318
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways

, ORCID Icon & ORCID Icon

References

  • Ahmad, F., D. Dixit, V. Sharma, A. Kumar, S. D. Joshi, C. Sarkar, and E. Sen. 2016. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma. Cell Death & Disease 7 (5):e2213. doi: 10.1038/cddis.2016.117.
  • Akbari, M., T. B. L. Kirkwood, and V. A. Bohr. 2019. Mitochondria in the signaling pathways that control longevity and health span. Ageing Research Reviews 54:100940. doi: 10.1016/j.arr.2019.100940.
  • Alberti, K. G. M. M., R. H. Eckel, S. M. Grundy, P. Z. Zimmet, J. I. Cleeman, K. A. Donato, J.-C. Fruchart, W. P. T. James, C. M. Loria, and S. C. Smith. 2009. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120 (16):1640–5.
  • Almada, M., C. Amaral, M. Diniz-da-Costa, G. Correia-da-Silva, N. A. Teixeira, and B. M. Fonseca. 2016. The endocannabinoid anandamide impairs in vitro decidualization of human cells. Reproduction 152 (4):351–61. doi: 10.1530/REP-16-0364.
  • Augustine, T., R. Maitra, and S. Goel. 2017. Telomere length regulation through epidermal growth factor receptor signaling in cancer. Genes & Cancer 8 (5-6):550–8. doi: 10.18632/genesandcancer.140.
  • Awada, M., C. O. Soulage, A. Meynier, C. Debard, P. Plaisancié, B. Benoit, G. Picard, E. Loizon, M.-A. Chauvin, M. Estienne, et al. 2012. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: Role of intestinal absorption of 4-HHE and reactivity in intestinal cells. Journal of Lipid Research 53 (10):2069–80. doi: 10.1194/jlr.M026179.
  • Bak, D. H., E. Zhang, M.-H. Yi, D.-K. Kim, K. Lim, J.-J. Kim, and D. W. Kim. 2015. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy. Scientific Reports 5:15465. doi: 10.1038/srep15465.
  • Balasubramanian, P., D. Hall, and M. Subramanian. 2019. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. GeroScience 41 (1):13–24. doi: 10.1007/s11357-018-0048-5.
  • Balcerczyk, A., A. Gajewska, E. Macierzyńska-Piotrowska, T. Pawelczyk, G. Bartosz, and J. Szemraj. 2014. Enhanced antioxidant capacity and anti-ageing biomarkers after diet micronutrient supplementation. Molecules 19 (9):14794–808. doi: 10.3390/molecules190914794.
  • Banerjee, B, and P. Hande. 2013. Age-independent telomere shortening and ion-channel defects in SCD. Nature Reviews. Cardiology 10 (6):362. doi: 10.1038/nrcardio.2013.30-c1.
  • Barden, A., N. O’Callaghan, V. Burke, E. Mas, L. J. Beilin, M. Fenech, A. B. Irish, G. F. Watts, I. B. Puddey, R.-C. Huang, et al. 2016. N-3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients 8 (3):175. doi: 10.3390/nu8030175.
  • Belair, C. D., T. R. Yeager, P. M. Lopez, and C. A. Reznikoff. 1997. Telomerase activity: A biomarker of cell proliferation, not malignant transformation. Proceedings of the National Academy of Sciences of the United States of America 94 (25):13677–82. doi: 10.1073/pnas.94.25.13677.
  • Bellenger, J., S. Bellenger, Q. Escoula, C. Bidu, and M. Narce. 2019. N-3 polyunsaturated fatty acids: An innovative strategy against obesity and related metabolic disorders, intestinal alteration and gut microbiota dysbiosis. Biochimie 159:66–71.
  • Bhattacharjee, R. N., B. Banerjee, S. Akira, and M. P. Hande. 2010. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice. PLoS One 5 (7):e11873. doi: 10.1371/journal.pone.0011873.
  • Bidu, C., Q. Escoula, S. Bellenger, A. Spor, M. Galan, A. Geissler, A. Bouchot, D. Dardevet, B. Morio, P. D. Cani, et al. 2018. The transplantation of ω3 PUFA-altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders. Diabetes 67 (8):1512–23. doi: 10.2337/db17-1488.
  • Bilsland, A., S. Hoare, K. Stevenson, J. Plumb, N. Gomez-Roman, C. Cairney, S. Burns, L. Lafferty-Whyte, J. Roffey, T. Hammonds, et al. 2009. Dynamic telomerase gene suppression via network effects of GSK3 inhibition. PLoS One 4 (7):e6459. doi: 10.1371/journal.pone.0006459.
  • Borges, M. C., P. C. Haycock, J. Zheng, G. Hemani, M. V. Holmes, G. Davey Smith, A. D. Hingorani, and D. A. Lawlor. 2022. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: Analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Medicine 20 (1):210. doi: 10.1186/s12916-022-02399-w.
  • Bošković, M., M. Živković, G. Korićanac, J. Stanišić, I. Zec, M. Krga, and A. Stankovi. 2021. Walnut supplementation restores the SIRT1-FoxO3a-MnSOD/catalase axis in the heart, promotes an anti-inflammatory fatty acid profile in plasma, and lowers blood pressure on fructose-rich diet. Oxidative Medicine and Cellular Longevity 2021:5543025. doi: 10.1155/2021/5543025.
  • Brayner, B., G. Kaur, M. A. Keske, and K. M. Livingstone. 2018. FADS polymorphism, omega-3 fatty acids and diabetes risk: A systematic review. Nutrients 10 (6):758. doi: 10.3390/nu10060758.
  • Brown, K. M., S. Sharma, E. Baker, W. Hawkins, M. van der Merwe, and M. J. Puppa. 2019. Delta-6-desaturase (FADS2) inhibition and omega-3 fatty acids in skeletal muscle protein turnover. Biochemistry and Biophysics Reports 18:100622. doi: 10.1016/j.bbrep.2019.100622.
  • Brown, L. H, and D. M. Mutch. 2020. Mechanisms underlying N3-PUFA regulation of white adipose tissue endocrine function. Current Opinion in Pharmacology 52:40–6. doi: 10.1016/j.coph.2020.04.009.
  • Casagrande, S, and M. Hau. 2019. Telomere attrition: Metabolic regulation and signalling function? Biology Letters 15 (3):20180885. doi: 10.1098/rsbl.2018.0885.
  • Castillo, R. L., A. B. Zepeda, S. E. Short, E. Figueroa, E. Bustos-Obregon, and J. G. Farías. 2015. Protective effects of polyunsatutared fatty acids supplementation against testicular damage induced by intermittent hypobaric hypoxia in rats. Journal of Biomedical Science 22 (1):8. doi: 10.1186/s12929-015-0112-8.
  • Chamoli, M., A. Goyala, S. S. Tabrez, A. A. Siddiqui, A. Singh, A. Antebi, G. J. Lithgow, J. L. Watts, and A. Mukhopadhyay. 2020. Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nature Communications 11 (1):4865. doi: 10.1038/s41467-020-18690-4.
  • Chang, X., R. Dorajoo, Y. Sun, L. Wang, C. N. Ong, J. Liu, C. C. Khor, J.-M. Yuan, W. P. Koh, Y. Friedlander, et al. 2020. Effect of plasma polyunsaturated fatty acid levels on leukocyte telomere lengths in the Singaporean Chinese population. Nutrition Journal 19 (1):119. doi: 10.1186/s12937-020-00626-9.
  • Chen, J., Y. Wei, X. Chen, J. Jiao, and Y. Zhang. 2017a. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 8 (5):7301–14. doi: 10.18632/oncotarget.14236.
  • Chen, X., C. Chen, S. Fan, S. Wu, F. Yang, Z. Fang, H. Fu, and Y. Li. 2018. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. Journal of Neuroinflammation 15 (1):116. doi: 10.1186/s12974-018-1151-3.
  • Chen, X., S. Wu, C. Chen, B. Xie, Z. Fang, W. Hu, J. Chen, H. Fu, and H. He. 2017b. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. Journal of Neuroinflammation 14 (1):143. doi: 10.1186/s12974-017-0917-3.
  • Chen, Z., Y. Zhang, C. Jia, Y. Wang, P. Lai, X. Zhou, Q. Song, J. Lin, Z. Ren, Q. Gao, et al. 2014. mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene 33 (37):4548–57. doi: 10.1038/onc.2013.402.
  • Cheng, F., L. Carroll, M. V. Joglekar, A. S. Januszewski, K. K. Wong, A. A. Hardikar, A. J. Jenkins, and R. C. W. Ma. 2021. Diabetes, metabolic disease, and telomere length. The Lancet. Diabetes & Endocrinology 9 (2):117–26. doi: 10.1016/S2213-8587(20)30365-X.
  • Choi, J., S. R. Fauce, and R. B. Effros. 2008. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain, Behavior, and Immunity 22 (4):600–5. doi: 10.1016/j.bbi.2007.12.004.
  • Conklin, Q., C. Patterson, B. King, A. Zanesco, J. Lin, E. Epel, S. Mellon, and C. Saron. 2019. BDNF predicts retreat-related ­increases in telomere length in experienced meditators. Psychoneuroendocrinology 100:S11. doi: 10.1016/j.psyneuen.2018.12.052.
  • Correia-Melo, C., G. Hewitt, and J. F. Passos. 2014. Telomeres, oxidative stress and inflammatory factors: Partners in cellular senescence? Longevity & Healthspan 3 (1):1. doi: 10.1186/2046-2395-3-1.
  • Dang, Y., Y. An, J. He, B. Huang, J. Zhu, M. Gao, S. Zhang, X. Wang, B. Yang, and Z. Xie. 2020. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell 19 (1):e13060. doi: 10.1111/acel.13060.
  • Dantzer, R. 2018. Neuroimmune Interactions: From the brain to the immune system and vice versa. Physiological Reviews 98 (1):477–504. doi: 10.1152/physrev.00039.2016.
  • Das, U. N. 2014. Telomere length and polyunsaturated fatty acids. Nutrition 30 (10):1218–21. doi: 10.1016/j.nut.2014.04.001.
  • Demers, G., J. Roy, A. I., Machuca-Parra, Z. Dashtehei Pour, D. Bairamian, C. Daneault, C. Des Rosiers, G. Ferreira, T. Alquier, and S. Fulton, 2020. Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice. International Journal of Obesity (2005) 44 (9):1936–45. doi: 10.1038/s41366-020-0623-6.
  • Farooqui, A. A., T. Farooqui, F. Panza, and V. Frisardi. 2012. Metabolic syndrome as a risk factor for neurological disorders. Cellular and Molecular Life Sciences 69 (5):741–62. doi: 10.1007/s00018-011-0840-1.
  • Farzaneh-Far, R., J. Lin, E. S. Epel, W. S. Harris, E. H. Blackburn, and M. A. Whooley. 2010. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303 (3):250–7.
  • Feng, R., M. Wang, C. Yan, P. Li, M. Chen, C. He, and J.-B. Wan. 2016. Endogenous n-3 Fatty Acids Alleviate Carbon-tetrachloride-induced acute liver injury in fat-1 transgenic mice. Oxidative Medicine and Cellular Longevity 2016:7962948. doi: 10.1155/2016/7962948.
  • Ferreira, M., M. E. Maï, M. Marzullo, and I. Castro. 2020. Akt/Foxo pathway activation switches apoptosis to senescence in short telomere zebrafish. Accessed January 10, 2020. https://www.biorxiv.org/content/10 .1101/2020.01.10.901603v1
  • Freitas-Simoes, T.-M., M. Cofán, M. A. Blasco, N. Soberón, M. Foronda, D. Corella, E. M. Asensio, M. Serra-Mir, I. Roth, C. Calvo, et al. 2019. The red blood cell proportion of arachidonic acid relates to shorter leukocyte telomeres in Mediterranean elders: A secondary analysis of a randomized controlled trial. Clinical Nutrition 38 (2):958–61. doi: 10.1016/j.clnu.2018.02.011.
  • Gabriel, E. E., M. C. Sachs, and A. Sjölander. 2022. Causal bounds for outcome-dependent sampling in observational studies. Journal of the American Statistical Association 117 (538):939–50. doi: 10.1080/01621459.2020.1832502.
  • Galiè, S., S. Canudas, J. Muralidharan, J. García-Gavilán, M. Bulló, and J. Salas-Salvadó. 2020. Impact of nutrition on telomere health: Systematic review of observational cohort studies and randomized clinical trials. Advances in Nutrition 11 (3):576–601. doi: 10.1093/advances/nmz107.
  • Gao, J., T. Huang, J. Li, X. Guo, H. Xiao, J. Gu, J. Tang, W. Cai, and D. Li. 2019a. Beneficial effects of n-3 polyunsaturated fatty acids on offspring’s pancreas of gestational diabetes rats. Journal of Agricultural and Food Chemistry 67 (48):13269–81. doi: 10.1021/acs.jafc.9b05739.
  • Gao, J., H. Xiao, J. Li, X. Guo, W. Cai, and D. Li. 2019b. N-3 Polyunsaturated Fatty Acids Decrease long-term diabetic risk of offspring of gestational diabetes rats by postponing shortening of hepatic telomeres and modulating liver metabolism. Nutrients 11 (7):1699. doi: 10.3390/nu11071699.
  • García-Calzón, S., G. Zalba, M. Ruiz-Canela, N. Shivappa, J. R. Hébert, J. A. Martínez, M. Fitó, E. Gómez-Gracia, M. A. Martínez-González, and A. Marti. 2015. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: Cross-sectional and longitudinal analyses over 5 y. The American Journal of Clinical Nutrition 102 (4):897–904.
  • Gavande, N. S., P. S. VanderVere-Carozza, K. S. Pawelczak, P. Mendoza-Munoz, T. L. Vernon, L. A. Hanakahi, M. Summerlin, J. R. Dynlacht, A. H. Farmer, C. R. Sears, et al. 2020. Discovery and development of novel DNA-PK inhibitors by targeting the unique Ku-DNA interaction. Nucleic Acids Research 48 (20):11536–50. doi: 10.1093/nar/gkaa934.
  • Ghareghomi, S., S. Ahmadian, N. Zarghami, and H. Kahroba. 2021. Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 181:12–24. doi: 10.1016/j.biochi.2020.11.015.
  • Gilbert, K., M. Malick, N. Madingou, C. Touchette, V. Bourque-Riel, L. Tomaro, and G. Rousseau. 2015. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection. European Journal of Pharmacology 769:147–53. doi: 10.1016/j.ejphar.2015.11.010.
  • Golpour, P., M. Nourbakhsh, M. Mazaherioun, L. Janani, M. Nourbakhsh, and P. Yaghmaei. 2020. Improvement of NRF2 gene expression and antioxidant status in patients with type 2 diabetes mellitus after supplementation with omega-3 polyunsaturated fatty acids: A double-blind randomised placebo-controlled clinical trial. Diabetes Research and Clinical Practice 162:108120. doi: 10.1016/j.diabres.2020.108120.
  • Grun, L. K., N. da Rosa Teixeira Jr, L. von Mengden, M. A. de Bastiani, M. M. Parisi, R. Bortolin, P. Lavandoski, V. Pierdoná, L. B. Alves, J. C. F. Moreira, et al. 2018. TRF1 as a major contributor for telomeres’ shortening in the context of obesity. Free Radical Biology & Medicine 129:286–95. doi: 10.1016/j.freeradbiomed.2018.09.039.
  • Halade, G. V., V. Kain, B. Tourki, and J. K. Jadapalli. 2019. Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism 96:22–32. doi: 10.1016/j.metabol.2019.04.011.
  • Hall, B. M., V. Balan, A. S. Gleiberman, E. Strom, P. Krasnov, L. P. Virtuoso, E. Rydkina, S. Vujcic, K. Balan, I. Gitlin, et al. 2016. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8 (7):1294–315. doi: 10.18632/aging.100991.
  • Hall, W. L. 2017. The future for long chain n-3 PUFA in the prevention of coronary heart disease: Do we need to target non-fish-eaters? The Proceedings of the Nutrition Society 76 (3):408–18. doi: 10.1017/S0029665117000428.
  • Hayashi, Y., A. Shimamura, T. Ishikawa, Y. Fujiwara, and I. Ichi. 2018. FADS2 inhibition in essential fatty acid deficiency induces hepatic lipid accumulation via impairment of very low-density lipoprotein (VLDL) secretion. Biochemical and Biophysical Research Communications 496 (2):549–55.
  • Haycock, P. C., S. Burgess, A. Nounu, J. Zheng, G. N. Okoli, J. Bowden, K. H. Wade, N. J. Timpson, D. M. Evans, P. Willeit, et al. 2017. Association between telomere length and risk of cancer and non-neoplastic diseases: A Mendelian randomization study. JAMA Oncology 3 (5):636–51., doi: 10.1001/jamaoncol.2016.5945.
  • Holub, A., S. Mousa, A. Abdolahi, K. Godugu, X. M. Tu, J. T. Brenna, and R. C. Block. 2020. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutrition, Metabolism, and Cardiovascular Diseases 30 (10):1795–9. doi: 10.1016/j.numecd.2020.06.014.
  • Inoue, T., M. Tanaka, S. Masuda, R. Ohue-Kitano, H. Yamakage, K. Muranaka, H. Wada, T. Kusakabe, A. Shimatsu, K. Hasegawa, et al. 2017. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1862 (5):552–60. doi: 10.1016/j.bbalip.2017.02.010.
  • Ishikado, A., Y. Nishio, K. Morino, S. Ugi, H. Kondo, T. Makino, A. Kashiwagi, and H. Maegawa. 2010. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells. Biochemical and Biophysical Research Communications 402 (1):99–104.
  • Jo, D., R. Park, H. Kim, M. Jang, E.-J. Lee, I.-S. Jang, and J. Park. 2018. AMP-activated protein kinase regulates the expression of human telomerase reverse transcriptase. PLoS One 13 (11):e0207864. doi: 10.1371/journal.pone.0207864.
  • Jurk, D., C. Wilson, J. F. Passos, F. Oakley, C. Correia-Melo, L. Greaves, G. Saretzki, C. Fox, C. Lawless, R. Anderson, et al. 2014. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications 2:4172. doi: 10.1038/ncomms5172.
  • Kaliannan, K., X.-Y. Li, B. Wang, Q. Pan, C.-Y. Chen, L. Hao, S. Xie, and J. X. Kang. 2019. Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Communications Biology 2:276. doi: 10.1038/s42003-019-0521-4.
  • Kalsbeek, M. J. T., L. Mulder, and C.-X. Yi. 2016. Microglia energy metabolism in metabolic disorder. Molecular and Cellular Endocrinology 438:27–35. doi: 10.1016/j.mce.2016.09.028.
  • Kalstad, A. A., S. Tveit, P. L. Myhre, K. Laake, T. B. Opstad, A. Tveit, E. B. Schmidt, S. Solheim, H. Arnesen, and I. Seljeflot. 2019. Leukocyte telomere length and serum polyunsaturated fatty acids, dietary habits, cardiovascular risk factors and features of myocardial infarction in elderly patients. BMC Geriatrics 19 (1):376. doi: 10.1186/s12877-019-1383-9.
  • Kamal, S., M. Junaid, A. Ejaz, I. Bibi, M. S. H. Akash, and K. Rehman. 2020. The secrets of telomerase: Retrospective analysis and future prospects. Life Sciences 257:118115. doi: 10.1016/j.lfs.2020.118115.
  • Kang, J. X., J. Wang, L. Wu, and Z. B. Kang. 2004. Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature 427 (6974):504.
  • Kang, Y., H. Zhang, Y. Zhao, Y. Wang, W. Wang, Y. He, W. Zhang, W. Zhang, X. Zhu, Y. Zhou, et al. 2018. Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 Inflammasome through the PGC-1α/TNFAIP3 Axis. Cell Reports 22 (13):3493–506. doi: 10.1016/j.celrep.2018.02.071.
  • Kansal, S., A. K. Negi, A. Bhatnagar, and N. Agnihotri. 2012. Ras signaling pathway in the chemopreventive action of different ratios of fish oil and corn oil in experimentally induced colon carcinogenesis. Nutrition and Cancer 64 (4):559–68. doi: 10.1080/01635581.2012.675619.
  • Kiecolt-Glaser, J. K., E. S. Epel, M. A. Belury, R. Andridge, J. Lin, R. Glaser, W. B. Malarkey, B. S. Hwang, and E. Blackburn. 2013. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain, Behavior, and Immunity 28:16–24. doi: 10.1016/j.bbi.2012.09.004.
  • Kim, W., A. Deik, C. Gonzalez, M. E. Gonzalez, F. Fu, M. Ferrari, C. L. Churchhouse, J. C. Florez, S. B. R. Jacobs, C. B. Clish, et al. 2019. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD(+) recycling. Cell Metabolism 29 (4):856–70.e7. doi: 10.1016/j.cmet.2018.12.023.
  • Kirchner, H., F. Shaheen, H. Kalscheuer, S. M. Schmid, H. Oster, and H. Lehnert. 2017. The telomeric complex and metabolic disease. Genes 8 (7):176. doi: 10.3390/genes8070176.
  • Kones, R., S. Howell, and U. Rumana. 2017. n-3 Polyunsaturated fatty acids and cardiovascular disease: Principles, practices, pitfalls, and promises - A contemporary review. Medical Principles and Practice 26 (6):497–508. doi: 10.1159/000485837.
  • Kuhlow, D., S. Florian, G. von Figura, S. Weimer, N. Schulz, K. J. Petzke, K. Zarse, A. F. H. Pfeiffer, K. L. Rudolph, and M. Ristow. 2010. Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging 2 (10):650–8. doi: 10.18632/aging.100200.
  • Kurt, A., G. Andican, Z. O. Siva, A. Andican, and G. Burcak. 2016. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on AGEs and sRAGE in type 2 diabetes mellitus. Journal of Physiology and Biochemistry 72 (4):679–87. doi: 10.1007/s13105-016-0506-4.
  • Le Foll, C., C. Corporeau, V. Le Guen, J.-P. Gouygou, J.-P. Bergé, and J. Delarue. 2007. Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3’-kinase activity in rats. American Journal of Physiology. Endocrinology and Metabolism 292 (4):E1223–E1230. doi: 10.1152/ajpendo.00446.2006.
  • Lee, J. M., H. Lee, S. Kang, and W. J. Park. 2016. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8 (1):23. doi: 10.3390/nu8010023.
  • Lee, O. -H., H. Kim, Q. He, H. J. Baek, D. Yang, L. -Y. Chen, J. Liang, H. K. Chae, A. Safari, D. Liu, et al. 2011. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Molecular & Cellular Proteomics 10 (2):M110.001628. doi: 10.1074/mcp.M110.001628.
  • Lew, L. C., Y. Y. Hor, M. H. Jaafar, A. S. Y. Lau, J. S. Ong, L. O. Chuah, K. P. Yap, G. Azzam, A. Azlan, and M. T. Liong. 2019. Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. Beneficial Microbes 10 (8):883–92. doi: 10.3920/BM2019.0058.
  • Lin, J, and E. Epel. 2022. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Research Reviews 73:101507. doi: 10.1016/j.arr.2021.101507.
  • Liu, R., S. Qiao, W. Shen, Y. Liu, Y. Lu, H. Liangyu, Z. Guo, J. Gong, G. Shui, Y. Li, et al. 2020. Disturbance of fatty acid desaturation mediated by FADS2 in mesenteric adipocytes contributes to chronic inflammation of Crohn’s disease. Journal of Crohn’s & Colitis 14 (11):1581–99. doi: 10.1093/ecco-jcc/jjaa086.
  • Liu, X., X. Liu, Q. Shi, X. Fan, and K. Qi. 2021a. Association of telomere length and telomerase methylation with n-3 fatty acids in preschool children with obesity. BMC Pediatrics 21 (1):24. doi: 10.1186/s12887-020-02487-x.
  • Liu, X., Q. Shi, X. Fan, H. Chen, N. Chen, Y. Zhao, and K. Qi. 2021b. Associations of maternal polyunsaturated fatty acids with telomere length in the cord blood and placenta in Chinese population. Frontiers in Nutrition 8:779306. doi: 10.3389/fnut.2021.779306.
  • Liu, Y., F. Chen, J. Odle, X. Lin, H. Zhu, H. Shi, Y. Hou, and J. Yin. 2013. Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge. The Journal of Nutrition 143 (8):1331–9. doi: 10.3945/jn.113.176255.
  • Loh, N. Y., R. Noordam, and C. Christodoulides. 2021. Telomere length and metabolic syndrome traits: A Mendelian randomisation study. Aging Cell 20 (8):e13445. doi: 10.1111/acel.13445.
  • López-Vicario, C., J. Alcaraz-Quiles, V. García-Alonso, B. Rius, S. H. Hwang, E. Titos, A. Lopategi, B. D. Hammock, V. Arroyo, and J. Clària. 2015. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: Role for omega-3 epoxides. Proceedings of the National Academy of Sciences of the United States of America 112 (2):536–41.
  • Lung, F.-W., N. C. Chen, and B.-C. Shu. 2007. Genetic pathway of major depressive disorder in shortening telomeric length. Psychiatric Genetics 17 (3):195–9. doi: 10.1097/YPG.0b013e32808374f6.
  • Makino, N., T. Maeda, J.-I. Oyama, Y. Higuchi, and K. Mimori. 2009. Improving insulin sensitivity via activation of PPAR-gamma increases telomerase activity in the heart of OLETF rats. American Journal of Physiology. Heart and Circulatory Physiology 297 (6):H2188–H2195. doi: 10.1152/ajpheart.00421.2009.
  • Makino, N., M. Sasaki, T. Maeda, and K. Mimori. 2010. Telomere biology in cardiovascular disease - role of insulin sensitivity in diabetic hearts. Experimental and Clinical Cardiology 15 (4):e128–e133.
  • Maleki, M., N. Khelghati, F. Alemi, M. Bazdar, Z. Asemi, M. Majidinia, A. Sadeghpoor, A. Mahmoodpoor, F. Jadidi-Niaragh, N. Targhazeh, et al. 2020. Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sciences 259:118341. doi: 10.1016/j.lfs.2020.118341.
  • Mansoori, A., G. Sotoudeh, M. Djalali, M.-R. Eshraghian, M. Keramatipour, E. Nasli-Esfahani, F. Shidfar, E. Alvandi, O. Toupchian, and F. Koohdani. 2015. Effect of DHA-rich fish oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Journal of Clinical Lipidology 9 (6):770–7. doi: 10.1016/j.jacl.2015.08.007.
  • Manzella, N., Y. Santin, D. Maggiorani, H. Martini, V. Douin-Echinard, J. F. Passos, F. Lezoualc’h, C. Binda, A. Parini, and J. Mialet-Perez. 2018. Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell 17 (5):e12811. doi: 10.1111/acel.12811.
  • Martínez, P., G. Gómez-López, F. García, E. Mercken, S. Mitchell, J. M. Flores, R. de Cabo, and M. A. Blasco. 2013. RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Reports 3 (6):2059–74. doi: 10.1016/j.celrep.2013.05.030.
  • Mathivanan, A, and Y. Minabe. 2016. Role of GPR40 for Fish Oil PUFA-mediated BDNF Synthesis in the Monkey Hippocampus. Journal of Alzheimer’s Disease & Parkinsonism 06 (01):12. doi: 10.4172/2161-0460.1000213.
  • Mazidi, M., A.-P. Kengne, and M. Banach. 2017. Mineral and vitamin consumption and telomere length among adults in the United States. Polish Archives of Internal Medicine 127 (2):87–90.
  • McAninch, D., T. Bianco-Miotto, K. L. Gatford, S. Y. Leemaqz, P. H. Andraweera, A. Garrett, M. D. Plummer, G. A. Dekker, C. T. Roberts, L. G. Smithers, et al. 2020. The metabolic syndrome in pregnancy and its association with child telomere length. Diabetologia 63 (10):2140–9. doi: 10.1007/s00125-020-05242-0.
  • Méndez-Pertuz, M., P. Martínez, C. Blanco-Aparicio, E. Gómez-Casero, A. Belen García, J. Martínez-Torrecuadrada, M. Palafox, J. Cortés, V. Serra, J. Pastor, et al. 2017. Modulation of telomere protection by the PI3K/AKT pathway. Nature Communications 8 (1):1278. doi: 10.1038/s41467-017-01329-2.
  • Mollace, V., M. Gliozzi, C. Carresi, V. Musolino, and F. Oppedisano. 2013. Re-assessing the mechanism of action of n − 3 PUFAs. International Journal of Cardiology 170 (2 Suppl 1):S8–S11.
  • Monk, J. M., D. M. Liddle, D. J. Cohen, D. H. Tsang, L. M. Hillyer, S. A. Abdelmagid, M. T. Nakamura, K. A. Power, D. W. L. Ma, and L. E. Robinson. 2016. The delta 6 desaturase knock out mouse reveals that immunomodulatory effects of essential n-6 and n-3 polyunsaturated fatty acids are both independent of and dependent upon conversion. The Journal of Nutritional Biochemistry 32:29–38. doi: 10.1016/j.jnutbio.2016.01.004.
  • Muñoz-Lorente, M. A., A. C. Cano-Martin, and M. A. Blasco. 2019. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nature Communications 10 (1):4723. doi: 10.1038/s41467-019-12664-x.
  • Nilsson, P. M. 2014. Telomere length and the metabolic syndrome—a causal link? Nature Reviews. Endocrinology 10 (12):706–7. doi: 10.1038/nrendo.2014.182.
  • Nishi, H., T. Nakada, S. Kyo, M. Inoue, J. W. Shay, and K. Isaka. 2004. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Molecular and Cellular Biology 24 (13):6076–83. doi: 10.1128/MCB.24.13.6076-6083.2004.
  • Nishimura, K., S. Aizawa, F. L. Nugroho, E. Shiomitsu, Y. T. H. Tran, P. L. Bui, E. Borisova, Y. Sakuragi, H. Takada, A. Kurisaki, et al. 2017. A role for KLF4 in promoting the metabolic shift via TCL1 during induced pluripotent stem cell generation. Stem Cell Reports 8 (3):787–801. doi: 10.1016/j.stemcr.2017.01.026.
  • O’Callaghan, N., N. Parletta, C. M. Milte, B. Benassi-Evans, M. Fenech, and P. R. Howe. 2014. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ω-3 fatty acid supplementation: A randomized controlled pilot study. Nutrition 30 (4):489–91. doi: 10.1016/j.nut.2013.09.013.
  • Ogłuszka, M., M. F. W. Te Pas, E. Poławska, A. Nawrocka, K. Stepanow, and M. Pierzchała. 2020. Omega-3 alpha-linolenic fatty acid affects the level of telomere binding protein TRF1 in porcine skeletal muscle. Animals 10 (6):1090. doi: 10.3390/ani10061090.
  • Ogretmen, B., D. Schady, J. Usta, R. Wood, J. M. Kraveka, C. Luberto, H. Birbes, Y. A. Hannun, and L. M. Obeid. 2001. Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. The Journal of Biological Chemistry 276 (27):24901–10.
  • Oppedisano, F., R. Macrì, M. Gliozzi, V. Musolino, C. Carresi, J. Maiuolo, F. Bosco, S. Nucera, M. C. Zito, L. Guarnieri, et al. 2020. The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines 8 (9):306. doi: 10.3390/biomedicines8090306.
  • Pai, V. J., B. Wang, X. Li, L. Wu, and J. X. Kang. 2014. Transgenic mice convert carbohydrates to essential fatty acids. PLoS One 9 (5):e97637. doi: 10.1371/journal.pone.0097637.
  • Palanissami, G, and S. F. D. Paul. 2018. RAGE and its ligands: Molecular interplay between glycation, inflammation, and hallmarks of cancer—a review. Hormones & Cancer 9 (5):295–325. doi: 10.1007/s12672-018-0342-9.
  • Pawełczyk, T., M. Grancow-Grabka, E. Trafalska, J. Szemraj, N. Żurner, and A. Pawełczyk. 2018. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial. Progress in Neuro-Psychopharmacology & Biological Psychiatry 83:142–8. doi: 10.1016/j.pnpbp.2017.12.008.
  • Petri, M. H., S. Thul, T. Andonova, M. Lindquist-Liljeqvist, H. Jin, N.-T. Skenteris, H. Arnardottir, L. Maegdefessel, K. Caidahl, M. Perretti, et al. 2018. Resolution of inflammation through the lipoxin and ALX/FPR2 receptor pathway protects against abdominal aortic aneurysms. JACC. Basic to Translational Science 3 (6):719–27. doi: 10.1016/j.jacbts.2018.08.005.
  • Piplani, S., M. Prabhu, N. N. Alemao, C. Akash, P. Ram, S. Ambar, V. Kumbar, Y. Chugh, S. P. Raychauduri, and S. K. Chugh. 2021. Conventional risk factors, telomere length, and ischemic heart disease: Insights into the mediation analysis. Genome Integrity 12:1.
  • Pizzimenti, S., F. Briatore, S. Laurora, C. Toaldo, M. Maggio, M. de Grandi, L. Meaglia, E. Menegatti, B. Giglioni, M. U. Dianzani, et al. 2006. 4-Hydroxynonenal inhibits telomerase activity and hTERT expression in human leukemic cell lines. Free Radical Biology & Medicine 40 (9):1578–91. doi: 10.1016/j.freeradbiomed.2005.12.024.
  • Ponnusamy, S., N. L. Alderson, H. Hama, J. Bielawski, J. C. Jiang, R. Bhandari, S. H. Snyder, S. M. Jazwinski, and B. Ogretmen. 2008. Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. The Journal of Biological Chemistry 283 (41):27514–24.
  • Ranasinghe, P., Y. Mathangasinghe, R. Jayawardena, A. P. Hills, and A. Misra. 2017. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 17 (1):101. doi: 10.1186/s12889-017-4041-1.
  • Rao, J. S., R. N. Ertley, H.-J. Lee, J. C. DeMar, J. R. J. T. Arnold, S. I. Rapoport, and R. P. Bazinet. 2007. n-3 Polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Molecular Psychiatry 12 (1):36–46. doi: 10.1038/sj.mp.4001888.
  • Révész, D., Y. Milaneschi, J. E. Verhoeven, J. Lin, and B. W. J. H. Penninx. 2015. Longitudinal associations between metabolic syndrome components and telomere shortening. The Journal of Clinical Endocrinology and Metabolism 100 (8):3050–9.
  • Révész, D., Y. Milaneschi, J. E. Verhoeven, and B. W. J. H. Penninx. 2014. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism 99 (12):4607–15. doi: 10.1210/jc.2014-1851.
  • Rey, C., A. Nadjar, B. Buaud, C. Vaysse, A. Aubert, V. Pallet, A. Layé, and C. Joffre. 2016. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain, Behavior, and Immunity 55:249–59. doi: 10.1016/j.bbi.2015.12.013.
  • Roberts, T. L., U. Ho, J. Luff, C. S. Lee, S. H. Apte, K. P. A. MacDonald, L. J. Raggat, A. R. Pettit, C. A. Morrow, M. J. Waters, et al. 2013. Smg1 haploinsufficiency predisposes to tumor formation and inflammation. Proceedings of the National Academy of Sciences of the United States of America 110 (4):E285–E294. doi: 10.1073/pnas.1215696110.
  • Roqueta-Rivera, M., C. K. Stroud, W. M. Haschek, S. J. Akare, M. Segre, R. S. Brush, M.-P. Agbaga, R. E. Anderson, R. A. Hess, and M. T. Nakamura. 2010. Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice. Journal of Lipid Research 51 (2):360–7. doi: 10.1194/jlr.M001180.
  • Roy, S., S. Roy, A. Rana, Y. Akhter, M. P. Hande, and B. Banerjee. 2018. The role of p38 MAPK pathway in p53 compromised state and telomere mediated DNA damage response. Mutation Research. Genetic Toxicology and Environmental Mutagenesis 836 (Pt A):89–97. doi: 10.1016/j.mrgentox.2018.05.018.
  • Rusinek, K., P. Sołek, A. Tabęcka-Łonczyńska, M. Koziorowski, and J. Mytych. 2020. Focus on the role of Klotho protein in neuro-immune interactions in HT-22 cells upon LPS stimulation. Cells 9 (5):1231. doi: 10.3390/cells9051231.
  • Sakai, C., M. Ishida, H. Ohba, H. Yamashita, H. Uchida, M. Yoshizumi, and T. Ishida. 2017. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS One 12 (11):e0187934. doi: 10.1371/journal.pone.0187934.
  • Saretzki, G, and T. Zglinicki. 2002. Replicative aging, telomeres, and oxidative stress. Annals of the New York Academy of Sciences 959:24–9.
  • Sawan, A., G. Scapagnini, and S. Davinelli. 2022. Effect of omega-3 fatty acids on the telomere length: A mini meta-analysis of clinical trials. Biomolecular Concepts 13 (1):25–33. doi: 10.1515/bmc-2021-0024.
  • Scheller, M. A., K. L. Rasmussen, L. Rode, R. Frikke-Schmidt, B. G. Nordestgaard, and S. E. Bojesen. 2020. Observational and genetic studies of short telomeres and Alzheimer’s disease in 67,000 and 152,000 individuals: A Mendelian randomization study. European Journal of Epidemiology 35 (2):147–56. doi: 10.1007/s10654-019-00563-w.
  • Schmitz, G, and J. Ecker. 2008. The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research 47 (2):147–55. doi: 10.1016/j.plipres.2007.12.004.
  • Serini, S, and G. Calviello. 2016. Reduction of oxidative/nitrosative stress in brain and its involvement in the neuroprotective effect of n-3 PUFA in Alzheimer’s disease. Current Alzheimer Research 13 (2):123–34. doi: 10.2174/1567205012666150921101147.
  • Serini, S, and G. Calviello. 2017. Modulation of Ras/ERK and phosphoinositide signaling by long-chain n-3 PUFA in breast cancer and their potential complementary role in combination with targeted drugs. Nutrients 9 (3):185. doi: 10.3390/nu9030185.
  • Shaheen, F., D. K. Grammatopoulos, J. Müller, V. A. Zammit, and H. Lehnert. 2014. Extra-nuclear telomerase reverse transcriptase (TERT) regulates glucose transport in skeletal muscle cells. Biochimica et. Biophysica Acta 1842 (9):1762–9.
  • Shi, J.-P., W. Fu, and J. Liu. 2019. Omega-3 PUFA attenuates LPS-induced neuro-injury of neonatal rats through the PI3K/AKT pathway. Neuroscience 414:112–27. doi: 10.1016/j.neuroscience.2019.06.027.
  • Singh, R. B., A. K. Gupta, J. Fedacko, L. R. Juneja, P. Jarcuska, and D. Pella. 2019. Effects of diet and nutrients on epigenetic and genetic expressions. Chapter 40 - Effects of diet and nutrients on epigenetic and genetic expressions. In The role of functional food security in global health, ed. Singh, R. B., R. R. Watson, and T. Takahashi, 681–707. New York: Academic Press.
  • Singh, R. B., D. Pella, V. Mechirova, and K. Otsuka. 2004. Can brain dysfunction be a predisposing factor for metabolic syndrome? Biomedicine & Pharmacotherapy 58:S56–S68. doi: 10.1016/S0753-3322(04)80011-8.
  • Smith, J. A., S. Park, J. S. Krause, and N. L. Banik. 2013. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochemistry International 62 (5):764–75. doi: 10.1016/j.neuint.2013.02.013.
  • Song, Y., N.-C Y. You, Y. Song, M. K. Kang, L. Hou, R. Wallace, C. B. Eaton, L. F. Tinker, and S. Liu. 2013. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. The Journal of Nutrition 143 (6):907–14. doi: 10.3945/jn.113.175422.
  • Stemmer, K., T. D. Müller, R. D. DiMarchi, P. T. Pfluger, and M. H. Tschöp. 2019. CNS-targeting pharmacological interventions for the metabolic syndrome. The Journal of Clinical Investigation 129 (10):4058–71.
  • Stetson, B, and S. P. L. Mokshagundam. 2010. Nutrition, metabolic syndrome, and diabetes in the senior years. In Preventive nutrition: The comprehensive guide for health professionals, ed. Bendich, A., and R. J. Deckelbaum, 389–417. Totowa, NJ: Humana Press.
  • Sun, G. Y., A. Simonyi, K. L. Fritsche, D. Y. Chuang, M. Hannink, Z. Gu, C. M. Greenlief, J. K. Yao, J. C. Lee, and D. Q. Beversdorf. 2018. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins, Leukotrienes, and Essential Fatty Acids 136:3–13. doi: 10.1016/j.plefa.2017.03.006.
  • Sundin, T, and P. Hentosh. 2012. InTERTesting association between telomerase, mTOR and phytochemicals. Expert Reviews in Molecular Medicine 14:e8.
  • Talamonti, E., V. Sasso, H. To, R. P. Haslam, J. A. Napier, B. Ulfhake, K. Pernold, A. Asadi, T. Hessa, A. Jacobsson, et al. 2020. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB Journal 34 (2):2024–40. doi: 10.1096/fj.201901890RR.
  • Tapia, G., R. Valenzuela, A. Espinosa, P. Romanque, C. Dossi, D. Gonzalez-Mañán, L. A. Videla, and A. D’Espessailles. 2014. N-3 long-chain PUFA supplementation prevents high fat diet induced mouse liver steatosis and inflammation in relation to PPAR-α upregulation and NF-κB DNA binding abrogation. Molecular Nutrition & Food Research 58 (6):1333–41. doi: 10.1002/mnfr.201300458.
  • Tiainen, A. -M., S. Männistö, P. A. Blomstedt, E. Moltchanova, M. -M. Perälä, N. E. Kaartinen, E. Kajantie, L. Kananen, I. Hovatta, and J. G. Eriksson. 2012. Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. European Journal of Clinical Nutrition 66 (12):1290–4. doi: 10.1038/ejcn.2012.143.
  • Topiwala, A., B. Taschler, K. P. Ebmeier, S. Smith, H. Zhou, D. F. Levey, V. Codd, N. J. Samani, J. Gelernter, T. E. Nichols, et al. 2022. Alcohol consumption and telomere length: Mendelian randomization clarifies alcohol’s effects. Molecular Psychiatry. doi: 10.1038/s41380-022-01690-9. Online ahead of print.
  • Toupchian, O., G. Sotoudeh, A. Mansoori, A. Abdollahi, S. A. Keshavarz, M. Djalali, E. Nasli-Esfahani, E. Alvandi, R. Chahardoli, and F. Koohdani. 2018. DHA-enriched fish oil upregulates cyclin-dependent kinase inhibitor 2A (P16INK) expression and downregulates telomerase activity without modulating effects of PPARγ Pro12Ala polymorphism in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition 37 (1):91–8. doi: 10.1016/j.clnu.2016.12.007.
  • Turner, K. J., V. Vasu, and D. K. Griffin. 2019. Telomere biology and human phenotype. Cells 8 (1):73. doi: 10.3390/cells8010073.
  • Vallabhaneni, H., N. O’Callaghan, J. Sidorova, and Y. Liu. 2013. Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genetics 9 (7):e1003639. doi: 10.1371/journal.pgen.1003639.
  • van der Spek, A., H. Karamujić-Čomić, R. Pool, M. Bot, M. Beekman, S. Garmaeva, P. P. Arp, S. Henkelman, J. Liu, A. C. Alves, et al. 2022. Fat metabolism is associated with telomere length in six population-based studies. Human Molecular Genetics 31 (7):1159–70., doi: 10.1093/hmg/ddab281.
  • Varela-Lopez, A., M. P. Pérez-López, C. L. Ramirez-Tortosa, M. Battino, S. Granados-Principal, M. D. C. Ramirez-Tortosa, J. J. Ochoa, L. Vera-Ramirez, F. Giampieri, and J. L. Quiles. 2018. Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. The Journal of Nutritional Biochemistry 52:36–44. doi: 10.1016/j.jnutbio.2017.09.007.
  • Vlachos, I. I., C. Papageorgiou, and M. Margariti. 2020. Neurobiological trajectories involving social isolation in PTSD: A systematic review. Brain Sciences 10 (3):173. doi: 10.3390/brainsci10030173.
  • Wainwright, C. L, and L. Michel. 2013. Endocannabinoid system as a potential mechanism for n-3 long-chain polyunsaturated fatty acid mediated cardiovascular protection. The Proceedings of the Nutrition Society 72 (4):460–9. doi: 10.1017/S0029665113003406.
  • Wang, M., X. Zhang, L. -J. Ma, R. -B. Feng, C. Yan, H. Su, C. He, J. X. Kang, B. Liu, and J. -B. Wan. 2017. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863 (12):3190–201. doi: 10.1016/j.bbadis.2017.08.026.
  • Warner, D. R., J. B. Warner, J. E. Hardesty, Y. L. Song, C. -Y. Chen, Z. Chen, J. X. Kang, C. J. McClain, and I. A. Kirpich. 2021. Beneficial effects of an endogenous enrichment in n3-PUFAs on Wnt signaling are associated with attenuation of alcohol-mediated liver disease in mice. FASEB Journal 35 (2):e21377.
  • Wijayabahu, A. T., A. M. Mickle, V. Mai, C. Garvan, T. L. Glover, R. L. Cook, J. Zhao, M. K. Baum, R. B. Fillingim, and K. T. Sibille. 2022. Associations between Vitamin D, Omega 6:Omega 3 Ratio, and biomarkers of aging in individuals living with and without chronic pain. Nutrients 14 (2):266. doi: 10.3390/nu14020266.
  • Wu, L., K. Fidan, J.-Y. Um, and K. S. Ahn. 2020. Telomerase: Key regulator of inflammation and cancer. Pharmacological Research 155:104726. doi: 10.1016/j.phrs.2020.104726.
  • Wu, Y., C. Zhang, Y. Dong, S. Wang, P. Song, B. Viollet, and M.-H. Zou. 2012. Activation of the AMP-activated protein kinase by eicosapentaenoic acid (EPA, 20:5 n-3) improves endothelial function in vivo. PLoS One 7 (4):e35508. doi: 10.1371/journal.pone.0035508.
  • Xiong, S., N. Patrushev, F. Forouzandeh, L. Hilenski, and R. W. Alexander. 2015. PGC-1α Modulates telomere function and dna damage in protecting against aging-related chronic diseases. Cell Reports 12 (9):1391–9. doi: 10.1016/j.celrep.2015.07.047.
  • Xue, B., Z. Yang, X. Wang, and H. Shi. 2012. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One 7 (10):e45990. doi: 10.1371/journal.pone.0045990.
  • Xue, H., M. Wan, D. Song, Y. Li, and J. Li. 2006. Eicosapentaenoic acid and docosahexaenoic acid modulate mitogen-activated protein kinase activity in endothelium. Vascular Pharmacology 44 (6):434–9. doi: 10.1016/j.vph.2006.02.005.
  • Yan, D., Q. Yang, M. Shi, L. Zhong, C. Wu, T. Meng, H. Yin, and J. Zhou. 2013. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. European Journal of Immunology 43 (11):2943–55. doi: 10.1002/eji.201343472.
  • Yang, C., X. Shang, L. Cheng, L. Yang, X. Liu, C. Bai, Z. Wei, J. Hua, and G. Li. 2017. DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep. PLoS One 12 (2):e0171442. doi: 10.1371/journal.pone.0171442.
  • Youssef, M., A. Ibrahim, K. Akashi, and M. S. Hossain. 2019. PUFA-plasmalogens attenuate the lps-induced nitric oxide ­production by inhibiting the NF-κB, p38 MAPK and JNK pathways in microglial cells. Neuroscience 397:18–30.
  • Zhang, J., G. Rane, X. Dai, M. K. Shanmugam, F. Arfuso, R. P. Samy, M. K. P. Lai, D. Kappei, A. P. Kumar, and G. Sethi. 2016. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Research Reviews 25:55–69. doi: 10.1016/j.arr.2015.11.006.
  • Zhang, J. Y., X. Qin, A. Liang, E. Kim, P. Lawrence, W. J. Park, K. S. D. Kothapalli, and J. T. Brenna. 2017. Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins, Leukotrienes, and Essential Fatty Acids 123:25–32.
  • Zhang, S., R. Li, Y. Yang, Y. Chen, S. Yang, J. Li, C. Wu, T. Kong, T. Liu, J. Cai, et al. 2020. Longitudinal association of telomere attrition with the effects of antihypertensive treatment and blood pressure lowering. Aging and Disease 11 (3):494–508. doi: 10.14336/AD.2019.0721.
  • Zhao, Y., B. Wang, G. Wang, L. Huang, T. Yin, X. Li, X. Liu, Q. Wang, J. Jing, J. Yang, et al. 2020. Functional interaction between plasma phospholipid fatty acids and insulin resistance in leucocyte telomere length maintenance. Lipids in Health and Disease 19 (1):11. doi: 10.1186/s12944-020-1194-1.
  • Zheng, Q., J. Huang, and G. Wang. 2019. Mitochondria, Telomeres and Telomerase Subunits. Frontiers in Cell and Developmental Biology 7:274.
  • Zhou, T., E. R. Prather, D. E. Garrison, and L. Zuo. 2018. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. International Journal of Molecular Sciences 19 (2):417. doi: 10.3390/ijms19020417.
  • Zuo, L., E. R. Prather, M. Stetskiv, D. E. Garrison, J. R. Meade, T. I. Peace, and T. Zhou. 2019. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. International Journal of Molecular Sciences 20 (18):4472. doi: 10.3390/ijms20184472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.