388
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores

, , , ORCID Icon &

References

  • Abhyankar, W., R. Pandey, A. Ter Beek, S. Brul, L. J. de Koning, and C. G. de Koster. 2015. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiology 45 (Pt A):54–62. doi: 10.1016/j.fm.2014.03.007.
  • Abid, M., S. Jabbar, T. Wu, M. M. Hashim, B. Hu, S. Lei, X. Zhang, and X. Zeng. 2013. Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry 20 (5):1182–7. doi: 10.1016/j.ultsonch.2013.02.010.
  • Alberice, J. V., M. E. Funes-Huacca, S. B. Guterres, and E. Carrilho. 2012. Inactivation of Alicyclobacillus acidoterrestris in orange juice by saponin extracts combined with heat-treatment. International Journal of Food Microbiology 159 (2):130–5. doi: 10.1016/j.ijfoodmicro.2012.08.004.
  • Alenyorege, E. A., H. Ma, J. H. Aheto, A. A. Agyekum, and C. Zhou. 2020. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. LWT 117 (May 2019):108666. doi: 10.1016/j.lwt.2019.108666.
  • Alzahrani, O. M., and A. Moir. 2014. Spore germination and germinant receptor genes in wild strains of Bacillus subtilis. Journal of Applied Microbiology 117 (3):741–9. doi: 10.1111/jam.12566.
  • Anaya-Esparza, L. M., R. M. Velázquez-Estrada, A. X. Roig, H. S. García-Galindo, S. G. Sayago-Ayerdi, and E. Montalvo-González. 2017a. Thermosonication: An alternative processing for fruit and vegetable juices. Trends in Food Science & Technology 61:26–37. doi: 10.1016/j.tifs.2016.11.020.
  • Anaya-Esparza, L. M., R. M. Velázquez-Estrada, S. G. Sayago-Ayerdi, J. A. Sánchez-Burgos, M. V. Ramírez-Mares, M. d. L. García-Magaña, and E. Montalvo-González. 2017b. Effect of thermosonication on polyphenol oxidase inactivation and quality parameters of soursop nectar. LWT 75:545–51. doi: 10.1016/j.lwt.2016.10.002.
  • Anda, D. R., De Ventura-Lara, M. G. Rodríguez-Hernández, G., and Ozuna, C. 2019. The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend. Journal of Food Measurement and Characterization 13 (4):3140–8. doi: 10.1007/s11694-019-00236-y.
  • Aronson, A. 2018. Regulation of expression of a select group of Bacillus anthracis spore coat proteins. FEMS Microbiology Letters 365 (8): fny063. doi: 10.1093/femsle/fny063.
  • Bahçeci, K. S., and J. Acar. 2007. Determination of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by using HPLC and spectrophotometric methods, and mathematical modeling of guaiacol production. European Food Research and Technology 225 (5–6):873–8. doi: 10.1007/s00217-006-0495-6.
  • Bahçeci, K. S., V. Gökmen, A. Serpen, and J. Acar. 2003. The effects of different technologies on Alicyclobacillus acidoterrestris during apple juice production. European Food Research and Technology 217 (3):249–52. doi: 10.1007/s00217-003-0750-z.
  • Bansal, V., P. Prasad, D. Mehta, and M. W. Siddiqui. 2018. Ultrasound techniques in postharvest disinfection of fruits and vegetables. In Postharvest disinfection of fruits and vegetables. doi: 10.1016/b978-0-12-812698-1.00008-x.
  • Barati, A. H., M. Mokhtari-Dizaji, H. Mozdarani, Z. Bathaie, and Z. M. Hassan. 2007. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound. Ultrasonics Sonochemistry 14 (6):783–9. doi: 10.1016/j.ultsonch.2006.12.016.
  • Barbosa, A. A. T., H. C. Mantovani, and S. Jain. 2017. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Critical Reviews in Biotechnology 37 (7):852–64. doi: 10.1080/07388551.2016.1262323.
  • Beck, S. M., H. Sabarez, V. Gaukel, and K. Knoerzer. 2014. Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrasonics Sonochemistry 21 (6):2144–50. doi: 10.1016/j.ultsonch.2014.02.013.
  • Belin, B. J., N. Busset, E. Giraud, A. Molinaro, A. Silipo, and D. K. Newman. 2018. Hopanoid lipids: From membranes to plant–bacteria interactions. Nature Reviews. Microbiology 16 (5):304–15.
  • Bermudez-Aguirre, D. 2017. Ultrasound: Advances in food processing and preservation. Academic Press. Elsevier Inc.
  • Bermúdez-Aguirre, D., T. Mobbs, and G. V. Barbosa-Cánovas. 2011. Ultrasound applications in food processing. In Ultrasound technologies for food and bioprocessing, 65–105. New York: Springer. doi: 10.1007/978-1-4419-7472-3_3.
  • Bevilacqua, A., E. Ciuffreda, M. Sinigaglia, and M. R. Corbo. 2014. Effects of lysozyme on Alicyclobacillus acidoterrestris under laboratory conditions. International Journal of Food Science & Technology 49 (1):224–9. doi: 10.1111/ijfs.12302.
  • Bevilacqua, A., E. Ciuffreda, M. Sinigaglia, and M. R. Corbo. 2015. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under different stress conditions. Food Microbiology 46:299–306. doi: 10.1016/j.fm.2014.08.017.
  • Bevilacqua, A., L. Petruzzi, M. Perricone, B. Speranza, D. Campaniello, M. Sinigaglia, and M. R. Corbo. 2018. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety 17 (1):2–62. doi: 10.1111/1541-4337.12299.
  • Bevilacqua, A., L. Petruzzi, B. Speranza, D. Campaniello, E. Ciuffreda, C. Altieri, M. Sinigaglia, and M. R. Corbo. 2021. Viability, sublethal injury, and release of cellular components from alicyclobacillus acidoterrestris spores and cells after the application of physical treatments, natural extracts, or their components. Frontiers in Nutrition 8 (August):700500. doi: 10.3389/fnut.2021.700500.
  • Bhattacharjee, C., V. K. Saxena, and S. Dutta. 2019. Novel thermal and non-thermal processing of watermelon juice. Trends in Food Science & Technology 93:234–43. doi: 10.1016/j.tifs.2019.09.015.
  • Blume, A., R. Dreher, and K. Poralla. 1978. The influence of branched-chain and ω-alicyclic fatty acids on the transition temperature of bacillus subtilis lipids. Biochimica et Biophysica Acta (BBA) - Biomembranes 512 (3):489–94. doi: 10.1016/0005-2736(78)90159-1.
  • Boda, S. K., K. Ravikumar, D. K. Saini, and B. Basu. 2015. Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. Bioelectrochemistry (Amsterdam, Netherlands) 106 (Pt B):276–89. doi: 10.1016/j.bioelechem.2015.07.009.
  • Camilleri, E., G. Korza, J. Green, J. Yuan, L. Yongqing, M. J. Caimano, and P. Setlow. 2019. Properties of aged spores of Bacillus subtilis. Journal of Bacteriology 201 (14):e00231–19. doi: 10.1128/JB.00231-19.
  • Capote, F. P., and M. D. L. De Castro. 2007. Introduction: Fundamentals of ultrasound and basis of its analytical uses. In Analytical applications of ultrasound, 1–33. Elsevier Science.
  • Cerny, G., W. Hennlich, and K. Poralla. 1984. Spoilage of fruit juice by bacilli: Isolation and characterization of the spoiling microorganisms. Zeitschrift Fur Lebensmittel-Untersuchung und -Forschung 179 (3):224–7. doi: 10.1007/bf01041898.
  • Chang, S., and Kang, D. H. 2004. Alicyclobacillus spp. in the fruit juice industry: History, characteristics, and current isolation/detection procedures. Critical Reviews in Microbiology 30 (2):55–74. doi: 10.1080/10408410490435089.
  • Chapman, J. S., R. Ferguson, C. Consalo, and T. Bliss. 2013. Bacteriostatic effect of sequential hydrodynamic and ultrasound-induced stress. Journal of Applied Microbiology 114 (4):947–55. doi: 10.1111/jam.12146.
  • Charoux, C. M. G., E. S. Inguglia, C. P. O’Donnell, and B. K. Tiwari. 2019. Ultrasonic waves: Inactivation of foodborne microorganisms using power ultrasound. Reference Module in Food Science: 1–7. doi: 10.1016/B978-0-08-100596-5.22930-2.
  • Charoux, M. G., K. Shikha, C. P. O. Donnell, A. Cardoni, and B. K. Tiwari. 2017. Applications of airborne ultrasonic technology in the food industry. Journal of Food Engineering 208:28–36. doi: 10.1016/j.jfoodeng.2017.03.030.
  • Chemat, F., N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Chirakkal, H., M. O’Rourke, A. Atrih, S. J. Foster, and A. Moir. 2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology (Reading, England) 148 (Pt 8):2383–92. doi: 10.1099/00221287-148-8-2383.
  • Chizoba Ekezie F. G., J. H. Cheng, and D. W. Sun. 2018. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science and Technology 74:12–25. doi: 10.1016/j.tifs.2018.01.007.
  • Christie, G., and P. Setlow. 2020. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cellular Signalling 74 (July):109729. doi: 10.1016/j.cellsig.2020.109729.
  • Ciuffreda, E., A. Bevilacqua, M. Sinigaglia, and M. Corbo. 2015. Alicyclobacillus spp.: New insights on ecology and preserving food quality through new approaches. Microorganisms 3 (4):625–40. doi: 10.3390/microorganisms3040625.
  • Clodoveo, M. L., T. Dipalmo, C. G. Rizzello, F. Corbo, and P. Crupi. 2016. Emerging technology to develop novel red winemaking practices: An overview. Innovative Food Science & Emerging Technologies 38:41–56. doi: 10.1016/j.ifset.2016.08.020.
  • Da Costa, M. S., F. A. Rainey, and L. Albuquerque. 2015. Alicyclobacillus genus. In Bergey’s manual of systematics of archaea and bacteria. Bergey’s Manual Trust. doi: 10.1002/9781118960608.gbm00526.
  • Dąbrowska, J., and A. Kunicka-Styczyńska. 2019. Alicyclobacillus–bacteria still not understood. Postępy Mikrobiologii-Advancements of Microbiology 57 (2):117–24. doi: 10.21307/PM-2018.57.2.117
  • de Rosa, M., A. Gambacorta, L. Minale, and J. D. Bu’Lock. 1971. Cyclohexane fatty acids from a thermophilic bacterium. Journal of the Chemical Society D: Chemical Communications (21):1334a. doi: 10.1039/c2971001334a.
  • De Souza Sant’Ana, A., V. O. Alvarenga, J. M. Oteiza, and W. E. L. Peña. 2014. Alicyclobacillus. In Encyclopedia of food microbiology, ed. C. A. Batt and E. Tortorello, 2nd ed., 42–53. Academic press. doi: 10.1016/B978-0-12-384730-0.00380-3.
  • Deinhard, G., P. Blanz, K. Poralla, and E. Altan. 1987. Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Systematic and Applied Microbiology 10 (1):47–53. doi: 10.1016/S0723-2020(87)80009-7.
  • Dolatowski, Z. J., J. Stadnik, and D. Stasiak. 2007. Applications of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria 6:89–99.
  • Dzah, C. S., Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, and H. Ma. 2020. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience 35 (February):100547. doi: 10.1016/j.fbio.2020.100547.
  • Eiroa, M. N. U., V. C. A. Junqueira, and F. L. Schmidt. 1999. Alicyclobacillus in orange juice: Occurrence and heat resistance of spores. Journal of Food Protection 62 (8):883–6.
  • Evelyn and F. V. Silva. 2016. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 62:365–72. doi: 10.1016/j.foodcont.2015.11.007.
  • Evelyn and F. V. Silva. 2018. Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone. Journal of Food Engineering 222:292–7. doi: 10.1016/j.jfoodeng.2017.11.037.
  • Evelyn and F. V. Silva. 2020. Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends in Food Science & Technology 105:402–15. doi: 10.1016/j.tifs.2020.09.020.
  • Fan, L., F. Hou, A. I. Muhammad, L. V. Ruiling, R. B. Watharkar, M. Guo, T. Ding, and D. Liu. 2019. Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores. Food Research International (Ottawa, ON) 116:1094–102. doi: 10.1016/j.foodres.2018.09.052.
  • Fan, L., B. B. Ismail, F. Hou, A. I. Muhammad, M. Zou, T. Ding, and D. Liu. 2019. Thermosonication damages the inner membrane of Bacillus subtilis spores and impels their inactivation. Food Research International (Ottawa, ON) 125 (June):108514. doi: 10.1016/j.foodres.2019.108514.
  • Félix-Valenzuela, L., I. Guardiola-Avila, A. Burgara-Estrella, M. Ibarra-Zavala, and V. Mata-Haro. 2015. Genotypic and phenotypic diversity of Alicyclobacillus acidocaldarius isolates. Letters in Applied Microbiology 61 (4):367–73. doi: 10.1111/lam.12464.
  • Feng, X., C. He, L. Jiao, X. Liang, R. Zhao, and Y. Guo. 2019. Analysis of differential expression proteins reveals the key pathway in response to heat stress in Alicyclobacillus acidoterrestris DSM 3922 T. Food Microbiology 80 (January):77–84. doi: 10.1016/j.fm.2019.01.003.
  • Ferrario, M., and S. Guerrero. 2016. Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innovative Food Science & Emerging Technologies 34:214–24. doi: 10.1016/j.ifset.2016.02.002.
  • Ferrario, M., S. Maris, and S. Guerrero. 2015. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology 46:635–42. doi: 10.1016/j.fm.2014.06.017.
  • Francis, M. B., C. A. Allen, and J. A. Sorg. 2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. Journal of Bacteriology 197 (14):2276–83. doi: 10.1128/JB.02575-14.
  • Gabriel, A. A. 2014. Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice. Food Control. 46:189–96. doi: 10.1016/j.foodcont.2014.05.012.
  • Ghasemi-Varnamkhasti, M., C. Apetrei, J. Lozano, and A. Anyogu. 2018. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science & Technology 80 (August 2017):71–92. doi: 10.1016/j.tifs.2018.07.018.
  • Ghosh, S., A. Ramirez-Peralta, E. Gaidamakova, P. Zhang, Y. Q. Li, M. J. Daly, and P. Setlow. 2011. Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. Journal of Applied Microbiology 111 (3):663–70. doi: 10.1111/j.1365-2672.2011.05095.x.
  • Ghosh, S., and P. Setlow. 2010. The preparation, germination properties and stability of superdormant spores of Bacillus cereus. Journal of Applied Microbiology 108 (2):582–90. doi: 10.1111/j.1365-2672.2009.04442.x.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry: PPB 48 (12):909–30. doi: 10.1016/j.plaphy.2010.08.016.
  • Gocmen, D., A. Elston, T. Williams, M. Parish, and R. L. Rouseff. 2005. Identification of medicinal off-flavours generated by Alicyclobacillus species in orange juice using GC-olfactometry and GC-MS. Letters in Applied Microbiology 40 (3):172–7. doi: 10.1111/j.1472-765X.2004.01636.x.
  • Gogate, P. R., and A. L. Prajapat. 2015. Depolymerization using sonochemical reactors: A critical review. Ultrasonics Sonochemistry 27:480–94. doi: 10.1016/j.ultsonch.2015.06.019.
  • Goto, K., H. Matsubara, K. Mochida, T. Matsumura, Y. Hara, M. Niwa, and K. Yamasato. 2002. Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea. International Journal of Systematic and Evolutionary Microbiology 52 (Pt 1):109–13.
  • Goto, K., A. Nishibori, Y. Wasada, K. Furuhata, M. Fukuyama, and M. Hara. 2008. Identification of thermo-acidophilic bacteria isolated from the soil of several Japanese fruit orchards. Letters in Applied Microbiology 46 (3):289–94. doi: 10.1111/j.1472-765X.2007.02307.x.
  • Haines, T. H. 1971. The chemistry of the sulfolipids. Progress in the Chemistry of Fats and Other Lipids 11:297–345. doi: 10.1016/0079-6832(71)90008-5.
  • Halpin, R. M., L. Duffy, O. Cregenzán-Alberti, J. G. Lyng, and F. Noci. 2014. The effect of non-thermal processing technologies on microbial inactivation: An investigation into sub-lethal injury of Escherichia coli and Pseudomonas fluorescens. Food Control 41:106–15. doi: 10.1016/j.foodcont.2014.01.011.
  • Hardy, M., J. Zielonka, H. Karoui, A. Sikora, R. Michalski, R. Podsiadły, M. Lopez, J. Vasquez-Vivar, B. Kalyanaraman, and O. Ouari. 2018. Detection and characterization of reactive oxygen and nitrogen species in biological systems by monitoring species-specific products. Antioxidants & Redox Signaling 28 (15):1416–32. doi: 10.1089/ars.2017.7398.
  • Hawkes, J. J., S. Maramizonouz, C. Jia, M. Rahmati, T. Zheng, M. B. McDonnell, and Y.-Q. Fu. 2022. Node formation mechanisms in acoustofluidic capillary bridges. Ultrasonics 121:106690. doi: 10.1016/j.ultras.2022.106690.
  • Henriques, A. O., B. W. Beall, K. Roland, and C. P. Moran. 1995. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. Journal of Bacteriology 177 (12):3394–406. doi: 10.1128/jb.177.12.3394-3406.1995.
  • Heredia, N., P. Ybarra, C. Hernández, and S. García. 2009. Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures. Letters in Applied Microbiology 48 (1):133–9. doi: 10.1111/j.1472-765X.2008.02504.x.
  • Hertwig, C., K. Reineke, C. Rauh, and O. Schlüter. 2017. Factors involved in Bacillus spore’s resistance to cold atmospheric pressure plasma. Innovative Food Science & Emerging Technologies 43:173–81. doi: 10.1016/j.ifset.2017.07.031.
  • Hoch, F. L. 1992. Cardiolipins and biomembrane function. Biochimica et Biophysica Acta 1113 (1):71–133. doi: 10.1016/0304-4157(92)90035-9.
  • Hsu, F. F., and J. Turk. 2006. Characterization of cardiolipin from Escherichia coli by electrospray ionization with multiple stage quadrupole ion-trap mass spectrometric analysis of [M - 2H + Na]- ions. Journal of the American Society for Mass Spectrometry 17 (3):420–9. doi: 10.1016/j.jasms.2005.11.019.
  • Huang, K., S. Wrenn, R. Tikekar, and N. Nitin. 2018. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. Journal of Food Engineering 224:95–104. doi: 10.1016/j.jfoodeng.2017.11.043.
  • Jabbar, S., M. Abid, B. Hu, M. M. Hashim, S. Lei, T. Wu, and X. Zeng. 2015. Exploring the potential of thermosonication in carrot juice processing. Journal of Food Science and Technology 52 (11):7002–13. doi: 10.1007/s13197-015-1847-7.
  • Jambrak, A. R., M. Šimunek, S. Evačić, K. Markov, G. Smoljanić, and J. Frece. 2018. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 83:3–17. doi: 10.1016/j.ultras.2017.02.011.
  • Jambrak, A. R., M. Šimunek, M. Petrović, H. Bedić, Z. Herceg, and H. Juretić. 2017. Aromatic profile and sensory characterisation of ultrasound treated cranberry juice and nectar. Ultrasonics Sonochemistry 38:783–93. doi: 10.1016/j.ultsonch.2016.11.027.
  • Jay, J. M., M. J. Loessner, & D. A. Golden, eds. 2005. Intrinsic and extrinsic parameters of foods that affect microbial growth. In Modern food microbiology 39–59. US: Springer. doi: 10.1007/0-387-23413-6_3.
  • Jensen, N. 1999. Alicyclobacillus: A new challenge for the food industry. Food Australia 51 (1–2):33–6.
  • Jiao, L., M. Fan, C. Hua, S. Wang, and X. Wei. 2012. Expression of DnaJ gene in Alicyclobacillus acidoterrestris under stress conditions by quantitative real-time PCR. Journal of Food Science 77 (8):M446–M451. doi: 10.1111/j.1750-3841.2012.02790.x.
  • Jiao, L., J. Ran, X. Xu, and W. Junjie. 2015. Heat, acid and cold stresses enhance the expression of DnaK gene in Alicyclobacillus acidoterrestris. Food Research International 67:183–92. doi: 10.1016/j.foodres.2014.11.023.
  • Jin, J., H. Ma, K. Wang, A. E.-G A. Yagoub, J. Owusu, W. Qu, R. He, C. Zhou, and X. Ye. 2015. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry 24:55–64. doi: 10.1016/j.ultsonch.2014.12.013.
  • Kakagianni, M., C. Chatzitzika, K. P. Koutsoumanis, and V. P. Valdramidis. 2020. The impact of high power ultrasound for controlling spoilage by Alicyclobacillus acidoterrestris: A population and a single spore assessment. Innovative Food Science & Emerging Technologies 64 (February):102405. doi: 10.1016/j.ifset.2020.102405.
  • Kakagianni, M., K. Kalantzi, E. Beletsiotis, D. Ghikas, A. Lianou, and K. P. Koutsoumanis. 2018. Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks. Food Microbiology 74:40–9. doi: 10.1016/j.fm.2018.02.019.
  • Kardos, N., Luche, J. Esigec, D. S. Bourget, and F. Le. 2001. Sonochemistry of carbohydrate compounds. Carbohydrate Research 332 (2):115–31.
  • Khanal, S. N., S. Anand, and K. Muthukumarappan. 2014. Evaluation of high-intensity ultrasonication for the inactivation of endospores of 3 bacillus species in nonfat milk. Journal of Dairy Science 97 (10):5952–63. doi: 10.3168/jds.2014-7950.
  • Kieliszek, M., and A. Misiewicz. 2014. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica 59 (3):241–50. doi: 10.1007/s12223-013-0287-x.
  • Kochan, T. J., M. H. Foley, M. S. Shoshiev, M. J. Somers, P. E. Carlson, and P. C. Hanna. 2018. Updates to Clostridium difficile spore germination. Journal of Bacteriology 200 (16):1–12. doi: 10.1128/JB.00218-18.
  • Komitopoulou, E., I. S. Boziaris, E. A. Davies, J. Delves-Broughton, and M. R. Adams. 1999. Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. International Journal of Food Science & Technology 34 (1):81–5. doi: 10.1046/j.1365-2621.1999.00243.x.
  • Langworthy, T. A., and W. R. Mayberry. 1976. A 1,2,3,4-tetrahydroxy pentane-substituted pentacyclic triterpene from Bacillus acidocaldarius. Biochimica et Biophysica Acta: 431 (3): 570–77. doi: 10.1016/0005-2760(76)90221-6
  • Langworthy, T. A., W. R. Mayberry, and P. F. Smith. 1976. A sulfonolipid and novel glucosamidyl glycolipids from the extreme thermoacidophile Bacillus acidocaldarius. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 431 (3):550–69. doi: 10.1016/0005-2760(76)90220-4.
  • Leguerinel, I., M. Maucotel, T. Arnoux, M. Gaspari, N. Desriac, C. Chatzitzika, and V. P. Valdramidis. 2020. Effects of heating and recovery media pH on the heat resistance of Alicyclobacillus acidoterrestris Ad 746 spores. Journal of Applied Microbiology 129 (6):1674–83. doi: 10.1111/jam.14745.
  • Leong, T., M. Ashokkumar, and S. Kentish. 2011. The fundamentals of power ultrasound—A review. Acoustics Australia 39 (2):54–63.
  • Li, Y., K. Jin, S. Ghosh, P. Devarakonda, K. Carlson, A. Davis, K.-A. V. Stewart, E. Cammett, P. Pelczar Rossi, B. Setlow, et al. 2014. Structural and functional analysis of the GerD spore germination protein of bacillus species. Journal of Molecular Biology 426 (9):1995–2008. doi: 10.1016/j.jmb.2014.02.004.
  • Liao, Q., Y. Liu, J. Zhang, L. Li, and M. Gao. 2019. A low-frequency magnetic Field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus. Process Biochemistry 86 (May):16–24. doi: 10.1016/j.procbio.2019.08.009.
  • Lodha, T. D., A. Srinivas, C. Sasikala, and C. V. Ramana. 2015. Hopanoid inventory of Rhodoplanes spp. Archives of Microbiology 197 (6):861–7. doi: 10.1007/s00203-015-1112-5.
  • Lorimer, J. P., and T. J. Mason. 1987. Sonochemistry. Part 1—The physical aspects. Chemical Society Reviews 16:239–74. doi: 10.1039/CS9871600239.
  • Luo, H., F. Schmid, P. R. Grbin, and V. Jiranek. 2012. Viability of common wine spoilage organisms after exposure to high power ultrasonics. Ultrasonics Sonochemistry 19 (3):415–20. doi: 10.1016/j.ultsonch.2011.06.009.
  • Luu, S., and P. Setlow. 2014. Analysis of the loss in heat and acid resistance during germination of spores of bacillus species. Journal of Bacteriology 196 (9):1733–40. doi: 10.1128/JB.01555-14.
  • Lv, R., A. I. Muhammad, M. Zou, Y. Yu, L. Fan, J. Zhou, T. Ding, X. Ye, M. Guo, and D. Liu. 2020. Hurdle enhancement of acidic electrolyzed water antimicrobial efficacy on Bacillus cereus spores using ultrasonication. Applied Microbiology and Biotechnology 104 (10):4505–13. doi: 10.1007/s00253-020-10393-6.
  • Magge, A., A. C. Granger, P. G. Wahome, B. Setlow, V. R. Vepachedu, C. A. Loshon, L. Peng, D. Chen, Y.-Q. Li, and P. Setlow. 2008. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis. Journal of Bacteriology 190 (14):4798–807. doi: 10.1128/JB.00477-08.
  • Maldonado, M. C., C. Belfiore, and A. R. Navarro. 2008. Temperature, soluble solids and pH effect on Alicyclobacillus acidoterrestris viability in lemon juice concentrate. Journal of Industrial Microbiology and Biotechnology 35 (2):141–144. doi: 10.1007/s10295-007-0276-7.
  • Maldonado, M. C., M. P. Aban, and A. R. Navarro. 2013. Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability. Brazilian Journal of Microbiology 44 (4):1133–7.
  • Margean, A., M. I. Lupu, E. Alexa, V. Padureanu, C. M. Canja, I. Cocan, M. Negrea, G. Calefariu, and M.-A. Poiana. 2020. An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice. Molecules 25 (7):1669–16. doi: 10.3390/molecules25071669.
  • Mason, T. J., and J. P. Lorimer. 2002. Applied sonochemistry: The uses of power ultrasound in chemistry and processing. Vol. 10. Wiley‐VCH Verlag GmbH & Co. KGaA. doi: 10.1002/352760054x
  • Matafonova, G., and V. Batoev. 2019. Review on low- and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media. Water Research 166:115085. doi: 10.1016/j.watres.2019.115085.
  • Matafonova, G., and V. Batoev. 2020. Dual-frequency ultrasound: Strengths and shortcomings to water treatment and disinfection. Water Research 182:116016. doi: 10.1016/j.watres.2020.116016.
  • Moir, A., B. M. Corfe, and J. Behravan. 2002. Spore germination. Cellular and Molecular Life Sciences: CMLS 59 (3):403–9. doi: 10.1007/s00018-002-8432-8.
  • Molva, Ç. 2014. Resistance properties and control of Alicyclobacillus acidoterrestris. Doctoral dissertation (IYTE GCRIS Database). http://hdl.handle.net/11147/4234.
  • Molva, C., and A. H. Baysal. 2014. Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice. International Journal of Food Microbiology 189:82–8. doi: 10.1016/j.ijfoodmicro.2014.07.033.
  • Murakami, M., H. Tedzuka, and K. Yamazaki. 1998. Thermal resistance of Alicyclobacillus acidoterrestris spores in different buffers and pH. Food Microbiology 15 (6):577–82. doi: 10.1006/fmic.1998.0194.
  • Mushtaq, M., S. Akram, and A. Adnan. 2017. Novel extraction technologies. In Fruit juices: Extraction, composition, quality and analysis, 161–81. Academic Press. doi: 10.1016/B978-0-12-802230-6.00009-6.
  • Mustapha, A. T., C. Zhou, H. Wahia, F. Sarpong, M. M. Nasiru, Y. B. Adegbemiga, and H. Ma. 2020a. Combination of thermal and dual-frequency sonication processes for optimum microbiological and antioxidant properties in cherry tomato. Journal of Food Processing and Preservation 44 (2):1–12. doi: 10.1111/jfpp.14325.
  • Mustapha, A. T., C. Zhou, H. Wahia, R. Amanor-Atiemoh, P. Otu, A. Qudus, O. Abiola Fakayode, and H. Ma. 2020b. Sonozonation: Enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato. Ultrasonics Sonochemistry 64 (June):105059. doi: 10.1016/j.ultsonch.2020.105059.
  • Nadeem, M., N. Ubaid, T. M. Qureshi, M. Munir, and A. Mehmood. 2018. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics Sonochemistry 45:1–6. doi: 10.1016/j.ultsonch.2018.02.034.
  • Oladunjoye, A. O., F. O. Adeboyejo, T. A. Okekunbi, and O. R. Aderibigbe. 2021. Effect of thermosonication on quality attributes of hog plum (Spondias mombin L.) juice. Ultrasonics Sonochemistry 70 (July 2020):105316. doi: 10.1016/j.ultsonch.2020.105316.
  • Onyeaka, H., T. Miri, A. Hart, C. Anumudu, and O. F. Nwabor. 2021. Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International: 1–13. doi: 10.1080/87559129.2021.2013255.
  • Ordóñez-Santos, L. E., J. Martínez-Girón, and M. E. Arias-Jaramillo. 2017. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry 233:96–100. doi: 10.1016/j.foodchem.2017.04.114.
  • Oshima, M., and T. Ariga. 1975. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes. The Journal of Biological Chemistry 250 (17):6963–8. doi: 10.1016/S0021-9258(19)41026-0.
  • Oteiza, J. M., S. Soto, V. O. Alvarenga, A. S. Sant’Ana, and L. Gianuzzi. 2015. Fate of Alicyclobacillus spp. in enrichment broth and in juice concentrates. International Journal of Food Microbiology 210:73–8. doi: 10.1016/j.ijfoodmicro.2015.05.021.
  • Ozuna, C., I. Paniagua-Martínez, E. Castaño-Tostado, L. Ozimek, and S. L. Amaya-Llano. 2015. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Research International 77:685–96. doi: 10.1016/j.foodres.2015.10.015.
  • Paidhungat, M., K. Ragkousi, and P. Setlow. 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+dipicolinate. Journal of Bacteriology 183 (16):4886–93. doi: 10.1128/JB.183.16.4886.
  • Paidhungat, M., B. Setlow, W. B. Daniels, D. Hoover, E. Papafragkou, and P. Setlow. 2002. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Applied and Environmental Microbiology 68 (6):3172–5. doi: 10.1128/AEM.68.6.3172.
  • Paidhungat, M., and P. Setlow. 2000. Role of Ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. Journal of Bacteriology 182 (9):2513–9. doi: 10.1128/JB.182.9.2513-2519.2000.
  • Pandey, R. 2014. Live-imaging of Bacillus subtilis spore germination and outgrowth. Doctoral dissertation, Universiteit van Amsterdam [Host]. https://hdl.handle.net/11245/1.431544.
  • Paredes-Sabja, D., P. Setlow, and M. R. Sarker. 2011. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends in Microbiology 19 (2):85–94. doi: 10.1016/j.tim.2010.10.004.
  • Patist, A., and D. Bates. 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science & Emerging Technologies 9 (2):147–54. doi: 10.1016/j.ifset.2007.07.004.
  • Pelczar, P., I. Takao, B. Setlow, and P. Setlow. 2007. Role of GerD in germination of Bacillus subtilis spores. Journal of Bacteriology 189 (3):1090–8. doi: 10.1128/JB.01606-06.
  • Peña, W. E., L. Massaguer, P. R. de, and L. Q. Teixeira. 2009. Microbial modeling of thermal resistance of alicyclobacillus acidoterrestris cra7152 spores in concentrated orange juice with nisin addition. Brazilian. Journal of Microbiology 40:601–611.
  • Peña, W. E., P. R. De Massaguer, A. D. G. Zuñiga, and S. H. Saraiva. 2011. Modeling the growth limit of Alicyclobacillus acidoterrestris cra7152 in apple juice: Effect of ph, brix, temperature and nisin concentration. Journal of Food Processing and Preservation 35 (4):509–17. doi: 10.1111/j.1745-4549.2010.00496.x.
  • Pérez-Grijalva, B., M. Herrera-Sotero, R. Mora-Escobedo, J. C. Zebadúa-García, E. Silva-Hernández, R. Oliart-Ros, C. Pérez-Cruz, and R. Guzmán-Gerónimo. 2018. Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT 87:47–53. doi: 10.1016/j.lwt.2017.08.059.
  • Piyasena, P., E. Mohareb, and R. C. Mckellar. 2003. Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology 87 (3):207–16. doi: 10.1016/S0168-1605(03)00075-8.
  • Poger, D., and A. E. Mark. 2015. Effect of ring size in ω-alicyclic fatty acids on the structural and dynamical properties associated with fluidity in lipid bilayers. Langmuir 31 (42):11574–82. doi: 10.1021/acs.langmuir.5b02635.
  • Pontius, A. J., J. E. Rushing, and P. M. Foegeding. 1998. Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. Journal of Food Protection 61 (1):41–6.
  • Popham, D. L., S. Sengupta, and P. Setlow. 1995. Heat, hydrogen peroxide, and UV resistance of bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Applied and Environmental Microbiology 61 (10):3633–8. doi: 10.1128/aem.61.10.3633-3638.1995.
  • Poralla, K., E. Kannenberg, and A. Blume. 1980. A glycolipid containing hopane isolated from the acidophilic, thermophilic bacillus acidocaldarius, has a cholesterol-like function in membranes. FEBS Letters 113 (1):107–10. doi: 10.1016/0014-5793(80)80506-0.
  • Porębska, I., M. Rutkowska, and B. Sokołowska. 2015. Decrease in optical density as a results of germination of Alicyclobacillus ­acidoterrestris spores under high hydrostatic pressure. High Pressure Research 35 (1):89–97. doi: 10.1080/08957959.2015.1006630.
  • Porębska, I., and B. Sokołowska. 2017. Analysis of the germination proteins in Alicyclobacillus acidoterrestris spores subjected to external factors. Acta Biochimica Polonica 64 (2):301–5. doi: 10.18388/abp.2016_1412.
  • Porębska, I., B. Sokołowska, and Ł. Woźniak. 2017. Dipicolinic acid release and the germination of Alicyclobacillus acidoterrestris spores under nutrient germinants. Polish Journal of Microbiology 66 (1):67–74. 10.5604/17331331.1234994.
  • Porębska, I., Sokołowska, B., Ł. Woźniak, and Ł. Łaniewska-Trokenheim. 2016. The germination of Alicyclobacillus acidoterrestris spores and the release of dipicolinic acid under supercritical carbon dioxide. Polish Journal of Natural Sciences 31 (4):681–91.
  • Porebska, I., I. Sokolowska, S. Skapska, L. Wozniak, M. Fonberg, and S. J. Rzoska. 2015. DPA release and germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure. Journal of Nutrition & Food Sciences 05 (06):1–6. doi: 10.4172/2155-9600.1000438.
  • Povey, M. J. W., and T. J. Mason. 1998. Power ultrasound in food processing-the way forward. In Ultrasound in food processing, 105–25. London: Blackie Academic and Professional.
  • Prabhu, A. V., P. R. Gogate, and A. B. Pandit. 2004. Optimization of multiple-frequency sonochemical reactors. Chemical Engineering Science 59 (22–23):4991–8. doi: 10.1016/j.ces.2004.09.033.
  • Rajak, P., A. Mishra, C. Sheng, S. Tiwari, A. Krishnamoorthy, R. K. Kalia, A. Nakano, and P. Vashishta. 2017. Gel phase in hydrated calcium dipicolinate. Applied Physics Letters 111 (21):213701. doi: 10.1063/1.5000394.
  • Reineke, K., K. Schlumbach, D. Baier, A. Mathys, and D. Knorr. 2013. The release of dipicolinic acid - The rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. International Journal of Food Microbiology 162 (1):55–63. doi: 10.1016/j.ijfoodmicro.2012.12.010.
  • Rezanka, T., L. Siristova, K. Melzoch, and K. Sigler. 2009. Direct ESI-MS analysis of O-acyl glycosylated cardiolipins from the thermophilic bacterium Alicyclobacillus acidoterrestris s Rezanka. Chemistry and Physics of Lipids 161 (2):115–21. doi: 10.1016/j.chemphyslip.2009.07.005.
  • Rodriguez-Palacios, A., and J. T. LeJeune. 2011. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Applied and Environmental Microbiology 77 (9):3085–91. doi: 10.1128/AEM.01589-10.
  • Salleh-Mack, S. Z., and J. S. Roberts. 2007. Ultrasound pasteurization: The effects of temperature, soluble solids, organic acids and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonics Sonochemistry 14 (3):323–9. doi: 10.1016/j.ultsonch.2006.07.004.
  • Sanchez-Salas, J. L., B. Setlow, P. Zhang, Y. Q. Li, and P. Setlow. 2011. Maturation of released spores is necessary for acquisition of full spore heat resistance during Bacillus subtilis sporulation. Applied and Environmental Microbiology 77 (19):6746–54. doi: 10.1128/AEM.05031-11.
  • Sango, D. M., D. Abela, A. Mcelhatton, and V. P. Valdramidis. 2014. Assisted ultrasound applications for the production of safe foods. Journal of Applied Microbiology 116 (5):1067–83. doi: 10.1111/jam.12468.
  • Santos, H. M., C. Lodeiro, and J.-L. Capelo-Martínez. 2008. The power of ultrasound. In Ultrasound in chemistry: Analytical Applications, 1–16. Wiley‐VCH Verlag GmbH & Co. KGaA. doi: 10.1002/9783527623501.ch1.
  • Sathishkumar, P., R. V. Mangalaraja, and S. Anandan. 2016. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews 55:426–54. doi: 10.1016/j.rser.2015.10.139.
  • Segev, E., Y. Smith, and S. Ben-Yehuda. 2012. RNA dynamics in aging bacterial spores. Cell 148 (1–2):139–49. doi: 10.1016/j.cell.2011.11.059.
  • Sella, S., R. B. R. Vandenberghe, L. P. S., and Soccol, C. R. 2014. Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiological Research 169 (12):931–9. doi: 10.1016/j.micres.2014.05.001.
  • Setlow, B., Korza, G. Blatt, K. M. S. Fey, J. P., and Setlow, P. 2016. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. Journal of Applied Microbiology 176 (1):100–6. doi: 10.1111/jam.12995.Mechanism.
  • Setlow, B., E. Melly, and P. Setlow. 2001. Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination. Journal of Bacteriology 183 (16):4894–9. 10.1128/JB.183.16.4894.
  • Setlow, P. 2005. The bacterial spore: Nature’s survival package. Culture 26 (2):1–8.
  • Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology 101 (3):514–25. doi: 10.1111/j.1365-2672.2005.02736.x.
  • Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends in Microbiology 15 (4):172–80. doi: 10.1016/j.tim.2007.02.004.
  • Setlow, P. 2014. Germination of spores of bacillus species: What we know and do not know. Journal of Bacteriology 196 (7):1297–305. doi: 10.1128/JB.01455-13.
  • Setlow, P., S. Wang, and Y.-Q. Li. 2017. Germination of spores of the orders bacillales and clostridiales. Annual Review of Microbiology 71:459–77.
  • Seyler, R. W., Jr., A. O. Henriques, A. J. Ozin, and C. P. MoranJr. 1997. Assembly and interactions of cotJ-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Molecular Microbiology 25 (5):955–66. doi: 10.1111/j.1365-2958.1997.mmi532.x.
  • Shaikh, N., D. Colombo, F. Ronchetti, and M. Dangate. 2013. SQAGs: A stepping stone in the biotic world. Comptes Rendus Chimie 16 (9):850–62. doi: 10.1016/j.crci.2013.03.019.
  • Siegmund, B., B. Zierler, and W. Pfannhauser. 2006. Formation and determination of microbially-derived off-flavour in apple juice. Developments in Food Science 43: 277–80. doi: 10.1016/S0167-4501(06)80066-X.
  • Silva, F. M., P. Gibbs, M. C. Vieira, and C. L. M. Silva. 1999. Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. International Journal of Food Microbiology 51 (2–3):95–103. doi: 10.1016/S0168-1605(99)00103-8.
  • Silva, F. V. M., and P. Gibbs. 2001. Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends in Food Science & Technology 12 (2):68–74. doi: 10.1016/S0924-2244(01)00070-X.
  • Silva, F. V. M., and P. Gibbs. 2004. Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Critical Reviews in Food Science and Nutrition 44 (5):353–60. doi: 10.1080/10408690490489251.
  • Silva, L. P., U. Gonzales-Barron, V. Cadavez, and A. S. Sant’Ana. 2015. Modeling the effects of temperature and pH on the resistance of Alicyclobacillus acidoterrestris in conventional heat-treated fruit beverages through a meta-analysis approach. Food Microbiology 46:541–52. doi: 10.1016/j.fm.2014.09.019.
  • Siristova, L., R. Luhovy, K. Sigler, and T. Rezanka. 2011. Biosynthesis of ω-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber. Extremophiles: Life under Extreme Conditions 15 (3):423–9. doi: 10.1007/s00792-011-0373-4.
  • Sokołowska, B., J. Niezgoda, A. Dekowska, I. Porębska, J. Nasiłowska, E. Waldon-Wiewióra, and M. Kowalska. 2016. Incidence of Alicyclobacillus spp. in Polish apple and dark berry juice concentrates and the ability of isolated A. acidoterrestris strains to spoilage of these juices. Postepy Nauki i Technologii Przemysłu Rolno-Spożywczego 71 (1):5–20.
  • Sokołowska, B., M. Połaska, and A. Dekowska. 2020. Alicyclobacillus—Still current issues in the beverage industry. In Safety issues in beverage production, 18:105–46. Academic Press. doi: 10.1016/B978-0-12-816679-6.00004-8.
  • Sokołowska, B., S. Skapska, M. Fonberg-Broczek, J. Niezgoda, I. Porebska, A. Dekowska, and S. J. Rzoska. 2015. Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure. Polish Journal of Microbiology 64 (4):351–9. doi: 10.5604/17331331.1170291.
  • Soria, A. C., and M. Villamiel. 2010. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends in Food Science & Technology 21 (7):323–31. doi: 10.1016/j.tifs.2010.04.003.
  • Sourri, P., C. C. Tassou, G.-J E. Nychas, and E. Z. Panagou. 2022. Fruit juice spoilage by Alicyclobacillus: Detection and control methods—A comprehensive review. Foods 11 (5):747–28. doi: 10.3390/foods11050747.
  • Spinelli, C. A. N. F., A. S. San’t Ana, C. P. Pacheco-sanchez, and P. R. Massaguer. 2010. Influence of the hot-fill water-spray-cooling process after continuous pasteurization on the number of decimal reductions and on Alicyclobacillus acidoterrestris CRA 7152 growth in orange juice stored at 35 °C. International Journal of Food Microbiology 137 (2–3):295–298. doi: 10.1016/j.ijfoodmicro.2009.11.003.
  • Suzuki, K.-I., K. Saito, A. Kawaguchi, S. Okuda, and K. Komagata. 1981. Occurrence of ω-cyclohexyl fatty acids in Curtobacteriui pusillum strains. The Journal of General and Applied Microbiology 27 (3):261–6. doi: 10.2323/jgam.27.261.
  • Tan, J., Z. Liu, D. Wang, X. Zhang, S. Qian, and X. Liu. 2020. A facile and universal strategy to endow implant materials with antibacterial ability: Via alkalinity disturbing bacterial respiration. Biomaterials Science 8 (7):1815–29. doi: 10.1039/c9bm01793c.
  • Terano, H., K. Takahashi, and Y. Sakakibara. 2005. Characterization of spore germination of a thermoacidophilic spore-forming bacterium, Alicyclobacillus acidoterrestris. Bioscience, Biotechnology, and Biochemistry 69 (6):1217–20. doi: 10.1271/bbb.69.1217.
  • Tianli, Y., Z. Jiangbo, and Y. Yahong. 2014. Spoilage by Alicyclobacillus bacteria in juice and beverage products: Chemical, physical, and combined control methods. Comprehensive Reviews in Food Science and Food Safety 13 (5):771–97. doi: 10.1111/1541-4337.12093.
  • Tovar-Rojo, F., M. Chander, B. Setlow, and P. Setlow. 2002. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. Journal of Bacteriology 184 (2):584–7. doi: 10.1128/JB.184.2.584-587.2002.
  • Tremarin, A., T. R. S. Brandão, and C. L. M. Silva. 2017a. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT 78:138–42. doi: 10.1016/j.lwt.2016.12.039.
  • Tremarin, A., T. R. S. Brandão, and C. L. M. Silva. 2017b. Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control. 73:18–23. doi: 10.1016/j.foodcont.2016.07.008.
  • Tremarin, A., Canbaz, E. A. Brandão, T. R. S. Silva, and C. L. M. 2019. Modelling Alicyclobacillus acidoterrestris inactivation in apple juice using thermosonication treatments. LWT 102 (December 2018):159–63. doi: 10.1016/j.lwt.2018.12.027.
  • Trunet, C., F. Carlin, and L. Coroller. 2017. Investigating germination and outgrowth of bacterial spores at several scales. Trends in Food Science & Technology 64:60–8. doi: 10.1016/j.tifs.2017.03.008.
  • U.S. FDA. 2018. Chapter 9: 5-log reduction performance standard. Juice HACCP Regulator Training, U.S. Food and Drug Administration. https://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm114860.htm#chap9.
  • Vercammen, A., B. Vivijs, I. Lurquin, and C. W. Michiels. 2012. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology 152 (3):162–7. doi: 10.1016/j.ijfoodmicro.2011.02.019.
  • Villamiel, M., J. V. García-Pérez, A. Montilla, J. A. Carcel, and J. Benedito. 2017. Ultrasound in food processing: Recent advances. Chichester, West Sussex, UK: Wiley Blackwell.
  • Wahia, H., L. Zhang, C. Zhou, A. T. Mustapha, O. A. Fakayode, R. Amanor-Atiemoh, H. Ma, and M. Dabbour. 2022. Pulsed multifrequency thermosonication induced sonoporation in Alicyclobacillus acidoterrestris spores and vegetative cells. Food Research International 156:111087. doi: 10.1016/j.foodres.2022.111087.
  • Wahia, H., C. Zhou, O. A. Fakayode, R. Amanor-Atiemoh, L. Zhang, A. Taiye Mustapha, J. Zhang, B. Xu, R. Zhang, and H. Ma. 2021. Quality attributes optimization of orange juice subjected to multi-frequency thermosonication: Alicyclobacillus acidoterrestris spore inactivation and applied spectroscopy ROS characterization. Food Chemistry 361 (April):130108. doi: 10.1016/j.foodchem.2021.130108.
  • Wahia, H., C. Zhou, A. T. Mustapha, R. Amanor-Atiemoh, L. Mo, O. A. Fakayode, and H. Ma. 2020. Storage effects on the quality ­quartet of orange juice submitted to moderate thermosonication: Predictive modeling and odor fingerprinting approach. Ultrasonics Sonochemistry 64:104982. doi: 10.1016/j.ultsonch.2020.104982.
  • Wahia, H., C. Zhou, F. Sarpong, A. T. Mustapha, S. Liu, X. Yu, and C. Li. 2019. Simultaneous optimization of Alicyclobacillus acidoterrestris reduction, pectin methylesterase inactivation, and bioactive compounds enhancement affected by thermosonication in orange juice. Journal of Food Processing and Preservation 43 (11):1–10. doi: 10.1111/jfpp.14180.
  • Walker, M., and C. A. Phillips. 2005. The effect of intermittent shaking, headspace and temperature on the growth of Alicyclobacillus acidoterrestris in stored apple juice. International Journal of Food Science and Technology 40 (5):557–62. doi: 10.1111/j.1365-2621.2005.00960.x.
  • Walker, M., and C. A. Phillips. 2007. Alicyclobacillus acidoterrestris: An increasing threat to the fruit juice industry ? International Journal of Food Science & Technology 43 (2):250–60. doi: 10.1111/j.1365-2621.2006.01427.x.
  • Wang, J., X. Hu, and Z. Wang. 2010. Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM14558T and Alicyclobacillus acidoterrestris DSM 3922T in apple juice by ultrasound. International Journal of Food Microbiology 139 (3):177–81. doi: 10.1016/j.ijfoodmicro.2010.02.029.
  • Wang, S., P. Setlow, and Y. Li. 2015. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination. Journal of Bacteriology 197 (6):1095–03. doi: 10.1128/JB.02490-14.
  • Wang, W., W. Chen, M. Zou, R. Lv, D. Wang, F. Hou, H. Feng, X. Ma, J. Zhong, T. Ding, et al. 2018. Applications of power ultrasound in oriented modification and degradation of pectin: A review. Journal of Food Engineering 234:98–107. doi: 10.1016/j.jfoodeng.2018.04.016.
  • Wang, Z., T. Yue, Y. Yuan, R. Cai, C. Niu, and C. Guo. 2013. Development and evaluation of an immunomagnetic separation – ELISA for the detection of Alicyclobacillus spp. in apple juice. International Journal of Food Microbiology 166 (1):28–33. doi: 10.1016/j.ijfoodmicro.2013.06.015.
  • Wen, C., J. Zhang, H. Zhang, C. S. Dzah, M. Zandile, Y. Duan, H. Ma, and X. Luo. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry 48 (July):538–49. doi: 10.1016/j.ultsonch.2018.07.018.
  • Williams, O. B. 1929. The heat resistance of bacterial spores. The Journal of Infectious Diseases 44 (6):421–65. doi: 10.1093/infdis/44.6.421.
  • Wisotzkey, J. D., P. Jurtshuk, G. E. Fox, G. Deinhard, and K. Poralla. 1992. Comparative Sequence Analyses on the 16s rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoten-estris, and Bacillus cycloheptanicus and Proposal for Creation of a New Genus, Alicyclobacillus gen. nov. International Journal of Systematic Bacteriology 42 (2):263–9.
  • Xu, B., S. M. R. Azam, M. Feng, B. Wu, W. Yan, C. Zhou, and H. Ma. 2021a. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrasonics Sonochemistry 81:105855. doi: 10.1016/j.ultsonch.2021.105855.
  • Xu, B., J. Chen, E. Sylvain Tiliwa, W. Yan, S. M. Roknul Azam, J. Yuan, B. Wei, C. Zhou, and H. Ma. 2021b. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry 78:105714. doi: 10.1016/j.ultsonch.2021.105714.
  • Xu, X., J. Ran, L. Jiao, X. Liang, and R. Zhao. 2019. Label free quantitative analysis of Alicyclobacillus acidoterrestris spore germination subjected to low ambient pH. Food Research International (Ottawa, Ont.) 115 (September):580–8. doi: 10.1016/j.foodres.2018.09.033.
  • Yamazaki, K., Y. Kawai, N. Inoue, and H. Shinano. 1997. Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores. Letters in Applied Microbiology 25 (2):153–156. doi: 10.1046/j.1472-765X.1997.00194.x.
  • Yamazaki, K., M. Murakami, Y. Kawai, N. Inoue, and T. Matsuda. 2000. Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiology 17 (3):315–320. doi: 10.1006/fmic.1999.0309.
  • Yan, B., S. I. Martínez-Monteagudo, J. L. Cooperstone, K. M. Riedl, S. J. Schwartz, and V. M. Balasubramaniam. 2017. Impact of thermal and pressure-based technologies on carotenoid retention and quality attributes in tomato juice. Food and Bioprocess Technology 10 (5):808–18. doi: 10.1007/s11947-016-1859-y.
  • Ye, L., X. Zhu, and Y. Liu. 2019. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ultrasonics Sonochemistry 59:104744. doi: 10.1016/j.ultsonch.2019.104744.
  • Yokota, A., T. Fujii, and K. Goto. 2007. Growth profile of Alicyclobacillus in fruit juices. In Alicyclobacillus: Thermophilic acidophilic Bacilli, 92–105. Tokyo: Springer. doi: 10.1007/978-4-431-69850-0_6.
  • Yuan, Y., Y. Hu, T. Yue, T. Chen, and Y. M. Lo. 2009. Effect of ultrasonic treatments on thermoacidophilic alicyclobacillus acidoterrestris in Apple juice. Journal of Food Processing and Preservation 33 (3):370–383. doi: 10.1111/j.1745-4549.2009.00407.x.
  • Zhang, P., J. Liang, Y. Xuan, P. Setlow, and Y. Li. 2014. Monitoring of commitment, blocking, and continuation of nutrient germination of individual Bacillus subtilis spores. Journal of Bacteriology 196 (13):2443–54. doi: 10.1128/JB.01687-14.
  • Zhao, L., W. Ma, J. Ma, J. Yang, G. Wen, and Z. Sun. 2014. Characteristic mechanism of ceramic honeycomb catalytic ozonation enhanced by ultrasound with triple frequencies for the degradation of nitrobenzene in aqueous solution. Ultrasonics Sonochemistry 21 (1):104–12. doi: 10.1016/j.ultsonch.2013.06.005.
  • Zhao, N., J. Xu, L. Jiao, M. Liu, T. Zhang, J. Li, X. Wei, and M. Fan. 2022. Acid adaptive response of Alicyclobacillus acidoterrestris: A strategy to survive lethal heat and acid stresses. Food Research International 157:111364. doi: 10.1016/j.foodres.2022.111364.
  • Zhao, N., J. Zhang, Y. Qi, J. Xu, X. Wei, and M. Fan. 2021. New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiology 94:103657. doi: 10.1016/j.fm.2020.103657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.