502
Views
4
CrossRef citations to date
0
Altmetric
Reviews

A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all

References

  • Adisa, I. O., V. L. R. Pullagurala, J. R. Peralta-Videa, C. O. Dimkpa, W. H. Elmer, J. L. Gardea-Torresdey, and J. C. White. 2019. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science: Nano 6 (7):2002–30. doi: 10.1039/C9EN00265K.
  • Alivisatos, A. P., K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz. 1996. Organization of ‘nanocrystal molecules’ using DNA. Nature 382 (6592):609–11. doi: 10.1038/382609a0.
  • Anusuya, S., and M. Sathiyabama. 2015. Foliar application of β-D-glucan nanoparticles to control rhizome rot disease of turmeric. International Journal of Biological Macromolecules 72:1205–12. doi: 10.1016/j.ijbiomac.2014.10.043.
  • Apte, M., D. Sambre, S. Gaikawad, S. Joshi, A. Bankar, A. R. Kumar, and S. Zinjarde. 2013. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3 (1):1–8. doi: 10.1186/2191-0855-3-32.
  • Asanithi, P., S. Chaiyakun, and P. Limsuwan. 2012. Growth of silver nanoparticles by DC magnetron sputtering. Journal of Nanomaterials 2012:1–8. doi: 10.1155/2012/963609.
  • Ashkarran, A. A. 2010. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Current Applied Physics 10 (6):1442–7. doi: 10.1016/j.cap.2010.05.010.
  • Atwood, D., and C. Paisley-Jones. 2017. Pesticides industry sales and usage: 2008–2012 market estimates. Washington, DC: US Environmental Protection Agency.
  • Ayesha, B., U. Jabeen, A. Naeem, P. Kasi, M. N. K. Malghani, S. U. Khan, J. Akhtar, and M. Aamir. 2020. Synthesis of zinc stannate nanoparticles by sol-gel method for photocatalysis of commercial dyes. Results in Chemistry 2:100023. doi: 10.1016/j.rechem.2020.100023.
  • Ayyub, P., R. Chandra, P. Taneja, A. Sharma, and R. Pinto. 2001. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Applied Physics A 73:67–73.
  • Baig, N., I. Kammakakam, and W. Falath. 2021. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2 (6):1821–71. doi: 10.1039/D0MA00807A.
  • Baker, S., B. Harini, D. Rakshith, and S. Satish. 2013. Marine microbes: Invisible nanofactories. Journal of Pharmacy Research 6 (3):383–8. doi: 10.1016/j.jopr.2013.03.001.
  • Bansal, V., R. Ramanathan, and S. K. Bhargava. 2011. Fungus-mediated biological approaches towards ‘green’ synthesis of oxide nanomaterials. Australian Journal of Chemistry 64 (3):279–93. doi: 10.1071/CH10343.
  • Bao, C., M. Jin, R. Lu, T. Zhang, and Y. Y. Zhao. 2003. Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dendrimer with surface hydroxyl groups. Materials Chemistry and Physics 81 (1):160–5. doi: 10.1016/S0254-0584(03)00171-8.
  • Barbhuiya, R. I., P. Singha, N. Asaithambi, and S. K. Singh. 2022. Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chemistry 385:132602. doi: 10.1016/j.foodchem.2022.132602.
  • Barbhuiya, R. I., P. Singha, and S. K. Singh. 2021. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International 149:110647. doi: 10.1016/j.foodres.2021.110647.
  • Boivin, M., N. Bourdeau, S. Barnabé, and I. Desgagné-Penix. 2021. Black spruce extracts reveal antimicrobial and sprout suppressive potentials to prevent potato (Solanum tuberosum L.) losses during storage. Journal of Agriculture and Food Research 5:100187. doi: 10.1016/j.jafr.2021.100187.
  • Bussamara, R., D. Eberhardt, A. Feil, P. Migowski, H. Wender, D. d Moraes, G. Machado, R. M. Papaléo, S. R. Teixeira, and J. Dupont. 2013. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: A novel method to obtain a magnetic biocatalyst. Chemical Communications 49 (13):1273–5. doi: 10.1039/c2cc38737a.
  • Cao, S., C. Zhao, T. Han, and L. Peng. 2016. Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers. Materials Letters 169:17–20. doi: 10.1016/j.matlet.2016.01.053.
  • Celardo, I., J. Z. Pedersen, E. Traversa, and L. Ghibelli. 2011. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3 (4):1411–20. doi: 10.1039/c0nr00875c.
  • Cha, C., S. R. Shin, N. Annabi, M. R. Dokmeci, and A. Khademhosseini. 2013. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 7 (4):2891–7. doi: 10.1021/nn401196a.
  • Chen, A., and P. Holt-Hindle. 2010. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chemical Reviews 110 (6):3767–804. doi: 10.1021/cr9003902.
  • Choi, D. S., A. W. Robertson, J. H. Warner, S. O. Kim, and H. Kim. 2016. Low‐temperature chemical vapor deposition synthesis of Pt–Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Advanced Materials 28 (33):7115–22. doi: 10.1002/adma.201600469.
  • Choi, Y. J., D. H. Kam, and Y. H. Jeong. 2017. Corrigendum to “Analysis of CHF enhancement by magnetite nanoparticle deposition in the subcooled flow boiling region”. International Journal of Heat and Mass Transfer 111:666. doi: 10.1016/j.ijheatmasstransfer.2017.03.113.
  • Collin, G. 2021. History of carbon materials. Industrial carbon and graphite materials, Volume I. Raw Materials, Production and Applications 1:33–43.
  • Conforti, P. 2011. Looking ahead in world food and agriculture: Perspectives to 2050. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
  • Crucho, C. I., and M. T. Barros. 2017. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science & Engineering. C, Materials for Biological Applications 80:771–84. doi: 10.1016/j.msec.2017.06.004.
  • Danks, A. E., S. R. Hall, and Z. Schnepp. 2016. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons 3 (2):91–112. doi: 10.1039/C5MH00260E.
  • Dimkpa, C. O., J. C. White, W. H. Elmer, and J. Gardea-Torresdey. 2017. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry 65 (39):8552–9. doi: 10.1021/acs.jafc.7b02961.
  • Dong, Y., X.-q. Du, P. Liang, and X-l Man. 2020. One-pot solvothermal method to fabricate 1D-VS4 nanowires as anode materials for lithium ion batteries. Inorganic Chemistry Communications. 115:107883. doi: 10.1016/j.inoche.2020.107883.
  • Duque, J. S., B. M. Madrigal, H. Riascos, and Y. P. Avila. 2019. Colloidal metal oxide nanoparticles prepared by laser ablation technique and their antibacterial test. Colloids and Interfaces 3 (1):25. doi: 10.3390/colloids3010025.
  • Dutta, P., and P. Kaman. 2017. Nanocentric plant health management with special reference to silver. International Journal of Current Microbiology and Applied Sciences 6 (6):2821–30. doi: 10.20546/ijcmas.2017.606.336.
  • El-Argawy, E., M. Rahhal, A. El-Korany, E. Elshabrawy, and R. Eltahan. 2016. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Asian Journal of Plant Pathology 11 (1):35–47. doi: 10.3923/ajppaj.2017.35.47.
  • Elmer, W., R. De La Torre-Roche, L. Pagano, S. Majumdar, N. Zuverza-Mena, C. Dimkpa, J. Gardea-Torresdey, and J. C. White. 2018. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease 102 (7):1394–401. doi: 10.1094/PDIS-10-17-1621-RE.
  • Elmer, W., and J. C. White. 2018. The future of nanotechnology in plant pathology. Annual Review of Phytopathology 56:111–33. doi: 10.1146/annurev-phyto-080417-050108.
  • Elmer, W. H., and J. C. White. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano 3 (5):1072–9. doi: 10.1039/C6EN00146G.
  • Fernández, J. G., M. A. Fernández-Baldo, E. Berni, G. Camí, N. Durán, J. Raba, and M. I. Sanz. 2016. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochemistry 51 (9):1306–13. doi: 10.1016/j.procbio.2016.05.021.
  • Fouda, A., A. Mohamed, M. S. Elgamal, S. EL-Din Hassan, S. Salem Salem, and T. I. Shaheen. 2017. Facile approach towards medical textiles via myco-synthesis of silver nanoparticles. Der Pharma Chemica 9:11–8.
  • Fu, Q., D. Kokalj, D. Stangier, F. E. Kruis, and W. Tillmann. 2020. Aerosol synthesis of titanium nitride nanoparticles by direct current arc discharge method. Advanced Powder Technology 31 (9):4119–28. doi: 10.1016/j.apt.2020.08.012.
  • Gardea-Torresdey, J. L., E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman. 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 19 (4):1357–61. doi: 10.1021/la020835i.
  • Ghaderi, S., B. Ramesh, and A. M. Seifalian. 2011. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. Journal of Drug Targeting 19 (7):475–86. doi: 10.3109/1061186X.2010.526227.
  • Ghiaci, M., H. Aghaei, and A. Abbaspur. 2008. Size-controlled synthesis of ZrO2–TiO2 nanoparticles prepared via reverse micelle method: Investigation of particle size effect on the catalytic performance in vapor phase Beckmann rearrangement. Materials Research Bulletin 43 (5):1255–62. doi: 10.1016/j.materresbull.2007.05.022.
  • Giannousi, K., I. Avramidis, and C. Dendrinou-Samara. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances 3 (44):21743–52. doi: 10.1039/c3ra42118j.
  • Gill, S. R., D. E. Fouts, G. L. Archer, E. F. Mongodin, R. T. DeBoy, J. Ravel, I. T. Paulsen, J. F. Kolonay, L. Brinkac, M. Beanan, et al. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. Journal of Bacteriology 187 (7):2426–38. doi: 10.1128/JB.187.7.2426-2438.2005.
  • Gorain, B., H. Choudhury, R. K. Tekade, S. Karan, P. Jaisankar, and T. K. Pal. 2016. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regulatory Toxicology and Pharmacology 82:20–31. doi: 10.1016/j.yrtph.2016.10.020.
  • Graham, J., E. Johnson, M. Myers, M. Young, P. Rajasekaran, S. Das, and S. Santra. 2016. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Disease 100 (12):2442–7. doi: 10.1094/PDIS-05-16-0598-RE.
  • Gu, D., K. Andreev, and M. E. Dupre. 2021. Major trends in population growth around the world. China CDC Weekly 3 (28):604–13. doi: 10.46234/ccdcw2021.160.
  • Gu, D., Y. Qin, Y. Wen, L. Qin, and H. J. Seo. 2017. Photochemical and magnetic activities of FeTiO3 nanoparticles by electro-spinning synthesis. Journal of the Taiwan Institute of Chemical Engineers 78:431–7. doi: 10.1016/j.jtice.2017.04.003.
  • Haes, A. J., J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne. 2005. Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography. The Journal of Physical Chemistry. B 109 (22):11158–62. doi: 10.1021/jp051178g.
  • Hao, Y., X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, T. Hou, Z. Xiang, J. Zhuang, S. Wu, et al. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science 8:1332. doi: 10.3389/fpls.2017.01332.
  • He, S., Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters 61 (18):3984–7. doi: 10.1016/j.matlet.2007.01.018.
  • Hosseini, S., J. Amini, M. K. Saba, K. Karimi, and I. Pertot. 2020. Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology 11:1855. doi: 10.3389/fmicb.2020.01855.
  • Hoyos-Palacio, L. M., D. P. C. Castro, I. C. Ortiz-Trujillo, L. E. B. Palacio, B. J. G. Upegui, N. J. E. Mora, and J. A. C. Cornelio. 2019. Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD). Journal of Materials Research and Technology 8 (6):5893–8. doi: 10.1016/j.jmrt.2019.09.062.
  • Hurst, S. J., E. K. Payne, L. Qin, and C. A. Mirkin. 2006. Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods. Angewandte Chemie 45 (17):2672–92. doi: 10.1002/anie.200504025.
  • Iliger, K. S., T. A. Sofi, N. A. Bhat, F. A. Ahanger, J. C. Sekhar, A. Z. Elhendi, A. A. Al-Huqail, and F. Khan. 2021. Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi Journal of Biological Sciences 28 (2):1477–86. doi: 10.1016/j.sjbs.2020.12.003.
  • Iqbal, M. A. 2019. Nano-fertilizers for sustainable crop production under changing climate: A global perspective. Sustainable Crop Production 8:1–13.
  • Ismail, R. A., M. H. Mohsin, A. K. Ali, K. I. Hassoon, and S. Erten-Ela. 2020. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E: Low-Dimensional Systems and Nanostructures 119:113997. doi: 10.1016/j.physe.2020.113997.
  • Jaber, G. S., K. S. Khashan, and M. J. Abbas. 2021. Study the antibacterial activity of zinc oxide nanoparticles synthesis by laser ablation in liquid. Materials Today: Proceedings 42:2668–73. doi: 10.1016/j.matpr.2020.12.646.
  • Jeyabharathi, S., S. Naveenkumar, S. Chandramohan, N. Venkateshan, M. R. A. Gawwad, M. S. Elshikh, R. A. Rasheed, D. A. Al Farraj, and A. Muthukumaran. 2022. Biological synthesis of zinc oxide nanoparticles from the plant extract, Wattakaka volubilis showed anti-microbial and anti-hyperglycemic effects. Journal of King Saud University – Science 34 (3):101881. doi: 10.1016/j.jksus.2022.101881.
  • Jones, A. C., and M. L. Hitchman, eds. 2009. Overview of chemical vapour deposition. In Chemical vapour deposition: Precursors, processes and applications, vol. 1, 1–36. London: The Royal Society of Chemistry.
  • Kagan, C. R. 2016. At the nexus of food security and safety: Opportunities for nanoscience and nanotechnology. ACS Nano 10:2985–6.
  • Kah, M., R. S. Kookana, A. Gogos, and T. D. Bucheli. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13 (8):677–84. doi: 10.1038/s41565-018-0131-1.
  • Kanhed, P., S. Birla, S. Gaikwad, A. Gade, A. B. Seabra, O. Rubilar, N. Duran, and M. Rai. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters 115:13–7. doi: 10.1016/j.matlet.2013.10.011.
  • Kashyap, P. L., X. Xiang, and P. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36–51. doi: 10.1016/j.ijbiomac.2015.02.039.
  • Keller, A. A., A. S. Adeleye, J. R. Conway, K. L. Garner, L. Zhao, G. N. Cherr, J. Hong, J. L. Gardea-Torresdey, H. A. Godwin, S. Hanna, et al. 2017. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40. doi: 10.1016/j.impact.2017.05.003.
  • Khalid, M., and H. S. El-Sawy. 2017. Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics 528:675–91.
  • Khan, I., S. Morishita, R. Higashinaka, T. D. Matsuda, Y. Aoki, E. Kuzmann, Z. Homonnay, S. Katalin, L. Pavić, and S. Kubuki. 2021. Synthesis, characterization and magnetic properties of ε-Fe2O3 nanoparticles prepared by sol-gel method. Journal of Magnetism and Magnetic Materials 538:168264. doi: 10.1016/j.jmmm.2021.168264.
  • Khani, A. H., A. M. Rashidi, and G. Kashi. 2017. Synthesis of tungsten nanoparticles by reverse micelle method. Journal of Molecular Liquids 241:897–903. doi: 10.1016/j.molliq.2017.06.053.
  • Kim, K.-J., W. S. Sung, B. K. Suh, S.-K. Moon, J.-S. Choi, J. G. Kim, and D. G. Lee. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22 (2):235–42. doi: 10.1007/s10534-008-9159-2.
  • Kowshik, M., S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14 (1):95–100. doi: 10.1088/0957-4484/14/1/321.
  • Kresge, C. T., M. Leonowicz, W. J. Roth, J. Vartuli, and J. Beck. 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359 (6397):710–2. doi: 10.1038/359710a0.
  • Kumar, D., L. Karthik, G. Kumar, and K. Roa. 2011. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–11.
  • Kumar, P. S., J. Sundaramurthy, S. Sundarrajan, V. J. Babu, G. Singh, S. I. Allakhverdiev, and S. Ramakrishna. 2014. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science 7 (10):3192–222. doi: 10.1039/C4EE00612G.
  • Kumaraswamy, R., S. Kumari, R. C. Choudhary, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2018. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113:494–506. doi: 10.1016/j.ijbiomac.2018.02.130.
  • Kumari, M., S. Pandey, A. Bhattacharya, A. Mishra, and C. Nautiyal. 2017. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry 121:216–25. doi: 10.1016/j.plaphy.2017.11.004.
  • Lamsal, K., S.-W. Kim, J. H. Jung, Y. S. Kim, K. S. Kim, and Y. S. Lee. 2011a. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39 (1):26–32. doi: 10.4489/MYCO.2011.39.1.026.
  • Lamsal, K., S. W. Kim, J. H. Jung, Y. S. Kim, K. S. Kim, and Y. S. Lee. 2011b. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39 (3):194–9. doi: 10.5941/MYCO.2011.39.3.194.
  • Levard, C., E. M. Hotze, G. V. Lowry, and G. E. Brown, Jr. 2012. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology 46 (13):6900–14. doi: 10.1021/es2037405.
  • Li, B.-R., C.-C. Chen, U. R. Kumar, and Y.-T. Chen. 2014. Advances in nanowire transistors for biological analysis and cellular investigation. The Analyst 139 (7):1589–608. doi: 10.1039/c3an01861j.
  • Li, J., Q. Wu, and J. Wu. 2015. Handbook of nanoparticles. Cham: Springer International Publishing.
  • Li, W., and D. Zhao. 2013. An overview of the synthesis of ordered mesoporous materials. Chemical Communications 49 (10):943–6. doi: 10.1039/c2cc36964h.
  • Li, X., H. Xu, Z. Chen, and G. Chen. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials 2011:1–16. doi: 10.1155/2011/270974.
  • Liang, F., M. Tanaka, S. Choi, and T. Watanabe. 2017. Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon 117:100–11. doi: 10.1016/j.carbon.2017.02.084.
  • Liang, H., C. Li, J. Bai, L. Zhang, L. Guo, and Y. Huang. 2013. Synthesis and characterization of AgI nanoparticles in β-CD/PAN nanofibers by electrospinning method. Applied Surface Science 270:617–20. doi: 10.1016/j.apsusc.2013.01.095.
  • Liu, J., T. Yang, D.-W. Wang, G. Q. M. Lu, D. Zhao, and S. Z. Qiao. 2013. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications 4 (1):1–7. doi: 10.1038/ncomms3798.
  • Liu, K., C.-L. Ho, S. Aouba, Y.-Q. Zhao, Z.-H. Lu, S. Petrov, N. Coombs, P. Dube, H. E. Ruda, W.-Y. Wong, et al. 2008. Synthesis and lithographic patterning of FePt nanoparticles using a bimetallic metallopolyyne precursor. Angewandte Chemie 47 (7):1255–9. doi: 10.1002/anie.200703199.
  • Liu, Y., J. Goebl, and Y. Yin. 2013. Themed issue: Chemistry of functional nanomaterials. Chemical Society Reviews 42 (7):2610–53. doi: 10.1039/c2cs35369e.
  • Lv, R., C. Cao, H. Zhai, D. Wang, S. Liu, and H. Zhu. 2004. Growth and characterization of single-crystal ZnSe nanorods via surfactant soft-template method. Solid State Communications 130 (3-4):241–5. doi: 10.1016/j.ssc.2004.01.030.
  • Lyu, H., B. Gao, F. He, C. Ding, J. Tang, and J. C. Crittenden. 2017. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry & Engineering 5 (11):9568–85. doi: 10.1021/acssuschemeng.7b02170.
  • Ma, C., J. Borgatta, B. G. Hudson, A. A. Tamijani, R. De La Torre-Roche, N. Zuverza-Mena, Y. Shen, W. Elmer, B. Xing, S. E. Mason, et al. 2020. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology 15 (12):1033–42. doi: 10.1038/s41565-020-00776-1.
  • Malik, M. A., M. Y. Wani, and M. A. Hashim. 2012. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano update. Arabian Journal of Chemistry 5 (4):397–417. doi: 10.1016/j.arabjc.2010.09.027.
  • Mao, C., C. E. Flynn, A. Hayhurst, R. Sweeney, J. Qi, G. Georgiou, B. Iverson, and A. M. Belcher. 2003. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America 100 (12):6946–51. doi: 10.1073/pnas.0832310100.
  • Martins, L., M. A. Alves Rosa, S. H. Pulcinelli, and C. V. Santilli. 2010. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials 132 (1-2):268–75. doi: 10.1016/j.micromeso.2010.03.006.
  • Mauricio, M., S. Guerra-Ojeda, P. Marchio, S. Valles, M. Aldasoro, I. Escribano-Lopez, J. Herance, M. Rocha, J. Vila, and V. Victor. 2018. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxidative Medicine and Cellular Longevity 2018:1–20. doi: 10.1155/2018/6231482.
  • Mccandless, L. 2005. Nanotechnology offers new insights into plant pathology. College of Agriculture and Life Sciences News, Cornell University, 17–8.
  • Meng, L.-Y., B. Wang, M.-G. Ma, and K.-L. Lin. 2016. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chemistry 1-2:63–83. doi: 10.1016/j.mtchem.2016.11.003.
  • Miglietta, M. L., G. Rametta, and G. Di Francia. 2009. Characterization of carbon based nanoparticles dispersion in aqueous solution using dynamic light scattering technique. Macromolecular Symposia 286 (1):95–100. doi: 10.1002/masy.200951212.
  • Mohammad, M., A. A. Moosa, J. Potgieter, and M. K. Ismael. 2013. Carbon nanotubes synthesis via arc discharge with a Yttria catalyst. International Scholarly Research Notices: 1–7.
  • Mostafidi, M., M. R. Sanjabi, F. Shirkhan, and M. T. Zahedi. 2020. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology 103:321–32. doi: 10.1016/j.tifs.2020.07.009.
  • Mritunjay, S. K., and V. Kumar. 2015. Fresh farm produce as a source of pathogens: A review. Research Journal of Environmental Toxicology 9 (2):59–70. doi: 10.3923/rjet.2015.59.70.
  • Mubarik, N., G. Gulelala, S. Iqbal, M. Shahmeel, A. A. Hussain, K. Razzaq, and M. N. Akram. 2022. Different methods, novel tools towards the synthesis of nanoparticles and applications in engineering, chemical, physical sciences and technology. Scholars Bulletin 8 (2):71–4. doi: 10.36348/sb.2022.v08i02.004.
  • Naranjo, E., M. V. Merfa, S. Santra, A. Ozcan, E. Johnson, P. A. Cobine, and L. De La Fuente. 2020. Zinkicide is a ZnO-based nanoformulation with bactericidal activity against Liberibacter crescens in batch cultures and in microfluidic chambers simulating plant vascular systems. Applied and Environmental Microbiology 86 (16):e00788-00720. doi: 10.1128/AEM.00788-20.
  • Nguyen, T.-D. 2013. From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5 (20):9455–82. doi: 10.1039/c3nr01810e.
  • Nie, M., K. Sun, and D. D. Meng. 2009. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber. Journal of Applied Physics 106 (5):054314. doi: 10.1063/1.3211326.
  • Noh, J., M. Yi, S. Hwang, K. M. Im, T. Yu, and J. Kim. 2016. A facile synthesis of rutile-rich titanium oxide nanoparticles using reverse micelle method and their photocatalytic applications. Journal of Industrial and Engineering Chemistry 33:369–73. doi: 10.1016/j.jiec.2015.10.020.
  • Noori, S., F. Zeynali, and H. Almasi. 2018. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–20. doi: 10.1016/j.foodcont.2017.08.015.
  • Ocsoy, I., M. L. Paret, M. A. Ocsoy, S. Kunwar, T. Chen, M. You, and W. Tan. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7 (10):8972–80. doi: 10.1021/nn4034794.
  • Olaimat, A. N., and R. A. Holley. 2012. Factors influencing the microbial safety of fresh produce: A review. Food Microbiology 32 (1):1–19. doi: 10.1016/j.fm.2012.04.016.
  • Ostermann, R., J. Cravillon, C. Weidmann, M. Wiebcke, and B. M. Smarsly. 2011. Metal–organic framework nanofibers viaelectrospinning. Chemical Communications 47 (1):442–4. doi: 10.1039/C0CC02271C.
  • Palou, L. 2018. Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae 4 (4):46. doi: 10.3390/horticulturae4040046.
  • Panahi, Y., M. Farshbaf, M. Mohammadhosseini, M. Mirahadi, R. Khalilov, S. Saghfi, and A. Akbarzadeh. 2017. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine, and Biotechnology 45 (4):788–99. doi: 10.1080/21691401.2017.1282496.
  • Patra, C. R., R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee. 2010. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews 62 (3):346–61. doi: 10.1016/j.addr.2009.11.007.
  • Pietroiusti, A., L. Campagnolo, and B. Fadeel. 2013. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small (Weinheim an der Bergstrasse, Germany) 9 (9-10):1557–72. doi: 10.1002/smll.201201463.
  • Pimpin, A., and W. Srituravanich. 2012. Review on micro-and nanolithography techniques and their applications. Engineering Journal 16 (1):37–56. doi: 10.4186/ej.2012.16.1.37.
  • Pirmohamed, T., J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. King, S. Seal, and W. T. Self. 2010. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications 46 (16):2736–8. doi: 10.1039/b922024k.
  • Poolakkandy, R. R., and M. M. Menamparambath. 2020. Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides. Nanoscale Advances 2 (11):5015–45. doi: 10.1039/d0na00599a.
  • Ranjan, S., N. Dasgupta, S. Singh, and M. Gandhi. 2019. Toxicity and regulations of food nanomaterials. Environmental Chemistry Letters 17 (2):929–44. doi: 10.1007/s10311-018-00851-z.
  • Rashid, T. M., U. M. Nayef, M. S. Jabir, and F. A. H. Mutlak. 2021. Synthesis and characterization of Au:ZnO (core:shell) nanoparticles via laser ablation. Optik 244:167569. doi: 10.1016/j.ijleo.2021.167569.
  • Rezaei, S., I. Manoucheri, R. Moradian, and B. Pourabbas. 2014. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chemical Engineering Journal 252:11–6. doi: 10.1016/j.cej.2014.04.100.
  • Roy, K., C. Sarkar, and C. Ghosh. 2015. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Applied Nanoscience 5 (8):953–9. doi: 10.1007/s13204-014-0392-4.
  • Saharan, V., R. Kumaraswamy, R. C. Choudhary, S. Kumari, A. Pal, R. Raliya, and P. Biswas. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64 (31):6148–55. doi: 10.1021/acs.jafc.6b02239.
  • Salem, H., E. Kam, and M. Sharaf. 2011. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. International Journal of Drug Delivery 3:293.
  • Salem, S. S., and A. Fouda. 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research 199 (1):344–70. doi: 10.1007/s12011-020-02138-3.
  • Salvadori, M. R., R. A. Ando, C. A. O. Nascimento, and B. Corrêa. 2017. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. Journal of Environmental Science and Health, Part A 52 (11):1112–20. doi: 10.1080/10934529.2017.1340754.
  • Saputra, O. A., F. R. Wibowo, and W. W. Lestari. 2022. High storage capacity of curcumin loaded onto hollow mesoporous silica nanoparticles prepared via improved hard-templating method optimized by Taguchi DoE. Engineering Science and Technology, an International Journal 33:101070. doi: 10.1016/j.jestch.2021.10.002.
  • Seo, Y., S. Manivannan, I. Kang, S.-W. Lee, and K. Kim. 2017. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions. Biosensors & Bioelectronics 94:87–93. doi: 10.1016/j.bios.2017.02.036.
  • Sepulveda-Guzman, S., B. Reeja-Jayan, E. De la Rosa, U. Ortiz-Mendez, C. Reyes-Betanzo, R. Cruz-Silva, and M. Jose-Yacaman. 2010. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography. Applied Surface Science 256 (11):3386–9. doi: 10.1016/j.apsusc.2009.12.039.
  • Sergio, R. R., Y. Khamis, H. A. Farghily, and I. Antonio. 2019. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials 9:1752.
  • Servin, A., W. Elmer, A. Mukherjee, D. la Torre-Roche, H. Hamdi, J. C. White, P. Bindraban, and C. Dimkpa. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17 (2):1–21. doi: 10.1007/s11051-015-2907-7.
  • Shah, K., R. G. Kumar, S. Verma, and R. Dubey. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161 (6):1135–44. doi: 10.1016/S0168-9452(01)00517-9.
  • Shah, K. A., and B. A. Tali. 2016. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing 41:67–82. doi: 10.1016/j.mssp.2015.08.013.
  • Sharma, D., S. Kanchi, and K. Bisetty. 2019. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry 12 (8):3576–600. doi: 10.1016/j.arabjc.2015.11.002.
  • Sharma, P., A. B. Jha, and R. S. Dubey. 2019. Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In Handbook of plant and crop stress, ed. M. Pessarakli, 93–136. 4th ed. Boca Raton, FL: CRC Press.
  • Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:1–26. doi: 10.1155/2012/217037.
  • Shojaei, M., A. Shokuhfar, and A. Zolriasatein. 2021. Synthesis and characterization of CuAlS2 nanoparticles by mechanical milling. Materials Today Communications 27:102243. doi: 10.1016/j.mtcomm.2021.102243.
  • Shukla, R. K., A. Badiye, K. Vajpayee, and N. Kapoor. 2021. Genotoxic potential of nanoparticles: Structural and functional modifications in DNA. Frontiers in Genetics 12:728250.
  • Singaravelu, G., J. Arockiamary, V. G. Kumar, and K. Govindaraju. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces. B, Biointerfaces 57 (1):97–101. doi: 10.1016/j.colsurfb.2007.01.010.
  • Singh, D., P. Dubey, M. Pradhan, and M. R. Singh. 2013. Ceramic nanocarriers: Versatile nanosystem for protein and peptide delivery. Expert Opinion on Drug Delivery 10 (2):241–59. doi: 10.1517/17425247.2012.745848.
  • Singh, D., S. Singh, J. Sahu, S. Srivastava, and M. R. Singh. 2016. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artificial Cells, Nanomedicine, and Biotechnology 44 (1):401–9. doi: 10.3109/21691401.2014.955106.
  • Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters 7 (3):219–42. doi: 10.1007/s40820-015-0040-x.
  • Sivayogam, D., I. K. Punithavathy, S. J. Jayakumar, and N. Mahendran. 2022. Study on structural, electro-optical and optoelectronics properties of CuO nanoparticles synthesis via sol gel method. Materials Today: Proceedings 48:508–13. doi: 10.1016/j.matpr.2021.04.494.
  • Soleimani Zohr Shiri, M., W. Henderson, and M. R. Mucalo. 2019. A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, Re, Ir and Rh. Materials 12 (12):1896. doi: 10.3390/ma12121896.
  • Soliman, H., A. Elsayed, and A. Dyaa. 2018. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egyptian Journal of Basic and Applied Sciences 5 (3):228–33. doi: 10.1016/j.ejbas.2018.05.005.
  • Sonanwane, D. B., A. M. Shah, and N. Jaiswal. 2022. Review on application of nanoparticles and classification, synthesis. Research Journal of Pharmacology and Pharmacodynamics 14:117–24. doi: 10.52711/2321-5836.2022.00020.
  • Spasova, M., N. Manolova, I. Rashkov, and M. Naydenov. 2019. Electrospun 5-chloro-8-hydroxyquinoline-loaded cellulose acetate/polyethylene glycol antifungal membranes against esca. Polymers 11 (10):1617. doi: 10.3390/polym11101617.
  • Sterk, L., J. Górka, A. Vinu, and M. Jaroniec. 2012. Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. Microporous and Mesoporous Materials 156:121–6. doi: 10.1016/j.micromeso.2012.02.028.
  • Strayer, A., I. Ocsoy, W. Tan, J. Jones, and M. Paret. 2016. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Disease 100 (7):1460–5. doi: 10.1094/PDIS-05-15-0580-RE.
  • Strayer-Scherer, A., Y. Liao, M. Young, L. Ritchie, G. Vallad, S. Santra, J. Freeman, D. Clark, J. Jones, and M. Paret. 2018. Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108 (2):196–205. doi: 10.1094/PHYTO-06-17-0221-R.
  • Su, S. S., and I. Chang. 2018. Review of production routes of nanomaterials. In Commercialization of nanotechnologies – A case study approach, ed. D. Brabazon, E. Pellicer, F. Zivic, J. Sort, M. D. Baró, N. Grujovic and K. Choy, 15–29. Cham: Springer International Publishing.
  • Szabó, Z., J. Volk, E. Fülöp, A. Deák, and I. Bársony. 2013. Regular ZnO nanopillar arrays by nanosphere photolithography. Photonics and Nanostructures - Fundamentals and Applications 11 (1):1–7. doi: 10.1016/j.photonics.2012.06.009.
  • Szczęśniak, B., J. Choma, and M. Jaroniec. 2020. Major advances in the development of ordered mesoporous materials. Chemical Communications 56 (57):7836–48. doi: 10.1039/d0cc02840a.
  • Taha, R. A., M. M. Hassan, E. A. Ibrahim, N. H. Abou Baker, and E. A. Shaaban. 2016. Carbon nanotubes impact on date palm in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC) 127 (2):525–34. doi: 10.1007/s11240-016-1058-6.
  • Tang, T., T. Zhang, W. Li, X. Huang, X. Wang, H. Qiu, and Y. Hou. 2019. Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li–S batteries. Nanoscale 11 (15):7440–6. doi: 10.1039/c8nr09495k.
  • Thangamani, N., and N. Bhuvaneshwari. 2019. Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chemical Physics Letters 732:136587. doi: 10.1016/j.cplett.2019.07.015.
  • Tseng, T. K., Y. S. Lin, Y. J. Chen, and H. Chu. 2010. A review of photocatalysts prepared by sol-gel method for VOCs removal. International Journal of Molecular Sciences 11 (6):2336–61. doi: 10.3390/ijms11062336.
  • UmaSudharshini, A., M. Bououdina, M. Venkateshwarlu, C. Manoharan, and P. Dhamodharan. 2020. Low temperature solvothermal synthesis of pristine Co3O4 nanoparticles as potential supercapacitor. Surfaces and Interfaces 19:100535. doi: 10.1016/j.surfin.2020.100535.
  • Varghese, R. J., S. Parani, S. Thomas, O. S. Oluwafemi, and J. Wu. 2019. Introduction to nanomaterials: Synthesis and applications. In Nanomaterials for solar cell applications, ed. S. Thomas, E. H. M. Sakho, N. Kalarikkal, S. O. Oluwafemi and J. Wu, 75–95. Amsterdam: Elsevier.
  • Verma, M., V. Kumar, and A. Katoch. 2018a. Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Materials Science in Semiconductor Processing 76:55–60. doi: 10.1016/j.mssp.2017.12.018.
  • Verma, M., V. Kumar, and A. Katoch. 2018b. Synthesis of ZrO2 nanoparticles using reactive magnetron sputtering and their structural, morphological and thermal studies. Materials Chemistry and Physics 212:268–73. doi: 10.1016/j.matchemphys.2018.03.049.
  • Waghmare, S. R., M. N. Mulla, S. R. Marathe, and K. D. Sonawane. 2015. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5 (1):33–8. doi: 10.1007/s13205-014-0196-y.
  • Wang, Z., X. Xie, J. Zhao, X. Liu, W. Feng, J. C. White, and B. Xing. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology 46 (8):4434–41. doi: 10.1021/es204212z.
  • White, J. C., and J. Gardea-Torresdey. 2018. Achieving food security through the very small. Nature Nanotechnology 13 (8):627–9. doi: 10.1038/s41565-018-0223-y.
  • Widiyandari, H., O. A. Putra, A. Purwanto, and Z. Abidin. 2021. Synthesis of PVDF/SiO2 nanofiber membrane using electrospinning method as a Li-ion battery separator. Materials Today: Proceedings 44:3245–8. doi: 10.1016/j.matpr.2020.11.448.
  • Wirunchit, S., P. Gansa, and W. Koetniyom. 2021. Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Materials Today: Proceedings 47:3554–9. doi: 10.1016/j.matpr.2021.03.559.
  • Wu, Q., W. Wongwiriyapan, J.-H. Park, S. Park, S. J. Jung, T. Jeong, S. Lee, Y. H. Lee, and Y. J. Song. 2016. In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures. Current Applied Physics 16 (9):1175–91. doi: 10.1016/j.cap.2016.04.024.
  • Wu, Z.-S., W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.-M. Cheng. 2009. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3 (2):411–7. doi: 10.1021/nn900020u.
  • Xia, X., J. Chen, J. Shen, D. Huang, P. Duan, and G. Zou. 2018. Synthesis of hollow structural hydroxyapatite with different morphologies using calcium carbonate as hard template. Advanced Powder Technology 29 (7):1562–70. doi: 10.1016/j.apt.2018.03.021.
  • Xing, Y., Z. Xia, and J. Rao. 2009. Semiconductor quantum dots for biosensing and in vivo imaging. IEEE Transactions on Nanobioscience 8 (1):4–12. doi: 10.1109/TNB.2009.2017321.
  • Xu, C., Y. Lin, J. Wang, L. Wu, W. Wei, J. Ren, and X. Qu. 2013. Nanoceria‐triggered synergetic drug release based on CeO2‐capped mesoporous silica host–guest interactions and switchable enzymatic activity and cellular effects of CeO2. Advanced Healthcare Materials 2 (12):1591–9. doi: 10.1002/adhm.201200464.
  • Xu, J., M. Wang, Y. Liu, J. Li, and H. Cui. 2019. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Advanced Powder Technology 30 (4):861–8. doi: 10.1016/j.apt.2019.01.016.
  • Yadav, T. P., R. M. Yadav, and D. P. Singh. 2012. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Journal of Nanoscience and Nanotechnology 2:22–48.
  • Yamauchi, Y., and K. Kuroda. 2008. Rational design of mesoporous metals and related nanomaterials by a soft‐template approach. Chemistry, an Asian Journal 3 (4):664–76. doi: 10.1002/asia.200700350.
  • Yang, T. T., S. Y. Ma, P. F. Cao, X. L. Xu, L. Wang, S. T. Pei, T. Han, X. H. Xu, P. D. Yun, and H. Sheng. 2021. Synthesis and characterization of ErFeO3 nanoparticles by a hydrothermal method for isopropanol sensing properties. Vacuum 185:110005. doi: 10.1016/j.vacuum.2020.110005.
  • Yehia, S.-A., L. G. Carpen, F. Stokker-Cheregi, C. Poroșnicu, V. Sătulu, C. Staicu, B. Butoi, I. Lungu, F. Virot, C. Grisolia, et al. 2022. Laser ablation of a solid target in liquid medium for beryllium nanoparticles synthesis. Nuclear Materials and Energy 31:101160. doi: 10.1016/j.nme.2022.101160.
  • Zhang, D., K. Ye, Y. Yao, F. Liang, T. Qu, W. Ma, B. Yang, Y. Dai, and T. Watanabe. 2019. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142:278–84. doi: 10.1016/j.carbon.2018.10.062.
  • Zhang, J., M. Chaker, and D. Ma. 2017. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. Journal of Colloid and Interface Science 489:138–49. doi: 10.1016/j.jcis.2016.07.050.
  • Zhong, X., J. Jin, S. Li, Z. Niu, W. Hu, R. Li, and J. Ma. 2010. Aryne cycloaddition: Highly efficient chemical modification of graphene. Chemical Communications 46 (39):7340–2. doi: 10.1039/c0cc02389b.
  • Zou, Y., C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, L. Chen, Z. Chen, and W. Zhu. 2021. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy & Environment 6 (2):169–75. doi: 10.1016/j.gee.2020.10.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.