luteolin activates m2 macrophages and suppresses m1 macrophages by upregulation of hsa_circ_0001326 in thp-1 derived macrophages. Bioengineered 13 (3):5079–90. doi: 10.1080/21655979.2022.2036897.
  • Gonzales, G. B., G. Smagghe, C. Grootaert, M. Zotti, K. Raes, and J. Van Camp. 2015. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 47 (2):175–90. doi: 10.3109/03602532.2014.1003649.
  • Hajer, G. R., T. W. van Haeften, and F. L. Visseren. 2008. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European Heart Journal 29 (24):2959–71. doi: 10.1093/eurheartj/ehn387.
  • Hayasaka, N., N. Shimizu, T. Komoda, S. Mohri, T. Tsushida, T. Eitsuka, T. Miyazawa, and K. Nakagawa. 2018. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects. Journal of Agricultural and Food Chemistry 66 (43):11320–9. doi: 10.1021/acs.jafc.8b03273.
  • Henderson, G. C. 2021. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease. Nutrients 13 (8):2590. doi: 10.3390/nu13082590.
  • Hosogai, N., A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, S. Furukawa, Y. Tochino, R. Komuro, M. Matsuda, et al. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56 (4):901–11. doi: 10.2337/db06-0911.
  • Hostetler, G. L., R. A. Ralston, and S. J. Schwartz. 2017. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition (Bethesda, Md.) 8 (3):423–35. doi: 10.3945/an.116.012948.
  • Jang, J. E., M. S. K. J. Y. Yun, M. O. Kim, J. H. Kim, H. S. Park, A. R. Kim, H. J. Kim, B. J. Kim, Y. E. Ahn, J. S. Oh, et al. 2016. Nitric oxide produced by macrophages inhibits adipocyte differentiation and promotes profibrogenic responses in preadipocytes to induce adipose tissue fibrosis. Diabetes 65 (9):2516–28. doi: 10.2337/db15-1624.
  • Jegal, K. H., E. O. Kim, J. K. Kim, S. M. Park, D. H. Jung, G. H. Lee, S. H. Ki, S. H. Byun, S. K. Ku, I. J. Cho, et al. 2020. Luteolin prevents liver from tunicamycin-induced endoplasmic reticulum stress via nuclear factor erythroid 2-related factor 2-dependent sestrin 2 induction. Toxicology and Applied Pharmacology 399:115036. doi: 10.1016/j.taap.2020.115036.
  • Jia, Z., P. Nallasamy, D. Liu, H. Shah, J. Z. Li, R. Chitrakar, H. Si, J. McCormick, H. Zhu, W. Zhen, et al. 2015. Luteolin protects against vascular inflammation in mice and tnf-alpha-induced monocyte adhesion to endothelial cells via suppressing iκbα/nf-κb signaling pathway. The Journal of Nutritional Biochemistry 26 (3):293–302. doi: 10.1016/j.jnutbio.2014.11.008.
  • Jiang, Q., D. Pan, Y. Yang, Y. Hu, L. Fang, P. Shang, Y. Xia, and D. Li. 2018. Luteolin regulates macrophage polarization via the pi3k/akt pathway to inhibit the apoptosis stimulated by angiotensin ii. Current Pharmaceutical Biotechnology 19 (5):428–37. doi: 10.2174/1389201019666180629143251.
  • Kahn, S. E., R. L. Hull, and K. M. Utzschneider. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444 (7121):840–6. doi: 10.1038/nature05482.
  • Kajimura, S., B. M. Spiegelman, and P. Seale. 2015. Brown and beige fat: Physiological roles beyond heat generation. Cell Metabolism 22 (4):546–59. doi: 10.1016/j.cmet.2015.09.007.
  • Kang, O. H., J. G. Choi, J. H. Lee, and D. Y. Kwon. 2010. Luteolin isolated from the flowers of lonicera japonica suppresses inflammatory mediator release by blocking nf-kappab and mapks activation pathways in hmc-1 cells. Molecules (Basel, Switzerland) 15 (1):385–98. doi: 10.3390/molecules15010385.
  • Kanneganti, T. D, and V. D. Dixit. 2012. Immunological complications of obesity. Nature Immunology 13 (8):707–12. doi: 10.1038/ni.2343.
  • Kawai, T., M. V. Autieri, and R. Scalia. 2021. Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology. Cell Physiology 320 (3):C375–C391. doi: 10.1152/ajpcell.00379.2020.
  • Kempuraj, D., M. Tagen, B. P. Iliopoulou, A. Clemons, M. Vasiadi, W. Boucher, M. House, A. Wolfberg, and T. C. Theoharides. 2008. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of jurkat t cells. British Journal of Pharmacology 155 (7):1076–84. doi: 10.1038/bjp.2008.356.
  • Kempuraj, D., R. Thangavel, D. D. Kempuraj, M. E. Ahmed, G. P. Selvakumar, S. P. Raikwar, S. A. Zaheer, S. S. Iyer, R. Govindarajan, P. N. Chandrasekaran, et al. 2021. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors (Oxford, England) 47 (2):190–7. doi: 10.1002/biof.1687.
  • Kim, J. H., T. J. Park, J. S. Park, M. S. Kim, W. J. Chi, and S. Y. Kim. 2021. Luteolin-3’-o-phosphate inhibits lipopolysaccharide-induced inflammatory responses by regulating nf-kappab/mapk cascade signaling in raw 264.7 cells. Molecules 26 (23):7393. doi: 10.3390/molecules26237393.
  • Kimata, M., M. Shichijo, T. Miura, I. Serizawa, N. Inagaki, and H. Nagai. 2000. Effects of luteolin, quercetin and baicalein on immunoglobulin e-mediated mediator release from human cultured mast cells. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 30 (4):501–8. doi: 10.1046/j.1365-2222.2000.00768.x.
  • Koper, J. E. B., L. M. P. Loonen, J. M. Wells, A. D. Troise, E. Capuano, and V. Fogliano. 2019. Polyphenols and tryptophan metabolites activate the aryl hydrocarbon receptor in an in vitro model of colonic fermentation. Molecular Nutrition & Food Research 63 (3):e1800722. doi: 10.1002/mnfr.201800722.
  • Kratz, M., B. R. Coats, K. B. Hisert, D. Hagman, V. Mutskov, E. Peris, K. Q. Schoenfelt, J. N. Kuzma, I. Larson, P. S. Billing, et al. 2014. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metabolism 20 (4):614–25. doi: 10.1016/j.cmet.2014.08.010.
  • Krogstad, V., A. Peric, I. Robertsen, M. K. Kringen, C. Wegler, P. C. Angeles, J. Hjelmesaeth, C. Karlsson, S. Andersson, P. Artursson, et al. 2020. A comparative analysis of cytochrome p450 activities in paired liver and small intestinal samples from patients with obesity. Drug Metabolism and Disposition: The Biological Fate of Chemicals 48 (1):8–17. doi: 10.1124/dmd.119.087940.
  • Kure, A., K. Nakagawa, M. Kondo, S. Kato, F. Kimura, A. Watanabe, N. Shoji, S. Hatanaka, T. Tsushida, and T. Miyazawa. 2016. Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect. Journal of Agricultural and Food Chemistry 64 (21):4246–54. doi: 10.1021/acs.jafc.6b00964.
  • Kwon, E. Y, and M. S. Choi. 2018. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients 10 (10):1415. doi: 10.3390/nu10101415.
  • Kwon, E. Y., U. J. Jung, T. Park, J. W. Yun, and M. S. Choi. 2015. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64 (5):1658–69. doi: 10.2337/db14-0631.
  • Kwon, E. Y., S. Y. Kim, and M. S. Choi. 2018. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients 10 (8):979. doi: 10.3390/nu10080979.
  • Kwon, S. M., S. Kim, N. J. Song, S. H. Chang, Y. J. Hwang, D. K. Yang, J. W. Hong, W. J. Park, and K. W. Park. 2016. Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of dnaj (hsp40) homolog, subfamily b, member 1. The Journal of Nutritional Biochemistry 30:24–32. doi: 10.1016/j.jnutbio.2015.11.013.
  • Lawler, H. M., C. M. Underkofler, P. A. Kern, C. Erickson, B. Bredbeck, and N. Rasouli. 2016. Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. The Journal of Clinical Endocrinology and Metabolism 101 (4):1422–8. doi: 10.1210/jc.2015-4125.
  • Lee, M. N., Y. Lee, D. Wu, and M. Pae. 2021. Luteolin inhibits nlrp3 inflammasome activation via blocking asc oligomerization. The Journal of Nutritional Biochemistry 92:108614. doi: 10.1016/j.jnutbio.2021.108614.
  • Leoni, S., F. Tovoli, L. Napoli, I. Serio, S. Ferri, and L. Bolondi. 2018. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World Journal of Gastroenterology 24 (30):3361–73. doi: 10.3748/wjg.v24.i30.3361.
  • Liao, Y., Y. Xu, M. Cao, Y. Huan, L. Zhu, Y. Jiang, W. Shen, and G. Zhu. 2018. Luteolin induces apoptosis and autophagy in mouse macrophage ana-1 cells via the bcl-2 pathway. Journal of Immunology Research 2018:4623919. doi: 10.1155/2018/4623919.
  • Lidell, M. E., M. J. Betz, and S. Enerback. 2014. Brown adipose tissue and its therapeutic potential. Journal of Internal Medicine 276 (4):364–77. doi: 10.1111/joim.12255.
  • Li, J., J. Inoue, J. M. Choi, S. Nakamura, Z. Yan, S. Fushinobu, H. Kamada, H. Kato, T. Hashidume, M. Shimizu, et al. 2015. Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α. The Journal of Biological Chemistry 290 (39):24021–35. doi: 10.1074/jbc.M115.645200.
  • Li, L., W. Luo, Y. Qian, W. Zhu, J. Qian, J. Li, Y. Jin, X. Xu, and G. Liang. 2019. Luteolin protects against diabetic cardiomyopathy by inhibiting nf-κb-mediated inflammation and activating the nrf2-mediated antioxidant responses. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 59:152774. doi: 10.1016/j.phymed.2018.11.034.
  • Lin, Y., R. Shi, X. Wang, and H. M. Shen. 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets 8 (7):634–46. doi: 10.2174/156800908786241050.
  • Liu, J., A. Divoux, J. Sun, J. Zhang, K. Clement, J. N. Glickman, G. K. Sukhova, P. J. Wolters, J. Du, C. Z. Gorgun, et al. 2009. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine 15 (8):940–5. doi: 10.1038/nm.1994.
  • Liu, R., J. Hong, X. Xu, Q. Feng, D. Zhang, Y. Gu, J. Shi, S. Zhao, W. Liu, X. Wang, et al. 2017. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine 23 (7):859–68. doi: 10.1038/nm.4358.
  • Li, C., Q. Wang, S. Shen, X. Wei, and G. Li. 2019. Hif-1α/vegf signaling-mediated epithelial-mesenchymal transition and angiogenesis is critically involved in anti-metastasis effect of luteolin in melanoma cells. Phytotherapy Research : PTR 33 (3):798–807. doi: 10.1002/ptr.6273.
  • Lopez-Lazaro, M. 2009. Distribution and biological activities of the flavonoid luteolin. Mini-Reviews in Medicinal Chemistry 9 (1):31–59. doi: 10.2174/138955709787001712.
  • Lumeng, C. N., S. M. Deyoung, J. L. Bodzin, and A. R. Saltiel. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56 (1):16–23. doi: 10.2337/db06-1076.
  • Makki, K., P. Froguel, and I. Wolowczuk. 2013. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflammation 2013:139239. doi: 10.1155/2013/139239.
  • Malandrino, M. I., R. Fucho, M. Weber, M. Calderon-Dominguez, J. F. Mir, L. Valcarcel, X. Escote, M. Gomez-Serrano, B. Peral, L. Salvado, et al. 2015. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology. Endocrinology and Metabolism 308 (9):E756–769. doi: 10.1152/ajpendo.00362.2014.
  • Maleki, S. J., J. F. Crespo, and B. Cabanillas. 2019. Anti-inflammatory effects of flavonoids. Food Chemistry 299:125124. doi: 10.1016/j.foodchem.2019.125124.
  • Marcelin, G., E. L. Gautier, and K. Clement. 2022. Adipose tissue fibrosis in obesity: Etiology and challenges. Annual Review of Physiology 84:135–55. doi: 10.1146/annurev-physiol-060721-092930.
  • Mejhert, N, and M. Ryden. 2020. Novel aspects on the role of white adipose tissue in type 2 diabetes. Current Opinion in Pharmacology 55:47–52. doi: 10.1016/j.coph.2020.09.008.
  • Mollerherm, H., K. Branitzki-Heinemann, G. Brogden, A. A. Elamin, W. Oehlmann, H. Fuhrmann, M. Singh, H. Y. Naim, and M. von Kockritz-Blickwede. 2017. Hypoxia modulates the response of mast cells to staphylococcus aureus infection. Frontiers in Immunology 8:541. doi: 10.3389/fimmu.2017.00541.
  • Monika, P, and A. Geetha. 2015. The modulating effect of persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin–a biochemical study in rats subjected to experimental hyperlipidemia and obesity. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 22 (10):939–45. doi: 10.1016/j.phymed.2015.07.001.
  • Mosqueda-Solis, A., A. Lasa, S. Gomez-Zorita, I. Eseberri, C. Pico, and M. P. Portillo. 2017. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3t3-l1 preadipocytes. Food & Function 8 (10):3576–86. doi: 10.1039/c7fo00679a.
  • Nakamura, K., J. J. Fuster, and K. Walsh. 2014. Adipokines: A link between obesity and cardiovascular disease. Journal of Cardiology 63 (4):250–9. doi: 10.1016/j.jjcc.2013.11.006.
  • Nishina, A., M. Ukiya, M. Fukatsu, M. Koketsu, M. Ninomiya, D. Sato, J. Yamamoto, K. Kobayashi-Hattori, T. Okubo, H. Tokuoka, et al. 2015. Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3t3-l1 cells. Biological & Pharmaceutical Bulletin 38 (11):1794–800. doi: 10.1248/bpb.b15-00489.
  • Niu, N., S. Xu, Y. Xu, P. J. Little, and Z. G. Jin. 2019. Targeting mechanosensitive transcription factors in atherosclerosis. Trends in Pharmacological Sciences 40 (4):253–66. doi: 10.1016/j.tips.2019.02.004.
  • O’Rourke, R. W., A. E. White, M. D. Metcalf, A. S. Olivas, P. Mitra, W. G. Larison, E. C. Cheang, O. Varlamov, C. L. Corless, C. T. Roberts, Jr., et al. 2011. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia 54 (6):1480–90. doi: 10.1007/s00125-011-2103-y.
  • Ouchi, N., J. L. Parker, J. J. Lugus, and K. Walsh. 2011. Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology 11 (2):85–97. doi: 10.1038/nri2921.
  • Ouellet, V., S. M. Labbe, D. P. Blondin, S. Phoenix, B. Guerin, F. Haman, E. E. Turcotte, D. Richard, and A. C. Carpentier. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. The Journal of Clinical Investigation 122 (2):545–52. doi: 10.1172/JCI60433.
  • Park, E. J., Y. M. Kim, H. J. Kim, and K. C. Chang. 2018. Luteolin activates erk1/2- and ca(2+)-dependent ho-1 induction that reduces lps-induced hmgb1, inos/no, and cox-2 expression in raw264.7 cells and mitigates acute lung injury of endotoxin mice. Inflammation Research: Official Journal of the European Histamine Research Society. [et al.] 67 (5):445–53. doi: 10.1007/s00011-018-1137-8.
  • Park, H. S., S. H. Kim, Y. S. Kim, S. Y. Ryu, J. T. Hwang, H. J. Yang, G. H. Kim, D. Y. Kwon, and M. S. Kim. 2009. Luteolin inhibits adipogenic differentiation by regulating ppargamma activation. BioFactors (Oxford, England) 35 (4):373–9. doi: 10.1002/biof.38.
  • Park, C. M, and Y. S. Song. 2013. Luteolin and luteolin-7-o-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of nf-kappab/ap-1/pi3k-akt signaling cascades in raw 264.7 cells. Nutrition Research and Practice 7 (6):423–9. doi: 10.4162/nrp.2013.7.6.423.
  • Peinado, J. R., Y. Jimenez-Gomez, M. R. Pulido, M. Ortega-Bellido, C. Diaz-Lopez, F. J. Padillo, J. Lopez-Miranda, R. Vazquez-Martinez, and M. M. Malagon. 2010. The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics 10 (18):3356–66. doi: 10.1002/pmic.201000350.
  • Poudel, B., S. Nepali, M. Xin, H. H. Ki, Y. H. Kim, D. K. Kim, and Y. M. Lee. 2015. Flavonoids from triticum aestivum inhibit adipogenesis in 3t3-l1 cells by upregulating the insig pathway. Molecular Medicine Reports 12 (2):3139–45. doi: 10.3892/mmr.2015.3700.
  • Rakariyatham, K., X. Wu, Z. Tang, Y. Han, Q. Wang, and H. Xiao. 2018. Synergism between luteolin and sulforaphane in anti-inflammation. Food & Function 9 (10):5115–23. doi: 10.1039/c8fo01352g.
  • Ramakrishnan, V. M, and N. L. Boyd. 2018. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Engineering. Part B, Reviews 24 (4):289–99. doi: 10.1089/ten.TEB.2017.0061.
  • Rangel-Azevedo, C., D. A. Santana-Oliveira, C. S. Miranda, F. F. Martins, C. A. Mandarim-de-Lacerda, and V. Souza-Mello. 2022. Progressive brown adipocyte dysfunction: Whitening and impaired nonshivering thermogenesis as long-term obesity complications. The Journal of Nutritional Biochemistry 105:109002. doi: 10.1016/j.jnutbio.2022.109002.
  • Reho, J. J, and K. Rahmouni. 2017. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clinical Science (London, England: 1979) 131 (14):1689–700. doi: 10.1042/CS20170219.
  • Reilly, S. M, and A. R. Saltiel. 2017. Adapting to obesity with adipose tissue inflammation. Nature Reviews. Endocrinology 13 (11):633–43. doi: 10.1038/nrendo.2017.90.
  • Roopchand, D. E., P. Kuhn, C. G. Krueger, K. Moskal, M. A. Lila, and I. Raskin. 2013. Concord grape pomace polyphenols complexed to soy protein isolate are stable and hypoglycemic in diabetic mice. Journal of Agricultural and Food Chemistry 61 (47):11428–33. doi: 10.1021/jf403238e.
  • Ryu, R., E. Y. Kwon, J. Y. Choi, J. C. Shon, K. H. Liu, and M. S. Choi. 2019. Chrysanthemum leaf ethanol extract prevents obesity and metabolic disease in diet-induced obese mice via lipid mobilization in white adipose tissue. Nutrients 11 (6):1347. doi: 10.3390/nu11061347.
  • SantaCruz-Calvo, S., L. Bharath, G. Pugh, L. SantaCruz-Calvo, R. R. Lenin, J. Lutshumba, R. Liu, A. D. Bachstetter, B. Zhu, and B. S. Nikolajczyk. 2022. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nature Reviews. Endocrinology 18 (1):23–42. doi: 10.1038/s41574-021-00575-1.
  • Schipper, H. S., B. Prakken, E. Kalkhoven, and M. Boes. 2012. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends in Endocrinology and Metabolism: TEM 23 (8):407–15. doi: 10.1016/j.tem.2012.05.011.
  • Seale, P. 2013. Brown adipose tissue biology and therapeutic potential. Frontiers in Endocrinology 4:14. doi: 10.3389/fendo.2013.00014.
  • Sell, H., C. Habich, and J. Eckel. 2012. Adaptive immunity in obesity and insulin resistance. Nature Reviews. Endocrinology 8 (12):709–16. doi: 10.1038/nrendo.2012.114.
  • Selma, M. V., J. C. Espin, and F. A. Tomas-Barberan. 2009. Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry 57 (15):6485–501. doi: 10.1021/jf902107d.
  • Song, E., N. Ouyang, M. Horbelt, B. Antus, M. Wang, and M. S. Exton. 2000. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cellular Immunology 204 (1):19–28. doi: 10.1006/cimm.2000.1687.
  • Thaiss, C. A., S. Itav, D. Rothschild, M. T. Meijer, M. Levy, C. Moresi, L. Dohnalova, S. Braverman, S. Rozin, S. Malitsky, et al. 2016. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540 (7634):544–51. doi: 10.1038/nature20796.
  • Theoharides, T. C., D. Kempuraj, and B. P. Iliopoulou. 2007. Mast cells, t cells, and inhibition by luteolin: Implications for the pathogenesis and treatment of multiple sclerosis. Advances in Experimental Medicine and Biology 601:423–30. doi: 10.1007/978-0-387-72005-0_45.
  • Theoharides, T. C., J. M. Stewart, E. Hatziagelaki, and G. Kolaitis. 2015. Brain “fog,” inflammation and obesity: Key aspects of neuropsychiatric disorders improved by luteolin. Frontiers in Neuroscience 9:225. doi: 10.3389/fnins.2015.00225.
  • Thomas, D, and C. Apovian. 2017. Macrophage functions in lean and obese adipose tissue. Metabolism: clinical and Experimental 72:120–43. doi: 10.1016/j.metabol.2017.04.005.
  • Virdis, A. 2016. Endothelial dysfunction in obesity: Role of inflammation. High Blood Pressure & Cardiovascular Prevention : The Official Journal of the Italian Society of Hypertension 23 (2):83–5. doi: 10.1007/s40292-016-0133-8.
  • Wade, G., A. McGahee, J. M. Ntambi, and J. Simcox. 2021. Lipid transport in brown adipocyte thermogenesis. Frontiers in Physiology 12:787535. doi: 10.3389/fphys.2021.787535.
  • Wahlstrom, A., S. I. Sayin, H. U. Marschall, and F. Backhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism 24 (1):41–50. doi: 10.1016/j.cmet.2016.05.005.
  • Waldram, A., E. Holmes, Y. Wang, M. Rantalainen, I. D. Wilson, K. M. Tuohy, A. L. McCartney, G. R. Gibson, and J. K. Nicholson. 2009. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. Journal of Proteome Research 8 (5):2361–75. doi: 10.1021/pr8009885.
  • Wang, X., H. Cai, S. Shui, Y. Lin, F. Wang, L. Wang, J. Chen, and J. Liu. 2021. Chrysin stimulates subcutaneous fat thermogenesis in mice by regulating pdgfralpha and microrna expressions. Journal of Agricultural and Food Chemistry 69 (21):5897–906. doi: 10.1021/acs.jafc.1c01130.
  • Wang, S., M. Cao, S. Xu, J. Shi, X. Mao, X. Yao, and C. Liu. 2020. Luteolin alters macrophage polarization to inhibit inflammation. Inflammation 43 (1):95–108. doi: 10.1007/s10753-019-01099-7.
  • Wang, L., Q. Chen, L. Zhu, Q. Li, X. Zeng, L. Lu, M. Hu, X. Wang, and Z. Liu. 2017. Metabolic disposition of luteolin is mediated by the interplay of udp-glucuronosyltransferases and catechol-o-methyltransferases in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 45 (3):306–15. doi: 10.1124/dmd.116.073619.
  • Wang, X., L. Lin, X. Chai, Y. Wu, Y. Li, and X. Liu. 2020. Hypoxic mast cells accelerate the proliferation, collagen accumulation and phenotypic alteration of human lung fibroblasts. International Journal of Molecular Medicine 45 (1):175–85. doi: 10.3892/ijmm.2019.4400.
  • Wang, S., S. Xu, J. Zhou, L. Zhang, X. Mao, X. Yao, and C. Liu. 2021. Luteolin transforms the polarity of bone marrow-derived macrophages to regulate the cytokine storm. Journal of Inflammation (London, England) 18 (1):21. doi: 10.1186/s12950-021-00285-5.
  • Wang, Z., M. Zeng, Z. Wang, F. Qin, J. Chen, and Z. He. 2021. Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. Journal of Agricultural and Food Chemistry 69 (5):1441–54. doi: 10.1021/acs.jafc.0c08085.
  • Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante. Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112 (12):1796–808. doi: 10.1172/jci19246.
  • Williamson, G, and M. N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology 139:24–39. doi: 10.1016/j.bcp.2017.03.012.
  • Winterbourn, C. C., A. J. Kettle, and M. B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85:765–92. doi: 10.1146/annurev-biochem-060815-014442.
  • Wu, G., Y. Liu, W. Feng, X. An, W. Lin, and C. Tang. 2020. Hypoxia-induced adipose lipolysis requires fibroblast growth factor 21. Frontiers in Pharmacology 11:1279. doi: 10.3389/fphar.2020.01279.
  • Xiao, N., F. Mei, Y. Sun, G. Pan, B. Liu, and K. Liu. 2014. Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of amp-activated kinase and/or sirtuin 1 activity. Planta Medica 80 (12):993–1000. doi: 10.1055/s-0034-1382864.
  • Xie, K., Y. S. Chai, S. H. Lin, F. Xu, and C. J. Wang. 2021. Luteolin regulates the differentiation of regulatory t cells and activates il-10-dependent macrophage polarization against acute lung injury. Journal of Immunology Research 2021:8883962. doi: 10.1155/2021/8883962.
  • Xiong, J., K. Wang, C. Yuan, R. Xing, J. Ni, G. Hu, F. Chen, and X. Wang. 2017. Luteolin protects mice from severe acute pancreatitis by exerting ho-1-mediated anti-inflammatory and antioxidant effects. International Journal of Molecular Medicine 39 (1):113–25. doi: 10.3892/ijmm.2016.2809.
  • Xu, N., L. Zhang, J. Dong, X. Zhang, Y. G. Chen, B. Bao, and J. Liu. 2014. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Molecular Nutrition & Food Research 58 (6):1258–68. doi: 10.1002/mnfr.201300830.
  • Yuan, J., Q. Shi, J. Chen, J. Lu, L. Wang, M. Qiu, and J. Liu. 2020. Effects of 23-epi-26-deoxyactein on adipogenesis in 3t3-l1 preadipocytes and diet-induced obesity in c57bl/6 mice. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 76:153264. doi: 10.1016/j.phymed.2020.153264.
  • Zhang, T., D. F. Finn, J. W. Barlow, and J. J. Walsh. 2016. Mast cell stabilisers. European Journal of Pharmacology 778:158–68. doi: 10.1016/j.ejphar.2015.05.071.
  • Zhang, L., Y. J. Han, X. Zhang, X. Wang, B. Bao, W. Qu, and J. Liu. 2016. Luteolin reduces obesity-associated insulin resistance in mice by activating ampkalpha1 signalling in adipose tissue macrophages. Diabetologia 59 (10):2219–28. doi: 10.1007/s00125-016-4039-8.
  • Zhang, X., X. Li, H. Fang, F. Guo, F. Li, A. Chen, and S. Huang. 2019. Flavonoids as inducers of white adipose tissue browning and thermogenesis: Signalling pathways and molecular triggers. Nutrition & Metabolism 16:47. doi: 10.1186/s12986-019-0370-7.
  • Zhang, B. C., Z. Li, W. Xu, C. H. Xiang, and Y. F. Ma. 2018. Luteolin alleviates nlrp3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated raw264.7 cells. American Journal of Translational Research 10 (1):265–73.
  • Zhang, L., X. Wang, L. Zhang, C. Virgous, and H. Si. 2019. Combination of curcumin and luteolin synergistically inhibits tnf-α-induced vascular inflammation in human vascular cells and mice. The Journal of Nutritional Biochemistry 73:108222. doi: 10.1016/j.jnutbio.2019.108222.
  • Zhang, X., Q. X. Zhang, X. Wang, L. Zhang, W. Qu, B. Bao, C. A. Liu, and J. Liu. 2016. Dietary luteolin activates browning and thermogenesis in mice through an ampk/pgc1alpha pathway-mediated mechanism. International Journal of Obesity (2005) 40 (12):1841–9. doi: 10.1038/ijo.2016.108.
  • Zheng, F, and Y. Cai. 2019. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating ppar-γ and genes involved in the beta-oxidation of fatty acids in apoe-ko mice fed a high-fat diet. Lipids in Health and Disease 18 (1):6. doi: 10.1186/s12944-018-0933-z.
  • Zhu, Y., R. Liu, Z. Shen, and G. Cai. 2020. Combination of luteolin and lycopene effectively protect against the “two-hit” in nafld through sirt1/ampk signal pathway. Life Sciences 256:117990. doi: 10.1016/j.lfs.2020.117990.
  • Zou, Y., X. Luo, Y. Feng, S. Fang, J. Tian, B. Yu, and J. Li. 2021. Luteolin prevents thp-1 macrophage pyroptosis by suppressing ros production via nrf2 activation. Chemico-Biological Interactions 345:109573. doi: 10.1016/j.cbi.2021.109573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.