3,820
Views
5
CrossRef citations to date
0
Altmetric
Systematic Review

Bioaccessibility and bioavailability of biofortified food and food products: Current evidence

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Abiodun, O. A., B. Ayano, and A. A. Amanyunose. 2020. Effect of fermentation periods and storage on the chemical and physicochemical properties of biofortified cassava gari. Journal of Food Processing and Preservation 44 (12):e14958. doi: 10.1111/jfpp.14958.
  • Andre, C. M., D. Evers, J. Ziebel, C. Guignard, J. F. Hausman, M. Bonierbale, T. Z. Felde, and G. Burgos. 2015. In vitro bioaccessibility and bioavailability of iron from potatoes with varying vitamin C, carotenoid, and phenolic concentrations. Journal of Agricultural and Food Chemistry 63 (41):9012–21. doi: 10.1021/acs.jafc.5b02904.
  • Aragon, I. J., H. Ceballos, D. Dufour, and M. G. Ferruzzi. 2018. Pro-vitamin A carotenoids stability and bioaccessibility from elite selection of biofortified cassava roots (Manihot esculenta, Crantz) processed to traditional flours and porridges. Food & Function 9 (9):4822–35.
  • Bailey, R. L., K. P. West, Jr., and R. E. Black. 2015. The epidemiology of global micronutrient deficiencies. Annals of Nutrition & Metabolism 66 Suppl 2:22–33. doi: 10.1159/000371618. https://www.ncbi.nlm.nih.gov/pubmed/26045325.
  • Bechoff, A., and C. Dhuique-Mayer. 2017. Factors influencing micronutrient bioavailability in biofortified crops. Annals of the New York Academy of Sciences 1390 (1):74–87. doi: 10.1111/nyas.13301.
  • Bechoff, A., M. Poulaert, K. I. Tomlins, A. Westby, G. Menya, S. Young, and C. Dhuique-Mayer. 2011. Retention and bioaccessibility of beta-carotene in blended foods containing orange-fleshed sweet potato flour. Journal of Agricultural and Food Chemistry 59 (18):10373–80. doi: 10.1021/jf201205y. https://www.ncbi.nlm.nih.gov/pubmed/21819122.
  • Bengtsson, A., M. L. Alminger, and U. Svanberg. 2009. In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato. Journal of Agricultural and Food Chemistry 57 (20):9693–8. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND44281142&site=ehost-live&scope=site. doi: 10.1021/jf901692r.
  • Berni, P., C. Chitchumroonchokchai, S. G. Canniatti-Brazaca, F. F. De Moura, and M. L. Failla. 2014. Impact of genotype and cooking style on the content, retention, and bioacessibility of β-carotene in biofortified cassava (Manihot esculenta Crantz) conventionally bred in Brazil. Journal of Agricultural and Food Chemistry 62 (28):6677–86. doi: 10.1021/jf5018302.
  • Bhutta, Z. A. 1998. Prevention of micronutrient deficiencies: Tools for policy makers and public health workers. BMJ 317 (7170):1460. doi: 10.1136/bmj.317.7170.1460. https://www.ncbi.nlm.nih.gov/pubmed/9822421.
  • Brigide, P., N. M. V. de Toledo, R. López-Nicolás, G. Ros, C. Frontela Saseta, and R. V. de Carvalho. 2019. Fe and Zn in vitro bioavailability in relation to antinutritional factors in biofortified beans subjected to different processes. Food & Function 10 (8):4802–10. doi: 10.1039/c9fo00199a. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606579296&site=ehost-live&scope=site.
  • Cercamondi, C. I., I. M. Egli, E. Mitchikpe, F. Tossou, C. Zeder, J. D. Hounhouigan, and R. F. Hurrell. 2013. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. The Journal of Nutrition 143 (9):1376–82. 10.3945/jn.113.176826.
  • Charis, G. 2017. What is the difference between bioavailability bioaccessibility and bioactivity of food components? | SciTech Connect. Elsevier. April 27, 2017. https://scitechconnect.elsevier.com/bioavailability-bioaccessibility-bioactivity-food-components/.
  • Chomba, E., C. M. Westcott, J. E. Westcott, E. M. Mpabalwani, N. F. Krebs, Z. W. Patinkin, N. Palacios, and K. M. Hambidge. 2015. Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. The Journal of Nutrition 145 (3):514–9. 10.3945/jn.114.204933.
  • Coelho, R. C., R. C. F. Barsotti, H. F. Maltez, C. A. Lopes Junior, H. de, and S. Barbosa. 2021. Expanding information on the bioaccessibility and bioavailability of iron and zinc in biofortified cowpea seeds. Food Chemistry 347:129027. doi: 10.1016/j.foodchem.2021.129027.
  • Dhuique-Mayer, C., A. Servent, C. Messan, N. Achir, M. Dornier, and Y. Mendoza. 2018. Bioaccessibility of biofortified sweet potato carotenoids in baby food: Impact of manufacturing process. Frontiers in Nutrition 5:98. doi: 10.3389/fnut.2018.00098.
  • Dube, N., D. K. Bharatraj, F. Hossain, L. Thingnganing, P. C. Mashurabad, and R. Pullakhandam. 2018. β-Carotene bioaccessibility from biofortified maize (Zea mays) is related to its density and is negatively influenced by lutein and zeaxanthin. Food & Function 9 (1):379–88. doi: 10.1039/c7fo01034f. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606177301&site=ehost-live&scope=site.
  • Failla, M. L., S. K. Thakkar, and J. Y. Kim. 2009. In vitro bioaccessibility of beta-carotene in orange fleshed sweet potato (Ipomoea batatas, Lam.). Journal of Agricultural and Food Chemistry 57 (22):10922–7. doi: 10.1021/jf900415g. https://www.ncbi.nlm.nih.gov/pubmed/19919124.
  • Gomes, S., A. G. Torres, J. Carvalho, M. Nutti, R. Godoy, and S. Pacheco. 2013. Effects of boiling and frying on the bioaccessibility of β-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari). Food and Nutrition Bulletin 34 (1):65–74. doi: 10.1177/156482651303400108. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606219015&site=ehost-live&scope=site.
  • HarvestPlus. 2021. HarvestPlus biofortified crops map and table updated with 2020 data. [News brief]. HarvestPlus. Last Modified 09 April 2021. Accessed November 24, 2021. https://www.harvestplus.org/knowledge-market/in-the-news/harvestplus-biofortified-crops-map-and-table-updated-2020-data.
  • Haskell, M. J., K. M. Jamil, F. Hassan, J. M. Peerson, M. I. Hossain, G. J. Fuchs, and K. H. Brown. 2004. Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total-body vitamin A stores in Bangladeshi men. The American Journal of Clinical Nutrition 80 (3):705–14. doi: 10.1093/ajcn/80.3.705. https://www.ncbi.nlm.nih.gov/pubmed/15321812.
  • Hotz, C., and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition 137 (4):1097–100. https://www.ncbi.nlm.nih.gov/pubmed/17374686. doi: 10.1093/jn/137.4.1097.
  • Hotz, C., and B. McClafferty. 2007. From harvest to health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food and Nutrition Bulletin 28 (2 Suppl):S271–S9. doi: 10.1177/15648265070282S206. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606218668&site=ehost-live&scope=site.
  • Huey, S. L., J. T. Krisher, V. Friesen, M. Mbuya, E. Monterrosa, and S. Mehta. 2021. Review of efficacy, effectiveness, and impact of biofortified foods and food products. PROSPERO CRD42021254461 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254461.
  • Islam, M. M., L. R. Woodhouse, M. B. Hossain, T. Ahmed, M. N. Huda, T. Ahmed, J. M. Peerson, C. Hotz, and K. H. Brown. 2013. Total zinc absorption from a diet containing either conventional rice or higher-zinc rice does not differ among Bangladeshi preschool children. The Journal of Nutrition 143 (4):519–25. doi: 10.3945/jn.112.169169. https://www.ncbi.nlm.nih.gov/pubmed/23427330.
  • Jongstra, R., M. N. Mwangi, G. Burgos, C. Zeder, J. W. Low, G. Mzembe, R. Liria, M. Penny, M. I. Andrade, S. Fairweather-Tait, et al. 2020. Iron absorption from iron-biofortified sweetpotato is higher than regular sweetpotato in Malawian women while iron absorption from regular and iron-biofortified potatoes is high in Peruvian women. The Journal of Nutrition 150 (12):3094–102. doi: 10.1093/jn/nxaa267.
  • Junqueira-Franco, M. V. M., J. E. Dutra de Oliveira, M. R. Nutti, H. S. Pereira, J. L. V. d Carvalho, S. A. Abrams, C. F. C. Brandão, and J. S. Marchini. 2018. Iron absorption from beans with different contents of iron, evaluated by stable isotopes. Clinical Nutrition ESPEN 25:121–5. doi: 10.1016/j.clnesp.2018.03.120. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606348843&site=ehost-live&scope=site.
  • Kodkany, B. S., R. M. Bellad, N. S. Mahantshetti, J. E. Westcott, N. F. Krebs, J. F. Kemp, and K. M. Hambidge. 2013a. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. The Journal of Nutrition 143 (9):1489–93. doi: 10.3945/jn.113.176677.
  • Kodkany, B. S., R. M. Bellad, N. S. Mahantshetti, J. E. Westcott, N. F. Krebs, J. F. Kemp, and K. M. Hambidge. 2013b. Erratum. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above ­physiologic requirements in young children. Journal of Nutrition 143 (12):2055. doi: 10.3945/jn.113.185629.
  • Krebs, N. F., K. M. Hambidge, J. E. Westcott, L. V. Miller, L. Sian, M. Bell, and G. Grunwald. 2003. Exchangeable zinc pool size in infants is related to key variables of zinc homeostasis. The Journal of Nutrition 133 (5 Suppl 1):1498S–501S. doi: 10.1093/jn/133.5.1498S. https://www.ncbi.nlm.nih.gov/pubmed/12730452.
  • La Frano, M. R., F. F. de Moura, E. Boy, B. Lönnerdal, and B. J. Burri. 2014. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutrition Reviews 72 (5):289–307. doi: 10.1111/nure.12108.
  • La Frano, M. R., L. R. Woodhouse, D. J. Burnett, and B. J. Burri. 2013. Biofortified cassava increases β-carotene and vitamin A concentrations in the TAG-rich plasma layer of American women. The British Journal of Nutrition 110 (2):310–20. doi: 10.1017/s0007114512005004.
  • Li, S., A. Nugroho, T. Rocheford, and W. S. White. 2010. Vitamin A equivalence of the ß-carotene in ß-carotene-biofortified maize porridge consumed by women. The American Journal of Clinical Nutrition 92 (5):1105–12. doi: 10.3945/ajcn.2010.29802.
  • Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372:n71. doi: 10.1136/bmj.n71. https://www.ncbi.nlm.nih.gov/pubmed/33782057.
  • Petry, N., I. Egli, J. B. Gahutu, P. L. Tugirimana, E. Boy, and R. Hurrell. 2012. Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. The Journal of Nutrition 142 (3):492–7. doi: 10.3945/jn.111.149286.
  • Petry, N., I. Egli, J. B. Gahutu, P. L. Tugirimana, E. Boy, and R. Hurrell. 2014. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. The Journal of Nutrition 144 (11):1681–7. doi: 10.3945/jn.114.192989.
  • Petry, N., I. Egli, C. Zeder, T. Walczyk, and R. Hurrell. 2010. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of Nutrition 140 (11):1977–82. doi: 10.3945/jn.110.125369. https://www.ncbi.nlm.nih.gov/pubmed/20861210.
  • Petry, N., F. Rohner, J. B. Gahutu, B. Campion, E. Boy, P. L. Tugirimana, M. B. Zimmerman, C. Zwahlen, J. P. Wirth, and D. Moretti. 2016. In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. The Journal of Nutrition 146 (5):970–5. doi: 10.3945/jn.115.223693.
  • Ribeiro, E. M. G., C. Chitchumroonchokchai, L. M. J. d Carvalho, F. F. de Moura, J. L. V. d Carvalho, and M. L. Failla. 2015. Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International 77 (Part 3):620–6. doi: 10.1016/j.foodres.2015.08.038.
  • Rosado, J. L., K. M. Hambidge, L. V. Miller, O. P. Garcia, J. Westcott, K. Gonzalez, J. Conde, C. Hotz, W. Pfeiffer, I. Ortiz-Monasterio, et al. 2009. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. The Journal of Nutrition 139 (10):1920–5. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND44261231&site=ehost-live&scope=site. doi: 10.3945/jn.109.107755.
  • Sant’Ana, C. T., P. T. Antunes, T. C. D. Reis, M. D. G. Váz-Tostes, E. F. Meira, and N. M. B. Costa. 2019. Bioaccessibility and bioavailability of iron in biofortified germinated cowpea. Journal of the Science of Food and Agriculture 99 (14):6287–95. doi: 10.1002/jsfa.9902.
  • Schmaelzle, S., B. Gannon, S. Crawford, S. A. Arscott, S. Goltz, N. Palacios-Rojas, K. V. Pixley, P. W. Simon, and S. A. Tanumihardjo. 2014. Maize genotype and food matrix affect the provitamin A carotenoid bioefficacy from staple and carrot-fortified feeds in Mongolian gerbils (Meriones unguiculatus). Journal of Agricultural and Food Chemistry 62 (1):136–43. doi: 10.1021/jf403548w.
  • Tanumihardjo, S. A., B. M. Gannon, C. Kaliwile, J. Chileshe, and N. C. Binkley. 2019. Restricting vitamin A intake increases bone formation in Zambian children with high liver stores of vitamin. Archives of Osteoporosis 14 (1):72. doi: 10.1007/s11657-019-0617-y.
  • Thakkar, S. K., and M. L. Failla. 2008. Bioaccessibility of pro-vitamin A carotenoids is minimally affected by non pro-vitamin a xanthophylls in maize (Zea mays sp.). Journal of Agricultural and Food Chemistry 56 (23):11441–6. doi: 10.1021/jf802430u. https://www.ncbi.nlm.nih.gov/pubmed/18991453.
  • Thakkar, S. K., B. Maziya-Dixon, A. G. Dixon, and M. L. Failla. 2007. Beta-carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to beta-carotene content in different genotypes of cassava. The Journal of Nutrition 137 (10):2229–33. doi: 10.1093/jn/137.10.2229.
  • Thakkar, S. K., T. Huo, B. Maziya-Dixon, and M. L. Failla. 2009. Impact of style of processing on retention and bioaccessibility of β-carotene in cassava (Manihot esculanta, Crantz). Journal of Agricultural and Food Chemistry 57 (4):1344–8. doi: 10.1021/jf803053d. 10.1021/jf803053d.
  • Titcomb, T. J., C. R. Davis, B. M. Gannon, N. Palacios-Rojas, J. Sheftel, M. Sowa, and S. A. Tanumihardjo. 2018. β-Cryptoxanthin and zeaxanthin are highly bioavailable from whole-grain and refined biofortified orange maize in humans with optimal vitamin A status: A randomized, crossover, placebo-controlled trial. The American Journal of Clinical Nutrition 108 (4):793–802. doi: 10.1093/ajcn/nqy134. http://search.ebscohost.com/login.aspx?direct=true&db=agr&AN=IND606725501&site=ehost-live&scope=site.
  • van Jaarsveld, P. J., M. Faber, S. A. Tanumihardjo, P. Nestel, C. J. Lombard, and A. J. Benade. 2005. Beta-carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. The American Journal of Clinical Nutrition 81 (5):1080–7. doi: 10.1093/ajcn/81.5.1080. https://www.ncbi.nlm.nih.gov/pubmed/15883432.
  • Vaz-Tostes, M., T. A. Verediano, E. G. de Mejia, and N. M. Brunoro Costa. 2016. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. Journal of the Science of Food and Agriculture 96 (4):1326–32. doi: 10.1002/jsfa.7226.
  • Zhu, C., Y. Cai, E. R. Gertz, M. R. La Frano, D. J. Burnett, and B. J. Burri. 2015. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women. Nutrition Research 35 (11):965–74. doi: 10.1016/j.nutres.2015.08.003.