2,579
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Gut microbiome and anti-viral immunity in COVID-19

, , ORCID Icon & ORCID Icon

References

  • Abid, M. A., L. Nunley, and M. B. Abid. 2020. Could coronavirus disease 2019 (COVID-19) render natural immunity to re-infections? A spotlight on the therapeutic pipeline. Frontiers in Immunology. 11:1294.
  • Abt, M. C., L. C. Osborne, L. A. Monticelli, T. A. Doering, T. Alenghat, G. e. g F. Sonnenberg, M. A. Paley, M. Antenus, K. L. Williams, J. Erikson, et al. 2012. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37 (1):158–70. doi: 10.1016/j.immuni.2012.04.011.
  • Al-Rubaye, H., G. Perfetti, and J.-C. Kaski. 2019. The role of microbiota in cardiovascular risk: Focus on trimethylamine oxide. Current Problems in Cardiology 44 (6):182–96. doi: 10.1016/j.cpcardiol.2018.06.005.
  • Alameddine, J., E. Godefroy, L. Papargyris, G. Sarrabayrouse, J. Tabiasco, C. Bridonneau, K. Yazdanbakhsh, H. Sokol, F. Altare, F. Jotereau, et al. 2019. Faecalibacterium prausnitzii skews human DC to prime IL10-producing T cells through TLR2/6/JNK signaling and IL-10, IL-27, CD39, and IDO-1 induction. Frontiers in Immunology 10:143.
  • Albrich, W. C., T. S. Ghosh, S. Ahearn-Ford, F. Mikaeloff, N. Lunjani, B. Forde, N. Suh, G.-R. Kleger, U. Pietsch, M. Frischknecht, et al. 2022. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes 14 (1):2073131. doi: 10.1080/19490976.2022.2073131.
  • Aymonnier, K., J. Ng, L. E. Fredenburgh, K. Zambrano-Vera, P. Münzer, S. Gutch, S. Fukui, M. Desjardins, M. Subramaniam, R. M. Baron, et al. 2022. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Advances 6 (7):2001–13. doi: 10.1182/bloodadvances.2021005949.
  • Baba, R., H. Takaoka, T. Kamo, D. Arai, H. Takahashi, K. Masaki, Y. Shinoda, S. Hagiwara, K. Fukunaga, I. Nakachi, et al. 2020. Clinical interpretations and therapeutic significance of isolating aspergillus species from respiratory specimens. A58. Clinical Studies in Fungal Infections, American Thoracic Society A2117–A2117. doi: 10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2117.
  • Bastiaanssen, T. F. S, and J. F. Cryan. 2021. The microbiota-gut-brain axis in mental health and medication response: Parsing directionality and causality. The International Journal of Neuropsychopharmacology 24 (3):216–20. doi: 10.1093/ijnp/pyaa088.
  • Baud, D., V. Dimopoulou Agri, G. R. Gibson, G. Reid, and E. Giannoni. 2020. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Frontiers in Public Health 8:186. doi: 10.3389/fpubh.2020.00186.
  • Belizario, J. E, and J. Faintuch. 2018. Microbiome and gut dysbiosis. Exp Suppl 109:459–76.
  • Belkacem, N., N. Serafini, R. Wheeler, M. Derrien, L. Boucinha, A. Couesnon, N. Cerf-Bensussan, I. Gomperts Boneca, J. P. Di Santo, M.-K. Taha, et al. 2017. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLos One 12 (9):e0184976. doi: 10.1371/journal.pone.0184976.
  • Bilinski, J, et al. 2022. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut 71 (1):230–2.
  • Bradley, K. C., K. Finsterbusch, D. Schnepf, S. Crotta, M. Llorian, S. Davidson, S. Y. Fuchs, P. Staeheli, and A. Wack. 2019. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Reports 28 (1):245–56. doi: 10.1016/j.celrep.2019.05.105.
  • Cattaneo, A., N. Cattane, S. Galluzzi, S. Provasi, N. Lopizzo, Cri. s. tina Festari, C. Ferrari, U. P. Guerra, B. Paghera, C. Muscio, INDIA-FBP Group, et al. 2017. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging 49:60–8. doi: 10.1016/j.neurobiolaging.2016.08.019.
  • Chen, J, and L. Vitetta. 2021. Modulation of gut microbiota for the prevention and treatment of COVID-19. Journal of Clinical Medicine 10 (13):2903. doi: 10.3390/jcm10132903.
  • Chen, N., M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet 395 (10223):507–13. doi: 10.1016/S0140-6736(20)30211-7.
  • Chen, Y., S. Gu, Y. Chen, H. Lu, D. Shi, J. Guo, W.-R. Wu, Y. Yang, Y. Li, K.-J. Xu, et al. 2022. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut 71 (1):222–5. doi: 10.1136/gutjnl-2021-324090.
  • Chen, Y, et al. 2021. Role and mechanism of gut microbiota in human disease. Frontiers in Cellular and Infection Microbiology. 11:625913.
  • Cheung, C. C. L., D. Goh, X. Lim, T. Z. Tien, J. C. T. Lim, J. N. Lee, B. Tan, Z. E. A. Tay, W. Y. Wan, E. X. Chen, et al. 2022. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 71 (1):226–9. doi: 10.1136/gutjnl-2021-324280.
  • Combes, A. J., T. Courau, N. F. Kuhn, K. H. Hu, A. Ray, W. S. Chen, N. W. Chew, S. J. Cleary, D. Kushnoor, G. C. Reeder, UCSF COMET Consortium, et al. 2021. Global absence and targeting of protective immune states in severe COVID-19. Nature 591 (7848):124–30. doi: 10.1038/s41586-021-03234-7.
  • D’Amico, F, et al. 2020. Diarrhea during COVID-19 infection: Pathogenesis, epidemiology, prevention, and management. Clin Gastroenterol Hepatol 18 (8):1663–72.
  • Dang, A. T, and B. J. Marsland. 2019. Microbes, metabolites, and the gut-lung axis. Mucosal Immunology 12 (4):843–50. doi: 10.1038/s41385-019-0160-6.
  • Davis-Richardson, A. G, et al. 2014. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Frontiers in Microbiology. 5:678.
  • de Vrese, M., P. Rautenberg, C. Laue, M. Koopmans, T. Herremans, and J. Schrezenmeir. 2005. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. European Journal of Nutrition 44 (7):406–13. doi: 10.1007/s00394-004-0541-8.
  • de Vrese, M., P. Winkler, P. Rautenberg, T. Harder, C. Noah, C. Laue, S. Ott, J. Hampe, S. Schreiber, K. Heller, et al. 2005. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clinical Nutrition (Edinburgh, Scotland) 24 (4):481–91. doi: 10.1016/j.clnu.2005.02.006.
  • Dinan, T. G, and J. F. Cryan. 2017. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology 595 (2):489–503. doi: 10.1113/JP273106.
  • Dumas, A., L. Bernard, Y. Poquet, G. Lugo-Villarino, and O. Neyrolles. 2018. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology 20 (12):e12966. doi: 10.1111/cmi.12966.
  • Eguchi, K., N. Fujitani, H. Nakagawa, and T. Miyazaki. 2019. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Scientific Reports 9 (1):4812. doi: 10.1038/s41598-019-39602-7.
  • Eng, R. H., M. L. Corrado, D. Cleri, C. Cherubin, and E. J. Goldstein. 1981. Infections caused by Actinomyces viscosus. American Journal of Clinical Pathology 75 (1):113–6. doi: 10.1093/ajcp/75.1.113.
  • Erttmann, S. F., P. Swacha, K. M. Aung, B. Brindefalk, H. Jiang, A. Härtlova, B. E. Uhlin, S. N. Wai, and N. O. Gekara. 2022. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55 (5):847–861 e810. doi: 10.1016/j.immuni.2022.04.006.
  • Ettinger, G., K. MacDonald, G. Reid, and J. P. Burton. 2014. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes 5 (6):719–28. doi: 10.4161/19490976.2014.983775.
  • Fan, J., X. Li, Y. Gao, J. Zhou, S. Wang, B. Huang, J. Wu, Q. Cao, Y. Chen, Z. Wang, et al. 2020. The lung tissue microbiota features of 20 deceased patients with COVID-19. The Journal of Infection 81 (3):e64–e67. doi: 10.1016/j.jinf.2020.06.047.
  • Fang, L., G. Karakiulakis, and M. Roth. 2020. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine 8 (4):e21–e21. doi: 10.1016/S2213-2600(20)30116-8.
  • Farsi, Y, et al. 2022. Diagnostic, prognostic, and therapeutic roles of gut microbiota in COVID-19: A comprehensive systematic review. Frontiers in Cellular and Infection Microbiology. 12:804644.
  • Feld, J. J., C. Kandel, M. J. Biondi, R. A. Kozak, M. A. Zahoor, C. a. mille Lemieux, S. M. Borgia, A. K. Boggild, J. Powis, J. McCready, et al. 2021. Peginterferon lambda for the treatment of outpatients with COVID-19: A phase 2, placebo-controlled randomised trial. The Lancet. Respiratory Medicine 9 (5):498–510. doi: 10.1016/S2213-2600(20)30566-X.
  • Francino, M. P. 2014. Early development of the gut microbiota and immune health. Pathogens (Basel, Switzerland) 3 (3):769–90. doi: 10.3390/pathogens3030769.
  • Fujimura, K. E., A. R. Sitarik, S. Havstad, D. L. Lin, S. Levan, D. Fadrosh, A. R. Panzer, B. LaMere, E. Rackaityte, N. W. Lukacs, et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nature Medicine 22 (10):1187–91. doi: 10.1038/nm.4176.
  • Ganal, S. C., S. L. Sanos, C. Kallfass, K. Oberle, C. Johner, C. Kirschning, S. Lienenklaus, S. Weiss, P. Staeheli, P. Aichele, et al. 2012. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37 (1):171–86. doi: 10.1016/j.immuni.2012.05.020.
  • Gao, J, et al. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology. 8:13.
  • Gao, Q. Y., Y. X. Chen, and J. Y. Fang. 2020. 2019 Novel coronavirus infection and gastrointestinal tract. Journal of Digestive Diseases 21 (3):125–6. doi: 10.1111/1751-2980.12851.
  • Geva-Zatorsky, N., E. Sefik, L. Kua, L. Pasman, T. G. Tan, A. ORTiz-Lopez, T. B. Yanortsang, L. Yang, R. Jupp, D. Mathis, et al. 2017. Mining the human gut microbiota for immunomodulatory organisms. Cell 168 (5):928–43 e911. doi: 10.1016/j.cell.2017.01.022.
  • Gheware, A., A. Ray, D. Rana, P. Bajpai, A. Nambirajan, S. Arulselvi, P. Mathur, A. Trikha, S. Arava, P. Das, et al. 2022. ACE2 protein expression in lung tissues of severe COVID-19 infection. Scientific Reports 12 (1):4058. doi: 10.1038/s41598-022-07918-6.
  • Gill, H. S., K. J. Rutherfurd, M. L. Cross, and P. K. Gopal. 2001. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. The American Journal of Clinical Nutrition 74 (6):833–9. doi: 10.1093/ajcn/74.6.833.
  • Giron, L. B, et al. 2021. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Frontiers in Immunology. 12:686240.
  • Gonzalez-Perez, G., A. L. Hicks, T. M. Tekieli, C. M. Radens, B. L. Williams, and E. S. N. Lamousé-Smith. 2016. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. Journal of Immunology (Baltimore, Md. : 1950) 196 (9):3768–79. doi: 10.4049/jimmunol.1502322.
  • Graversen, K. B, et al. 2020. Short-term amoxicillin-induced perturbation of the gut microbiota promotes acute intestinal immune regulation in brown Norway rats. Frontiers in Microbiology. 11:496.
  • Groff, A., M. Kavanaugh, D. Ramgobin, B. McClafferty, C. S. Aggarwal, R. Golamari, and R. Jain. 2021. Gastrointestinal manifestations of COVID-19: A review of what we know. The Ochsner Journal 21 (2):177–80. doi: 10.31486/toj.20.0086.
  • Gu, J., B. Han, and J. Wang. 2020. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 158 (6):1518–9. doi: 10.1053/j.gastro.2020.02.054.
  • Gu, S., Y. Chen, Z. Wu, Y. Chen, H. Gao, L. Lv, F. Guo, X. Zhang, R. Luo, C. Huang, et al. 2020. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 71 (10):2669–78. doi: 10.1093/cid/ciaa709.
  • Gupta, S., E. Allen-Vercoe, and E. O. Petrof. 2016. Fecal microbiota transplantation: In perspective. Therapeutic Advances in Gastroenterology 9 (2):229–39. doi: 10.1177/1756283X15607414.
  • Gurung, M., Z. Li, H. You, R. Rodrigues, D. B. Jump, A. Morgun, and N. Shulzhenko. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.11.051.
  • Gutierrez-Castrellon, P, et al. 2022. Probiotic improves symptomatic and viral clearance in Covid19 outpatients: A randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes 14 (1):2018899.
  • Hall, A. B., M. Yassour, J. Sauk, A. Garner, X. Jiang, T. Arthur, G. K. Lagoudas, T. Vatanen, N. Fornelos, R. Wilson, et al. 2017. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Medicine 9 (1):103. doi: 10.1186/s13073-017-0490-5.
  • Han, C., C. Duan, S. Zhang, B. Spiegel, H. Shi, W. Wang, L. Zhang, R. Lin, J. Liu, Z. Ding, et al. 2020. Digestive symptoms in COVID-19 patients with mild disease severity: Clinical presentation, stool viral RNA testing, and outcomes. The American Journal of Gastroenterology 115 (6):916–23. doi: 10.14309/ajg.0000000000000664.
  • Han, H., Q. Ma, C. Li, R. Liu, L. Zhao, W. Wang, P. Zhang, X. Liu, G. Gao, F. Liu, et al. 2020. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerging Microbes & Infections 9 (1):1123–30. doi: 10.1080/22221751.2020.1770129.
  • Hashimoto, T., T. Perlot, A. Rehman, J. Trichereau, H. Ishiguro, Magd. a. lena Paolino, V. Sigl, T. Hanada, R. Hanada, S. Lipinski, et al. 2012. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487 (7408):477–81. doi: 10.1038/nature11228.
  • He, Y., Q. Wen, F. Yao, D. Xu, Y. Huang, and J. Wang. 2017. Gut-lung axis: The microbial contributions and clinical implications. Critical Reviews in Microbiology 43 (1):81–95. doi: 10.1080/1040841X.2016.1176988.
  • Hoel, H., L. Heggelund, D. H. Reikvam, B. Stiksrud, T. Ueland, A. E. Michelsen, K. Otterdal, K. E. Muller, A. Lind, F. Muller, et al. 2021. Elevated markers of gut leakage and inflammasome activation in COVID-19 patients with cardiac involvement. Journal of Internal Medicine 289 (4):523–31. doi: 10.1111/joim.13178.
  • Hoffmann, M., H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, Sa. n. dra Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2):271–280 e278. doi: 10.1016/j.cell.2020.02.052.
  • Hoong, C. W. S., I. Hussain, V. M. Aravamudan, E. E. Phyu, J. H. X. Lin, and H. Koh. 2021. Obesity is associated with poor Covid-19 outcomes: A systematic review and meta-analysis. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme 53 (2):85–93. doi: 10.1055/a-1326-2125.
  • Hung, I. F.-N., K.-C. Lung, E. Y.-K. Tso, R. Liu, T. W.-H. Chung, M.-Y. Chu, Y.-Y. Ng, J. Lo, J. Chan, A. R. Tam, et al. 2020. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. The Lancet 395 (10238):1695–704. doi: 10.1016/S0140-6736(20)31042-4.
  • Hussain, I., G. L. Y. Cher, M. A. Abid, and M. B. Abid. 2021. Role of gut microbiome in COVID-19: An insight into pathogenesis and therapeutic potential. Frontiers in Immunology 12:765965. doi: 10.3389/fimmu.2021.765965.
  • Hutkins, R. W., J. A. Krumbeck, L. B. Bindels, P. D. Cani, G. Fahey, Y. J. Goh, B. Hamaker, E. C. Martens, D. A. Mills, R. A. Rastal, et al. 2016. Prebiotics: Why definitions matter. Current Opinion in Biotechnology 37:1–7. doi: 10.1016/j.copbio.2015.09.001.
  • Isho, B, et al. 2020. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Science Immunology 5 (52):eabe5511. doi: 10.1126/sciimmunol.abe5511.
  • Jiao, L., H. Li, J. Xu, M. Yang, C. Ma, J. Li, S. Zhao, H. Wang, Y. Yang, W. Yu, et al. 2021. The Gastrointestinal tract is an alternative route for SARS-CoV-2 infection in a nonhuman primate model. Gastroenterology 160 (5):1647–61. doi: 10.1053/j.gastro.2020.12.001.
  • Jin, X., J.-S. Lian, J.-H. Hu, J. Gao, L. Zheng, Y.-M. Zhang, S.-R. Hao, H.-Y. Jia, H. Cai, X.-L. Zhang, et al. 2020. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69 (6):1002–9. doi: 10.1136/gutjnl-2020-320926.
  • Jordan, R. E., P. Adab, and K. K. Cheng. 2020. Covid-19: Risk factors for severe disease and death. BMJ (Clinical Research ed.) 368:m1198. doi: 10.1136/bmj.m1198.
  • Ke, S., S. T. Weiss, and Y.-Y. Liu. 2022. Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes. Nature Communications 13 (1):5235. doi: 10.1038/s41467-022-32991-w.
  • Keely, S., N. J. Talley, and P. M. Hansbro. 2012. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunology 5 (1):7–18. doi: 10.1038/mi.2011.55.
  • Kiousi, D., A. Karapetsas, K. Karolidou, M. Panayiotidis, A. Pappa, and A. Galanis. 2019. Probiotics in extraintestinal diseases: Current trends and new directions. Nutrients 11 (4):788. doi: 10.3390/nu11040788.
  • Korpela, K., A. Salonen, L. J. Virta, R. A. Kekkonen, K. Forslund, P. Bork, and W. M. de Vos. 2016. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nature Communications 7:10410. doi: 10.1038/ncomms10410.
  • Kotzampassi, K., E. J. Giamarellos-Bourboulis, A. Voudouris, P. KazAMias, and E. Eleftheriadis. 2006. Benefits of a synbiotic formula (Synbiotic 2000Forte) in critically Ill trauma patients: Early results of a randomized controlled trial. World Journal of Surgery 30 (10):1848–55. doi: 10.1007/s00268-005-0653-1.
  • Lamers, M. M., J. Beumer, J. van der Vaart, K. Knoops, J. Puschhof, T. I. Breugem, R. B. G. Ravelli, J. Paul van Schayck, A. Z. Mykytyn, H. Q. Duimel, et al. 2020. SARS-CoV-2 productively infects human gut enterocytes. Science (New York, N.Y.) 369 (6499):50–4. doi: 10.1126/science.abc1669.
  • Li, N, et al. 2019. The commensal microbiota and viral infection: A comprehensive review. Frontiers in Immunology. 10:1551.
  • Liang, W., Z. Feng, S. Rao, C. Xiao, X. Xue, Z. Lin, Q. Zhang, and W. Qi. 2020. Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut 69 (6):1141–3. doi: 10.1136/gutjnl-2020-320832.
  • Libertucci, J, and V. B. Young. 2019. The role of the microbiota in infectious diseases. Nature Microbiology 4 (1):35–45. doi: 10.1038/s41564-018-0278-4.
  • Linscott, A. J., R. B. Flamholtz, D. Shukla, Y. Song, C. Liu, and S. M. Finegold. 2005. Fatal septicemia due to Clostridium hathewayi and Campylobacter hominis. Anaerobe 11 (1-2):97–8. doi: 10.1016/j.anaerobe.2004.10.002.
  • Linssen, R. S., G. Chai, J. Ma, A. B. Kummarapurugu, J. B. M. van Woensel, R. A. Bem, L. Kaler, G. A. Duncan, L. Zhou, B. K. Rubin, et al. 2021. Neutrophil extracellular traps increase airway mucus viscoelasticity and slow mucus particle transit. American Journal of Respiratory Cell and Molecular Biology 64 (1):69–78. doi: 10.1165/rcmb.2020-0168OC.
  • Liu, Q., J. W. Y. Mak, Q. Su, Y. K. Yeoh, G. C.-Y. Lui, S. S. S. Ng, F. Zhang, A. Y. L. Li, W. Lu, D. S.-C. Hui, et al. 2022. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71 (3):544–52. doi: 10.1136/gutjnl-2021-325989.
  • Liu, X., Y. Li, K. Wu, Y. Shi, and M. Chen. 2021. Fecal microbiota transplantation as therapy for treatment of active ulcerative colitis: A systematic review and meta-analysis. Gastroenterology Research and Practice 2021:6612970. doi: 10.1155/2021/6612970.
  • Luoto, R., O. Ruuskanen, M. Waris, M. Kalliomäki, S. Salminen, and E. Isolauri. 2014. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. The Journal of Allergy and Clinical Immunology 133 (2):405–13. doi: 10.1016/j.jaci.2013.08.020.
  • Malard, F., J. Dore, B. Gaugler, and M. Mohty. 2021. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology 14 (3):547–54. doi: 10.1038/s41385-020-00365-4.
  • Matsuoka, K, and T. Kanai. 2015. The gut microbiota and inflammatory bowel disease. Seminars in Immunopathology 37 (1):47–55. doi: 10.1007/s00281-014-0454-4.
  • McAleer, J. P, and J. K. Kolls. 2018. Contributions of the intestinal microbiome in lung immunity. European Journal of Immunology 48 (1):39–49. doi: 10.1002/eji.201646721.
  • McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O’Garra. 2015. Type I interferons in infectious disease. Nature Reviews. Immunology 15 (2):87–103. doi: 10.1038/nri3787.
  • Merad, M., A. Subramanian, and T. T. Wang. 2021. An aberrant inflammatory response in severe COVID-19. Cell Host & Microbe 29 (7):1043–7. doi: 10.1016/j.chom.2021.06.018.
  • Monk, P. D., R. J. Marsden, V. J. Tear, J. Brookes, T. N. Batten, M. Mankowski, F. J. Gabbay, D. E. Davies, S. T. Holgate, L.-P. Ho, et al. 2021. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Respiratory Medicine 9 (2):196–206. doi: 10.1016/S2213-2600(20)30511-7.
  • Monroe, K. M., S. M. McWhirter, and R. E. Vance. 2010. Induction of type I interferons by bacteria. Cellular Microbiology 12 (7):881–90. doi: 10.1111/j.1462-5822.2010.01478.x.
  • Morrow, L. E., M. H. Kollef, and T. B. Casale. 2010. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. American Journal of Respiratory and Critical Care Medicine 182 (8):1058–64. doi: 10.1164/rccm.200912-1853OC.
  • Namba, K., M. Hatano, T. Yaeshima, M. Takase, and K. Suzuki. 2010. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Bioscience, Biotechnology, and Biochemistry 74 (5):939–45. doi: 10.1271/bbb.90749.
  • Neurath, M. F., K. Überla, and S. C. Ng. 2021. Gut as viral reservoir: Lessons from gut viromes, HIV and COVID-19. Gut 70 (9):1605–8. doi: 10.1136/gutjnl-2021-324622.
  • Ng, S. C., Y. Peng, L. Zhang, C. K. Mok, S. Zhao, A. Li, J. Y. Ching, Y. Liu, S. Yan, D. L. S. Chan, et al. 2022. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut 71 (6):1106–16. doi: 10.1136/gutjnl-2021-326563.
  • Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science (New York, N.Y.) 336 (6086):1262–7. doi: 10.1126/science.1223813.
  • Pairo-Castineira, E., S. Clohisey, L. Klaric, A. D. BreHerick, K. Rawlik, D. Pasko, S. Walker, N. Parkinson, M. H. Fourman, C. D. Russell, Gen-COVID Investigators, et al. 2021. Genetic mechanisms of critical illness in COVID-19. Nature 591 (7848):92–8. doi: 10.1038/s41586-020-03065-y.
  • Pan, L., M. Mu, P. Yang, Y. Sun, R. Wang, J. Yan, P. Li, B. Hu, J. Wang, C. Hu, et al. 2020. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. The American Journal of Gastroenterology 115 (5):766–73. doi: 10.14309/ajg.0000000000000620.
  • Park, A, and A. Iwasaki. 2020. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host & Microbe 27 (6):870–8. doi: 10.1016/j.chom.2020.05.008.
  • Pascoal, L. B., P. B. Rodrigues, L. M. Genaro, A. B. D. S. P. Gomes, D. A. Toledo-Teixeira, P. L. Parise, K. BiSPo-Dos-Santos, C. L. Simeoni, P. V. Guimarães, L. I. Buscaratti, et al. 2021. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes 13 (1):1–9. doi: 10.1080/19490976.2021.1874740.
  • Petrillo, M., C. Brogna, S. Cristoni, M. Querci, O. Piazza, and G. Van den Eede. 2021. Increase of SARS-CoV-2 RNA load in faecal samples prompts for rethinking of SARS-CoV-2 biology and COVID-19 epidemiology. F1000Research 10:370. doi: 10.12688/f1000research.52540.2.
  • Pfeiffer, J. K, and H. W. Virgin. 2016. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351 (6270):aad5872. doi: 10.1126/science.aad5872.
  • Ragab, D, et al. 2020. The COVID-19 cytokine storm; what we know so far. Frontiers in Immunology. 11:1446.
  • Rao, C., K. Z. Coyte, W. Bainter, R. S. Geha, C. R. Martin, and S. RAKoff-Nahoum. 2021. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591 (7851):633–8. doi: 10.1038/s41586-021-03241-8.
  • Ratajczak, W., A. Rył, A. Mizerski, K. Walczakiewicz, O. Sipak, and M. Laszczyńska. 2019. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica 66 (1):1–12. doi: 10.18388/abp.2018_2648.
  • Reid, G. 2016. Probiotics: Definition, scope and mechanisms of action. Best Practice & Research. Clinical Gastroenterology 30 (1):17–25. doi: 10.1016/j.bpg.2015.12.001.
  • Ren, Z., H. Wang, G. Cui, H. Lu, L. Wang, H. Luo, X. Chen, H. Ren, R. Sun, W. Liu, et al. 2021. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut 70 (7):1253–65. doi: 10.1136/gutjnl-2020-323826.
  • Riedel, C.-U., F. Foata, D. Philippe, O. Adolfsson, B.-J. Eikmanns, and S. Blum. 2006. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-kappaB activation. World Journal of Gastroenterology 12 (23):3729–35. doi: 10.3748/wjg.v12.i23.3729.
  • Rodrigues, T. S, et al. 2021. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. Journal of Experimental Medicine. 218 (3):e20201707. doi: 10.1084/jem.20201707
  • Rooks, M. G, and W. S. Garrett. 2016. Gut microbiota, metabolites and host immunity. Nature Reviews. Immunology 16 (6):341–52. doi: 10.1038/nri.2016.42.
  • Sariol, A, and S. Perlman. 2021. SARS-CoV-2 takes its Toll. Nature Immunology 22 (7):801–2. doi: 10.1038/s41590-021-00962-w.
  • Schaupp, L., S. Muth, L. Rogell, M. Kofoed-Branzk, F. Melchior, S. LieNenklaus, S. C. Ganal-Vonarburg, M. Klein, F. Guendel, T. Hain, et al. 2020. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181 (5):1080–1096 e1019. doi: 10.1016/j.cell.2020.04.022.
  • Schirmer, M., S. P. Smeekens, H. Vlamakis, M. Jaeger, M. Oosting, E. A. Franzosa, R. Ter Horst, T. Jansen, L. Jacobs, M. J. Bonder, et al. 2016. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167 (4):1125–1136 e1128. doi: 10.1016/j.cell.2016.10.020.
  • Schmitter, T., B. L. Fiebich, J. T. Fischer, M. Gajfulin, N. Larsson, T. Rose, and M. R. Goetz. 2018. Ex vivo anti-inflammatory effects of probiotics for periodontal health. Journal of Oral Microbiology 10 (1):1502027. doi: 10.1080/20002297.2018.1502027.
  • Schroder, K, and J. Tschopp. 2010. The inflammasomes. Cell 140 (6):821–32. doi: 10.1016/j.cell.2010.01.040.
  • Schult, D., S. Reitmeier, P. Koyumdzhieva, T. Lahmer, M. Middelhoff, J. Erber, J. Schneider, J. Kager, M. Frolova, J. Horstmann, et al. 2022. Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes 14 (1):2031840. doi: 10.1080/19490976.2022.2031840.
  • Sencio, V., A. Barthelemy, L. P. Tavares, M. G. Machado, D. Soulard, C. Cuinat, C. M. Queiroz-Junior, M.-L. Noordine, S. Salomé-Desnoulez, L. Deryuter, et al. 2020. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Reports 30 (9):2934–47 e2936. doi: 10.1016/j.celrep.2020.02.013.
  • Shang, J., G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, and F. Li. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581 (7807):221–4. doi: 10.1038/s41586-020-2179-y.
  • Shibata, T., U. Ohto, S. Nomura, K. Kibata, Y. Motoi, Y. Zhang, Y. Murakami, R. Fukui, T. Ishimoto, S. Sano, et al. 2016. Guanosine and its modified derivatives are endogenous ligands for TLR7. International Immunology 28 (5):211–22. doi: 10.1093/intimm/dxv062.
  • Sun, Z., Z.-G. Song, C. Liu, S. Tan, S. Lin, J. Zhu, F.-H. Dai, J. Gao, J.-L. She, Z. Mei, et al. 2022. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Medicine 20 (1):24. doi: 10.1186/s12916-021-02212-0.
  • Tang, L., S. Gu, Y. Gong, B. Li, H. Lu, Q. Li, R. Zhang, X. Gao, Z. Wu, J. Zhang, et al. 2020. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering (Beijing, China) 6 (10):1178–84. doi: 10.1016/j.eng.2020.05.013.
  • Taquet, M., Q. Dercon, S. Luciano, J. R. Geddes, M. Husain, and P. J. HarrISon. 2021. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLOS Medicine 18 (9):e1003773. doi: 10.1371/journal.pmed.1003773.
  • Thackray, L. B., S. A. Handley, M. J. Gorman, S. Poddar, P. Bagadia, C. G. Briseño, D. J. Theisen, Q. Tan, B. L. Hykes, H. Lin, et al. 2018. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Reports 22 (13):3440–3453 e3446. doi: 10.1016/j.celrep.2018.03.001.
  • Tian, Y., L. Rong, W. Nian, and Y. He. 2020. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Alimentary Pharmacology & Therapeutics 51 (9):843–51. doi: 10.1111/apt.15731.
  • Triana, S., C. Metz-Zumaran, C. Ramirez, C. Kee, P. Doldan, M. Shahraz, D. Schraivogel, A. R. Gschwind, A. K. Sharma, L. M. Steinmetz, et al. 2021. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Molecular Systems Biology 17 (4):e10232. doi: 10.15252/msb.202110232.
  • Troisi, J., G. Venutolo, M. Pujolassos Tanyà, M. Delli Carri, A. Landolfi, and A. Fasano. 2021. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World Journal of Gastroenterology 27 (14):1406–18. doi: 10.3748/wjg.v27.i14.1406.
  • Trompette, A., E. S. Gollwitzer, C. Pattaroni, I. C. Lopez-Mejia, E. Riva, J. Pernot, N. Ubags, L. Fajas, L. P. Nicod, B. J. Marsland, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 48 (5):992–1005 e1008. doi: 10.1016/j.immuni.2018.04.022.
  • Vabret, N., G. J. Britton, C. Gruber, S. Hegde, J. Kim, M. Kuksin, R. Levantovsky, L. Malle, A. Moreira, M. D. Park, Sinai Immunology Review Project, et al. 2020. Immunology of COVID-19: Current state of the science. Immunity 52 (6):910–41. doi: 10.1016/j.immuni.2020.05.002.
  • Vacca, M., G. Celano, F. M. Calabrese, P. Portincasa, M. Gobbetti, and M. De Angelis. 2020. The controversial role of human gut lachnospiraceae. Microorganisms 8 (4):573. doi: 10.3390/microorganisms8040573.
  • van Tilburg Bernardes, E., V. K. Pettersen, M. W. Gutierrez, I. LAForest-Lapointe, N. G. Jendzjowsky, J.-B. Cavin, F. A. Vicentini, C. M. Keenan, H. R. Ramay, J. Samara, et al. 2020. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nature Communications 11 (1):2577. doi: 10.1038/s41467-020-16431-1.
  • Vanaja, S. K., V. A. K. Rathinam, and K. A. Fitzgerald. 2015. Mechanisms of inflammasome activation: Recent advances and novel insights. Trends in Cell Biology 25 (5):308–15. doi: 10.1016/j.tcb.2014.12.009.
  • Wang, J., F. Li, H. Wei, Z.-X. Lian, R. Sun, and Z. Tian. 2014. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. The Journal of Experimental Medicine 211 (12):2397–410. doi: 10.1084/jem.20140625.
  • Wang, Y., G. Wu, L. Zhao, and W. Wang. 2022. Nutritional modulation of gut microbiota alleviates severe gastrointestinal symptoms in a patient with post-acute COVID-19 syndrome. mBio 13 (2):e0380121. doi: 10.1128/mbio.03801-21.
  • Watanabe, D., Y. Guo, and N. Kamada. 2021. Interaction between the inflammasome and commensal microorganisms in gastrointestinal health and disease. EMBO Molecular Medicine 13 (12):e13452. doi: 10.15252/emmm.202013452.
  • Wirusanti, N. I, et al. 2022. Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology 30(8):778–792. doi: 10.1016/j.tim.2022.01.007
  • Wlodarczyk, J, et al. 2022. Short-chain fatty acids-microbiota crosstalk in the coronavirus disease (COVID-19). Pharmacological Reports: 1–10. doi: 10.1007/s43440-022-00415-7
  • Wolfel, R, et al. 2020. Virological assessment of hospitalized patients with COVID-2019. Nature 581 (7809):465–9.
  • Wu, Y., X. Cheng, G. Jiang, H. Tang, S. Ming, L. Tang, J. Lu, C. Guo, H. Shan, X. Huang, et al. 2021. Author Correction: Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms and Microbiomes 7 (1):90. doi: 10.1038/s41522-021-00262-z.
  • Xu, R., R. Lu, T. Zhang, Q. Wu, W. Cai, X. Han, Z. Wan, X. Jin, Z. Zhang, C. Zhang, et al. 2021. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Communications Biology 4 (1):240. doi: 10.1038/s42003-021-01796-w.
  • Xu, X. W, et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. Bmj 368:m606.
  • Yamamoto, S., M. Saito, A. Tamura, D. Prawisuda, T. Mizutani, and H. Yotsuyanagi. 2021. The human microbiome and COVID-19: A systematic review. PloS One 16 (6):e0253293. doi: 10.1371/journal.pone.0253293.
  • Yan, F, and D. B. Polk. 2011. Probiotics and immune health. Current Opinion in Gastroenterology 27 (6):496–501.
  • Yang, X.-L., G. Wang, J.-Y. Xie, H. Li, S.-X. Chen, W. Liu, and S. J. Zhu. 2021. The intestinal microbiome primes host innate immunity against enteric virus systemic infection through type I interferon. mBio 12 (3):e00366–21. doi: 10.1128/mBio.00366-21.
  • Yaron, J. R., S. Ambadapadi, L. Zhang, R. N. Chavan, S. A. Tibbetts, S. Keinan, A. Varsani, J. Maldonado, S. Kraberger, A. M. Tafoya, et al. 2020. Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Scientific Reports 10 (1):2371. doi: 10.1038/s41598-020-59269-9.
  • Yeoh, Y. K., T. Zuo, G. C.-Y. Lui, F. Zhang, Q. Liu, A. Y. Li, A. C. Chung, C. P. Cheung, E. Y. Tso, K. S. Fung, et al. 2021. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70 (4):698–706. doi: 10.1136/gutjnl-2020-323020.
  • Zeng, J., C.-T. Wang, F.-S. Zhang, F. Qi, S.-F. Wang, S. Ma, T.-J. Wu, H. Tian, Z.-T. Tian, S.-L. Zhang, et al. 2016. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: A randomized controlled multicenter trial. Intensive Care Medicine 42 (6):1018–28. doi: 10.1007/s00134-016-4303-x.
  • Zhang, J.-J., X. Dong, Y.-Y. Cao, Y.-D. Yuan, Y.-B. Yang, Y.-Q. Yan, C. A. Akdis, and Y.-D. Gao. 2020. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75 (7):1730–41. doi: 10.1111/all.14238.
  • Zhou, F., T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet 395 (10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3.
  • Zhou, P., X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798):270–3. doi: 10.1038/s41586-020-2012-7.
  • Ziegler, C. G., S. J. Allon, S. K. Nyquist, I. M. Mbano, V. N. Miao, C. s. t N. Tzouanas, Y. Cao, A. S. Yousif, J. Bals, B. M. Hauser, et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181 (5):1016–35 e1019. doi: 10.1016/j.cell.2020.04.035.
  • Zuo, T., Q. Liu, F. Zhang, G. C.-Y. Lui, E. Y. Tso, Y. K. Yeoh, Z. Chen, S. S. Boon, F. K. Chan, P. K. Chan, et al. 2021. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 70 (2):276–84.
  • Zuo, T., S. H. Wong, C. P. Cheung, K. Lam, R. Lui, K. Cheung, F. Zhang, W. Tang, J. Y. L. Ching, J. C. Y. Wu, et al. 2018. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nature Communications 9 (1):3663. doi: 10.1038/s41467-018-06103-6.
  • Zuo, T., X. Wu, W. Wen, and P. Lan. 2021. Gut microbiome alterations in COVID-19. Genomics, Proteomics & Bioinformatics 19 (5):679–88. doi: 10.1016/j.gpb.2021.09.004.
  • Zuo, T., H. Zhan, F. Zhang, Q. Liu, E. Y. K. Tso, G. C. Y. Lui, N. Chen, A. Li, W. Lu, F. K. L. Chan, et al. 2020. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology 159 (4):1302–10 e1305. doi: 10.1053/j.gastro.2020.06.048.
  • Zuo, T., F. Zhang, G. C. Y. Lui, Y. K. Yeoh, A. Y. L. Li, H. Zhan, Y. Wan, A. C. K. Chung, C. P. Cheung, N. Chen, et al. 2020. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159 (3):944–955. doi: 10.1053/j.gastro.2020.05.048.