616
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Alteration of the allergenicity of cow’s milk proteins using different food processing modifications

, , , & ORCID Icon

References

  • Abd El-Salam, M. H., and S. El-Shibiny. 2021. Reduction of milk protein antigenicity by enzymatic hydrolysis and fermentation. A review. Food Reviews International 37 (3):276–95. doi: 10.1080/87559129.2019.1701010.
  • Abebe, E. C., T. A. Dejenie, T. M. Ayele, N. D. Baye, A. A. Teshome, and Z. T. Muche. 2021. The role of regulatory B cells in health and diseases: A systemic review. Journal of Inflammation Research 14:75.
  • Abrams, E. M., H. Kim, J. Gerdts, and J. L. P. Protudjer. 2020. Milk allergy most burdensome in multi-food allergic children. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 31 (7):827–34. doi: 10.1111/pai.13274.
  • Aguiar, S. S. J., M. I. S. Veloso, A. L. Fernando, and R. Franco. 2017. Control of milk allergenicity. Journal of Dairy & Veterinary Sciences 2 (5):555600. doi: 10.19080/JDVS.2017.02.555600.
  • Ahmed, I., H. Chen, J. Li, B. Wang, Z. Li, and G. Huang. 2021. Enzymatic crosslinking and food allergenicity: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (6):5856–79. doi: 10.1111/1541-4337.12855.
  • Almaas, H., A.-L. Cases, T. G. Devold, H. Holm, T. Langsrud, L. Aabakken, T. Aadnoey, and G. E. Vegarud. 2006. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. International Dairy Journal 16 (9):961–8. doi: 10.1016/j.idairyj.2005.10.029.
  • Amador-Espejo, G. G., J. J. Gallardo-Chacon, H. Nykänen, B. Juan, and A. J. Trujillo. 2015. Effect of ultra high-pressure homogenization on hydro- and lipo-soluble milk vitamins. Food Research International 77:49–54. doi: 10.1016/j.foodres.2015.04.025.
  • Ambrosi, V., G. Polenta, C. Gonzalez, G. Ferrari, and P. Maresca. 2016. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. Innovative Food Science & Emerging Technologies 38:294–301. doi: 10.1016/j.ifset.2016.05.009.
  • Anugu, A., W. Yang, and K. Krishnamurthy. 2009. Efficacy of pulsed ultraviolet light for reduction of allergenicity in isolated milk proteins. Abstract presented at the IFT, Anaheim, CA.
  • Arias, M., R. López Fandiño, and A. Olano. 2000. Influence of pH on the effects of high pressure on milk proteins. Milchwissenschaft 55 (4):191–4.
  • Azdad, O., N. Mejrhit, M. El Kabbaoui, A. Chda, I. Ouahidi, A. Tazi, R. Bencheikh, and L. Aarab. 2018. Effect of heating and enzymatic hydrolysis on casein cow milk sensitivity in Moroccan population. Food and Agricultural Immunology 29 (1):424–33. doi: 10.1080/09540105.2017.1391179.
  • Balakrishnan, G., and R. Agrawal. 2014. Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. Journal of Food Science and Technology 51 (12):4138–42. doi: 10.1007/s13197-012-0891-9.
  • Beretta, B., A. Conti, A. Fiocchi, A. Gaiaschi, C. L. Galli, M. G. Giuffrida, C. Ballabio, and P. Restani. 2001. Antigenic determinants of bovine serum albumin. International Archives of Allergy and Immunology 126 (3):188–95. doi: 10.1159/000049513.
  • Bogahawaththa, D., R. Buckow, J. Chandrapala, and T. Vasiljevic. 2018. Comparison between thermal pasteurization and high pressure processing of bovine skim milk in relation to denaturation and immunogenicity of native milk proteins. Innovative Food Science & Emerging Technologies 47:301–8. doi: 10.1016/j.ifset.2018.03.016.
  • Bogahawaththa, D., J. Chandrapala, and T. Vasiljevic. 2019. Thermal denaturation of bovine β-lactoglobulin in different protein mixtures in relation to antigenicity. International Dairy Journal 91:89–97. doi: 10.1016/j.idairyj.2018.10.004.
  • Boonpiyathad, T., P. Satitsuksanoa, M. Akdis, and C. A. Akdis. 2019. IL-10 producing T and B cells in allergy. Seminars in immunology 44:101326. doi: 10.1016/j.smim.2019.101326.
  • Borad, S. G., A. Kumar, and A. K. Singh. 2017. Effect of processing on nutritive values of milk protein. Critical Reviews in Food Science and Nutrition 57 (17):3690–702. doi: 10.1080/10408398.2016.1160361.
  • Bosman, G. P., S. Oliveira, P. J. Simons, J. Sastre Torano, G. W. Somsen, L. M. Knippels, R. Haselberg, R. J. Pieters, J. Garssen, and K. Knipping. 2021. Limited lactosylation of beta-lactoglobulin from cow’s milk exerts strong influence on antigenicity and degranulation of mast cells. Nutrients 13 (6):2041. doi: 10.3390/nu13062041.
  • Brenna, O., C. Pompei, C. Ortolani, V. Pravettoni, E. A. Pastorello, and L. Farioli. 2000. Technological processes to decrease the allergenicity of peach juice and nectar. Journal of Agricultural and Food Chemistry 48 (2):493–7. doi: 10.1021/jf9906681.
  • Brick, T., M. Ege, S. Boeren, A. Bock, E. von Mutius, J. Vervoort, and K. Hettinga. 2017. Effect of processing intensity on immunologically active bovine milk serum proteins. Nutrients 9 (9):963. doi: 10.3390/nu9090963.
  • Brick, T., Y. Schober, C. Bocking, J. Pekkanen, J. Genuneit, G. Loss, J. C. Dalphin, J. Riedler, R. Lauener, W. A. Nockher, et al. 2016. Omega-3 fatty acids contribute to the asthma-protective effect of unprocessed cow’s milk. The Journal of Allergy and Clinical Immunology 137 (6):1699–706.e13. e1613. doi: 10.1016/j.jaci.2015.10.042.
  • Bu, G., Y. Luo, F. Chen, K. Liu, and T. Zhu. 2013. Milk processing as a tool to reduce cow’s milk allergenicity: A mini-review. Dairy Science & Technology 93 (3):211–23. doi: 10.1007/s13594-013-0113-x.
  • Bu, G., Y. Luo, Z. Zheng, and H. Zheng. 2009. Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food and Agricultural Immunology 20 (3):195–206. doi: 10.1080/09540100903026116.
  • Busse, P. J., K.-M. Järvinen, L. Vila, K. Beyer, and H. A. Sampson. 2002. Identification of sequential Ige-binding epitopes on bovine αs2-casein in cow’s milk allergic patients. International Archives of Allergy and Immunology 129 (1):93–6. doi: 10.1159/000065178.
  • Bu, D., Z.-C. Tu, H. Wang, Y.-M. Hu, Q. Sun, and G.-X. Liu. 2022. Insight into the mechanism of d-allose in reducing the allergenicity and digestibility of ultrasound-pretreated α-lactalbumin by high-resolution mass spectrometry. Food Chemistry 374:131616. doi: 10.1016/j.foodchem.2021.131616.
  • Byun, M.-W., J.-W. Lee, H.-S. Yook, C. Jo, and H.-Y. Kim. 2002. Application of gamma irradiation for inhibition of food allergy. Radiation Physics and Chemistry 63 (3–6):369–70. doi: 10.1016/S0969-806X(01)00528-X.
  • Canani, R. B., M. D. Costanzo, G. Bedogni, A. Amoroso, L. Cosenza, C. D. Scala, V. Granata, and R. Nocerino. 2017. Extensively hydrolyzed casein formula containing lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. The Journal of Allergy and Clinical Immunology 139 (6):1906–13.e4. doi: 10.1016/j.jaci.2016.10.050.
  • Cappato, L. P., M. V. S. Ferreira, J. T. Guimaraes, J. B. Portela, A. L. R. Costa, M. Q. Freitas, R. L. Cunha, C. A. F. Oliveira, G. D. Mercali, L. D. F. Marzack, et al. 2017. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology 62:104–12. doi: 10.1016/j.tifs.2017.01.010.
  • Cerecedo, I., J. Zamora, W. G. Shreffler, J. Lin, L. Bardina, M. C. Dieguez, J. Wang, A. Muriel, B. de la Hoz, and H. A. Sampson. 2008. Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray–based immunoassay. The Journal of Allergy and Clinical Immunology 122 (3):589–94. doi: 10.1016/j.jaci.2008.06.040.
  • Chatchatee, P., K. M. Järvinen, L. Bardina, L. Vila, K. Beyer, H. A. Sampson. 2001. Identification of IgE and IgG binding epitopes on β‐and κ‐casein in cow’s milk allergic patients. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 31 (8):1256–62. doi: 10.1046/j.1365-2222.2001.01167.x.
  • Chen, G., C. Wu, X. Chen, Z. Yang, and H. Yang. 2022. Studying the effects of high pressure-temperature treatment on the structure and immunoreactivity of beta-lactoglobulin using experimental and computational methods. Food Chemistry 372:131226. doi: 10.1016/j.foodchem.2021.131226.
  • Cong, Y., and L. Li. 2012. Identification of the critical amino acid residues of immunoglobulin e and immunoglobulin G epitopes in β-lactoglobulin by alanine scanning analysis. Journal of Dairy Science 95 (11):6307–12. doi: 10.3168/jds.2012-5543.
  • Cong, Y., H. Yi, Y. Qing, and L. Li. 2013. Identification of the critical amino acid residues of immunoglobulin e and immunoglobulin G epitopes on αs1-casein by alanine scanning analysis. Journal of Dairy Science 96 (11):6870–6. doi: 10.3168/jds.2013-6880.
  • Corzo-Martínez, M., A. C. Soria, J. Belloque, M. Villamiel, and F. J. Moreno. 2010. Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. International Dairy Journal 20 (11):742–52. doi: 10.1016/j.idairyj.2010.04.002.
  • Costa, C., A. Coimbra, A. Vitor, R. Aguiar, A. L. Ferreira, and A. Todo-Bom. 2020. Food allergy—From food avoidance to active treatment. Scandinavian Journal of Immunology 91 (1):e12824. doi: 10.1111/sji.12824.
  • Costa, J., C. Villa, K. Verhoeckx, T. Cirkovic-Velickovic, D. Schrama, P. Roncada, P. M. Rodrigues, C. Piras, L. Martín-Pedraza, L. Monaci, et al. 2022. Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy & Immunology 62 (1):1–36. doi: 10.1007/s12016-020-08826-1.
  • Cross, M., L. Stevenson, and H. Gill. 2001. Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria? International Immunopharmacology 1 (5):891–901. doi: 10.1016/S1567-5769(01)00025-X.
  • D’Auria, E., S. Salvatore, M. Acunzo, D. Peroni, E. Pendezza, E. D. Profio, G. Fiore, G. V. Zuccotti, and E. Verduci. 2021. Hydrolysed formulas in the management of cow’s milk allergy: New insights, pitfalls and tips. Nutrients 13 (8):2762. doi: 10.3390/nu13082762.
  • Dąbrowska, A., J. Bajzert, K. Babij, M. Szołtysik, T. Stefaniak, E. Willak-Janc, and J. Chrzanowska. 2020. Reduced IgE and IgG antigenic response to milk proteins hydrolysates obtained with the use of non-commercial serine protease from Yarrowia lipolytica. Food Chemistry 302:125350. doi: 10.1016/j.foodchem.2019.125350.
  • Dahdah, L., M. Roelofs, K. Knipping, E. de Vries, A. Rijnierse, J. Garssen, P. L. Brand, and A. Fiocchi. 2022. Hypoallergenicity assessment of an extensively hydrolyzed whey‐protein formula in cow’s milk allergic infants. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 33 (6):e13814. doi: 10.1111/pai.13814.
  • Dall’antonia, F., T. Pavkov-Keller, K. Zangger, and W. Keller. 2014. Structure of allergens and structure based epitope predictions. Methods (San Diego, CA) 66 (1):3–21. doi: 10.1016/j.ymeth.2013.07.024.
  • de Jong, N. W., M. E. van Splunter, J. A. M. Emons, K. A. Hettinga, R. Gerth van Wijk, H. J. Wichers, H. F. J. Savelkoul, A. B. Sprikkelman, R. J. J. van Neerven, L. Liu, et al. 2022. Introduction of heated cow’s milk protein in challenge-proven cow’s milk allergic children: The iAGE study. Nutrients 14 (3):629. doi: 10.3390/nu14030629.
  • de Oliveira Silva, A. C., L. A. D. Oliveira, E. F. De Jesus, M. A. Cortez, C. C. Alves, M. L. G. Monteiro, and C. A. Conte Junior. 2015. Effect of gamma irradiation on the bacteriological and sensory analysis of raw whole milk under refrigeration. Journal of Food Processing and Preservation 39 (6):2404–11. doi: 10.1111/jfpp.12490.
  • De Wit, J. 2009. Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150 °C. A review. Trends in Food Science & Technology 20 (1):27–34. doi: 10.1016/j.tifs.2008.09.012.
  • Delorme, M. M., J. T. Guimarães, N. M. Coutinho, C. F. Balthazar, R. S. Rocha, R. Silva, L. P. Margalho, T. C. Pimentel, M. C. Silva, M. Q. Freitas, et al. 2020. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology 102:146–54. doi: 10.1016/j.tifs.2020.06.001.
  • Deng, Y., C. I. Butré, and P. A. Wierenga. 2018. Influence of substrate concentration on the extent of protein enzymatic hydrolysis. International Dairy Journal 86:39–48. doi: 10.1016/j.idairyj.2018.06.018.
  • Du Toit, G., A. Santos, G. Roberts, A. Fox, P. Smith, and G. Lack. 2009. The diagnosis of IgE‐mediated food allergy in childhood. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 20 (4):309–19. doi: 10.1111/j.1399-3038.2009.00887.x.
  • Dupont, D., G. Mandalari, D. Molle, J. Jardin, O. Rolet-Repecaud, G. Duboz, J. Leonil, C. E. Mills, and A. R. Mackie. 2010. Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research 54 (11):1677–89. doi: 10.1002/mnfr.200900582.
  • Ehn, B.-M., B. Ekstrand, U. Bengtsson, and S. Ahlstedt. 2004. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry 52 (5):1398–403. doi: 10.1021/jf0304371.
  • Ekezie, F.-G. C., J.-H. Cheng, and D.-W. Sun. 2018. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science & Technology 74:12–25. doi: 10.1016/j.tifs.2018.01.007.
  • Fiore, G., E. D. Profio, M. Sculati, E. Verduci, and G. V. Zuccotti. 2022. Health effects of yogurt consumption during paediatric age: A narrative review. International Journal of Food Sciences and Nutrition 73 (6):738–59. doi: 10.1080/09637486.2022.2065467.
  • Florence, A. C., C. Beal, R. C. Silva, C. S. Bogsan, A. L. Pilleggi, L. A. Gioielli, and M. N. Oliveira. 2012. Fatty acid profile, trans-octadecenoic, alpha-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chemistry 135 (4):2207–14. doi: 10.1016/j.foodchem.2012.07.026.
  • Fox, P. 2001. Milk proteins as food ingredients. International Journal of Dairy Technology 54 (2):41–55. doi: 10.1046/j.1471-0307.2001.00014.x.
  • Geiselhart, S., A. Podzhilkova, and K. Hoffmann-Sommergruber. 2021. Cow’s milk processing—Friend or foe in food allergy? Foods 10 (3):572. doi: 10.3390/foods10030572.
  • Gharbi, N., and M. Labbafi. 2018. Effect of processing on aggregation mechanism of egg white proteins. Food Chemistry 252:126–33. doi: 10.1016/j.foodchem.2018.01.088.
  • Goldberg, M. R., L. Nachshon, M. Y. Appel, A. Elizur, M. B. Levy, E. Eisenberg, H. A. Sampson, and Y. Katz. 2015. Efficacy of baked milk oral immunotherapy in baked milk-reactive allergic patients. The Journal of Allergy and Clinical Immunology 136 (6):1601–6. doi: 10.1016/j.jaci.2015.05.040.
  • Golkar, A., J. M. Milani, and T. Vasiljevic. 2019. Altering allergenicity of cow’s milk by food processing for applications in infant formula. Critical Reviews in Food Science and Nutrition 59 (1):159–72. doi: 10.1080/10408398.2017.1363156.
  • Graulet, B., B. Martin, C. Agabriel, and C. L. Girard. 2013. Vitamins in milks. In Milk and dairy products in human nutrition: Production, composition and health, ed. Y. W. Park, and G. F. W. Haenlein. New York: John Wiley & Sons.
  • Graversen, K. B., A.-S. R. Ballegaard, L. H. Kraemer, S. E. Hornslet, L. V. Sørensen, H. F. Christoffersen, L. N. Jacobsen, E. Untersmayr, J. J. Smit, and K. L. Bøgh. 2020. Cow’s milk allergy prevention and treatment by heat-treated whey-A study in brown Norway rats. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 50 (6):708–21. doi: 10.1111/cea.13587.
  • Halken, S., K. S. Hansen, H. P. Jacobsen, A. Estmann, A. E. Faelling, L. G. Hansen, S. R. Kier, K. Lassen, M. Lintrup, S. Mortensen, et al. 2000. Comparison of a partially hydrolyzed infant formula with two extensively hydrolyzed formulas for allergy prevention: A prospective, randomized study. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 11 (3):149–61. doi: 10.1034/j.1399-3038.2000.00081.x.
  • Hamdy, A. M., M. A. Mohran, A. I. Hassan, and M. A. Fahmy. 2018. Effects of heat, ultrasound and microwave pretreatments on the antigenicity of whey protein concentrate (β-lactoglobulin). Assiut Journal of Agricultural Sciences 49 (4):75–87.
  • Han, T., M. Wang, Y. Wang, and L. Tang. 2020. Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT 130:109560. doi: 10.1016/j.lwt.2020.109560.
  • Ho, M. H., W. H. Wong, and C. Chang. 2014. Clinical spectrum of food allergies: A comprehensive review. Clinical Reviews in Allergy & Immunology 46 (3):225–40. doi: 10.1007/s12016-012-8339-6.
  • Hochwallner, H., U. Schulmeister, I. Swoboda, S. Spitzauer, and R. Valenta. 2014. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods (San Diego, CA) 66 (1):22–33. doi: 10.1016/j.ymeth.2013.08.005.
  • Hong, M., Y. Liao, J. Liang, X. Chen, S. Li, W. Liu, C. Gao, Z. Zhong, D. Kong, J. Deng, et al. 2019. Immunomodulation of human CD19+ CD25 high regulatory B cells via Th17/Foxp3 regulatory T cells and Th1/Th2 cytokines. Human Immunology 80 (10):863–70. doi: 10.1016/j.humimm.2019.05.011.
  • Høst, A. 1994. Cow’s milk protein allergy and intolerance in infancy some clinical, epidemiological and immunological aspects. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 5 (5 Suppl):1–36.
  • Hu, G., Y. Zheng, Z. Liu, Y. Deng, and Y. Zhao. 2016. Structure and IgE-binding properties of alpha-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chemistry 204:46–55. doi: 10.1016/j.foodchem.2016.02.113.
  • Huang, H.-W., B. B. Yang, and C.-Y. Wang. 2014. Effects of high pressure processing on immunoreactivity and microbiological safety of crushed peanuts. Food Control. 42:290–5. doi: 10.1016/j.foodcont.2014.02.030.
  • Hurley, W., and P. Theil. 2013. Immunoglobulins in mammary secretions. Advanced Dairy Chemistry 63 (4):275–94.
  • Inuo, C., K. Tanaka, Y. Nakajima, K. Yamawaki, T. Matsubara, H. Iwamoto, I. Tsuge, A. Urisu, and Y. Kondo. 2019. Tolerability of partially and extensively hydrolysed milk formulas in children with cow’s milk allergy. Asia Pacific Journal of Clinical Nutrition 28 (1):49–56.
  • Inuo, C., K. Tanaka, S. Suzuki, Y. Nakajima, K. Yamawaki, I. Tsuge, A. Urisu, and Y. Kondo. 2018. Oral immunotherapy using partially hydrolyzed formula for cow’s milk protein allergy: A randomized, controlled trial. International Archives of Allergy and Immunology 177 (3):259–68. doi: 10.1159/000490804.
  • Iweala, O. I., S. K. Choudhary, and S. P. Commins. 2018. Food allergy. Current Gastroenterology Reports 20 (5):1–6. doi: 10.1007/s11894-018-0624-y.
  • Izquierdo, F. J., E. Peñas, M. L. Baeza, and R. Gomez. 2008. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal 18 (9):918–22. doi: 10.1016/j.idairyj.2008.01.005.
  • Jaiswal, L., and M. Worku. 2022. Recent perspective on cow’s milk allergy and dairy nutrition. Critical Reviews in Food Science and Nutrition 62 (27):7503–17. doi: 10.1080/10408398.2021.1915241.
  • Järvinen, K.-M., P. Chatchatee, L. Bardina, K. Beyer, and H. A. Sampson. 2001. IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy. International Archives of Allergy and Immunology 126 (2):111–8. doi: 10.1159/000049501.
  • Jayat, D., J.-C. Gaudin, J.-M. Chobert, T. V. Burova, C. Holt, I. McNae, L. Sawyer, and T. Haertlé. 2004. A recombinant c121s mutant of bovine β-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agents and heating. Biochemistry 43 (20):6312–21. doi: 10.1021/bi0362469.
  • Jeon, S. G., H. Kayama, Y. Ueda, T. Takahashi, T. Asahara, H. Tsuji, N. M. Tsuji, H. Kiyono, J. S. Ma, T. Kusu, et al. 2012. Probiotic bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathogens 8 (5):e1002714. doi: 10.1371/journal.ppat.1002714.
  • Jo, J., J. Garssen, L. Knippels, and E. Sandalova. 2014. Role of cellular immunity in cow’s milk allergy: Pathogenesis, tolerance induction, and beyond. Mediators of Inflammation 2014:249784. doi: 10.1155/2014/249784.
  • Juliano, P., A. E. Torkamani, T. Leong, V. Kolb, P. Watkins, S. Ajlouni, and T. K. Singh. 2014. Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrasonics Sonochemistry 21 (6):2165–75. doi: 10.1016/j.ultsonch.2014.03.001.
  • Karamonová, L., L. Fukal, M. Kodíček, P. Rauch, E. N. C. Mills, and M. R. A. Morgan. 2003. Immunoprobes for thermally-induced alterations in whey protein structure and their application to the analysis of thermally-treated milks. Food and Agricultural Immunology 15 (2):77–91. doi: 10.1080/09540100400003444.
  • Kazemi, R., A. Taheri-Kafrani, A. Motahari, and R. Kordesedehi. 2018. Allergenicity reduction of bovine milk beta-lactoglobulin by proteolytic activity of lactococcus lactis BMC12C and BMC19H isolated from Iranian dairy products. International Journal of Biological Macromolecules 112:876–81. doi: 10.1016/j.ijbiomac.2018.02.044.
  • Kim, A.-R., H. S. Kim, D. K. Kim, S. T. Nam, H. W. Kim, Y. H. Park, D. Lee, M. B. Lee, J. H. Lee, B. Kim, et al. 2016. Mesenteric IL-10-producing CD5+ regulatory b cells suppress cow’s milk casein-induced allergic responses in mice. Scientific Reports 6 (1):19685–12. doi: 10.1038/srep19685.
  • Kim, J. S., A. Nowak-Węgrzyn, S. H. Sicherer, S. Noone, E. L. Moshier, and H. A. Sampson. 2011. Dietary baked milk accelerates the resolution of cow’s milk allergy in children. The Journal of Allergy and Clinical Immunology 128 (1):125–31.e2. doi: 10.1016/j.jaci.2011.04.036.
  • Kleber, N., and J. Hinrichs. 2007. Antigenic response of β-lactoglobulin in thermally treated bovine skim milk and sweet whey. Milchwissenschaft 62 (2):121–4.
  • Kleber, N., S. Maier, and J. Hinrichs. 2007. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature. Innovative Food Science & Emerging Technologies 8 (1):39–45. doi: 10.1016/j.ifset.2006.05.001.
  • Kleber, N., U. Weyrich, and J. Hinrichs. 2006. Screening for lactic acid bacteria with potential to reduce antigenic response of β-lactoglobulin in bovine skim milk and sweet whey. Innovative Food Science & Emerging Technologies 7 (3):233–8. doi: 10.1016/j.ifset.2005.12.005.
  • Koletzko, S., B. Niggemann, A. Arato, J. A. Dias, R. Heuschkel, S. Husby, M. L. Mearin, A. Papadopoulou, F. M. Ruemmele, A. Staiano, et al. 2012. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI committee practical guidelines. Journal of Pediatric Gastroenterology and Nutrition 55 (2):221–9. doi: 10.1097/MPG.0b013e31825c9482.
  • Larsen, J. A., A. J. Fascetti, C. C. Calvert, and Q. R. Rogers. 2010. Bioavailability of lysine for kittens in overheated casein is underestimated by the rat growth assay method. Journal of Animal Physiology and Animal Nutrition 94 (5):e102–8. doi: 10.1111/j.1439-0396.2010.00988.x.
  • Lavilla, M., J. Orcajo, A. Diaz-Perales, and P. Gamboa. 2016. Examining the effect of high pressure processing on the allergenic potential of the major allergen in peach (Pru p 3). Innovative Food Science & Emerging Technologies 38:334–41. doi: 10.1016/j.ifset.2016.06.021.
  • Lee, J. W., J. H. Kim, H. S. Yook, K. O. Kang, S. Y. Lee, H. J. Hwang, and M. W. Byun. 2001. Effects of gamma radiation on the allergenic and antigenic properties of milk proteins. Journal of Food Protection 64 (2):272–6. doi: 10.4315/0362-028x-64.2.272.
  • Levin, M., D. Blackhurst, F. Kirstein, D. Kok, G. Van der Watt, and A. Marais. 2017. Residual allergenicity of amino acid-based and extensively hydrolysed cow’s milk formulas. South African Medical Journal 107 (9):763–7. doi: 10.7196/SAMJ.2017.v107i9.12137.
  • Liang, X., J. Cheng, J. Sun, M. Yang, X. Luo, H. Yang, J. Wu, Z. Wang, X. Yue, and Y. Zheng. 2021. Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis. LWT 150:111994. doi: 10.1016/j.lwt.2021.111994.
  • Liang, X., G. Qian, J. Sun, M. Yang, X. Shi, H. Yang, J. Wu, Z. Wang, Y. Zheng, and X. Yue. 2021. Evaluation of antigenicity and nutritional properties of enzymatically hydrolyzed cow milk. Scientific Reports 11 (1):1–14. doi: 10.1038/s41598-021-98136-z.
  • Liang, Q., X. Ren, W. Qu, X. Zhang, Y. Cheng, and H. Ma. 2021. The impact of ultrasound duration on the structure of β-lactoglobulin. Journal of Food Engineering 292:110365. doi: 10.1016/j.jfoodeng.2020.110365.
  • Liang, X., J. Sun, H. Yang, J. Cheng, X. Shi, M. Yang, L. Xu, Z. Wang, Y. Zheng, and X. Yue. 2021. Effects of enzymatic hydrolysis on the allergenicity of natural cow milk based on a BALB/c mouse ­model. Journal of Dairy Science 104 (12):12353–64. doi: 10.3168/jds.2021-20260.
  • Liang, X., H. Yang, J. Sun, J. Cheng, X. Luo, Z. Wang, M. Yang, D. B. Tao, X. Yue, and Y. Zheng. 2021. Effects of enzymatic treatments on the hydrolysis and antigenicity reduction of natural cow milk. Food Science & Nutrition 9 (2):985–93. doi: 10.1002/fsn3.2066.
  • Li, J.-L., J. Liu, Y.-H. Ye, P. Yang, and Z.-C. Tu. 2019. Reduced IgE/IgG binding capacities of bovine alpha-lactalbumin by glycation after dynamic high-pressure microfluidization pretreatment evaluated by high resolution mass spectrometry. Food Chemistry 299:125166. doi: 10.1016/j.foodchem.2019.125166.
  • Li, Z., Y. Luo, and L. Feng. 2011. Effects of maillard reaction conditions on the antigenicity of α-lactalbumin and β-lactoglobulin in whey protein conjugated with maltose. European Food Research and Technology 233 (3):387–94. doi: 10.1007/s00217-011-1532-7.
  • Linhart, B., R. Freidl, O. Elisyutina, M. Khaitov, A. Karaulov, and R. Valenta. 2019. Molecular approaches for diagnosis, therapy and prevention of cow’s milk allergy. Nutrients 11 (7):1492. doi: 10.3390/nu11071492.
  • Liu, J., W.-M. Chen, Y.-H. Shao, J.-L. Zhang, and Z.-C. Tu. 2020. The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation. Food Chemistry 310:125853.
  • Liu, C., and S. K. Sathe. 2018. Food allergen epitope mapping. Journal of Agricultural and Food Chemistry 66 (28):7238–48. doi: 10.1021/acs.jafc.8b01967.
  • Liu, J., Z.-C. Tu, G.-X. Liu, C.-D. Niu, H.-L. Yao, H. Wang, X.-M. Sha, Y.-H. Shao, and I. A. Kaltashov. 2018. Ultrasonic pretreatment combined with dry-state glycation reduced the immunoglobulin e/immunoglobulin g-binding ability of α-lactalbumin revealed by high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry 66 (22):5691–8. doi: 10.1021/acs.jafc.8b00489.
  • Liu, G. X., Z. C. Tu, W. Yang, H. Wang, L. Zhang, D. Ma, T. Huang, J. Liu, and X. Li. 2018. Investigation into allergenicity reduction and glycation sites of glycated beta-lactoglobulin with ultrasound pretreatment by high-resolution mass spectrometry. Food Chemistry 252:99–107. doi: 10.1016/j.foodchem.2018.01.086.
  • Liu, Y., L. Xiong, E. Kontopodi, S. Boeren, L. Zhang, P. Zhou, and K. Hettinga. 2020. Changes in the milk serum proteome after thermal and non-thermal treatment. Innovative Food Science & Emerging Technologies 66:102544. doi: 10.1016/j.ifset.2020.102544.
  • Li, X., S. Yuan, M. Huang, J. Gao, Z. Wu, P. Tong, A. Yang, and H. Chen. 2016. Identification of IgE and IgG epitopes on native Bos d 4 allergen specific to allergic children. Food & Function 7 (7):2996–3005. doi: 10.1039/c6fo00416d.
  • Lozano-Ojalvo, D., L. Pérez-Rodríguez, A. Pablos-Tanarro, R. López-Fandiño, and E. Molina. 2017. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innovative Food Science & Emerging Technologies 43:154–62. doi: 10.1016/j.ifset.2017.07.032.
  • Lu, Q., L. Zuo, Z. Wu, X. Li, P. Tong, Y. Wu, Q. Fan, H. Chen, and A. Yang. 2022. Characterization of the protein structure of soymilk fermented by lactobacillus and evaluation of its potential allergenicity based on the sensitized-cell model. Food Chemistry 366:130569. doi: 10.1016/j.foodchem.2021.130569.
  • Macdonald, L. E., J. Brett, D. Kelton, S. E. Majowicz, K. Snedeker, and J. M. Sargeant. 2011. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. Journal of Food Protection 74 (11):1814–32. doi: 10.4315/0362-028X.JFP-10-269.
  • Madalena, D. A., Ó. L. Ramos, R. N. Pereira, A. I. Bourbon, A. C. Pinheiro, F. X. Malcata, J. A. Teixeira, and A. A. Vicente. 2016. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocolloids 58:89–97. doi: 10.1016/j.foodhyd.2016.02.015.
  • Maresca, P., and G. Ferrari. 2017. Modelling of the kinetics of bovine serum albumin enzymatic hydrolysis assisted by high hydrostatic pressure. Food and Bioproducts Processing 105:1–11. doi: 10.1016/j.fbp.2017.03.006.
  • Markiewicz-Kęszycka, M., G. Czyżak-Runowska, P. Lipińska, and J. Wójtowski. 2013. Fatty acid profile of milk-a review. Bulletin of the Veterinary Institute in Pulawy 57 (2):135–9. doi: 10.2478/bvip-2013-0026.
  • Martorell-Aragonés, A., L. Echeverría-Zudaire, E. Alonso-Lebrero, J. Boné-Calvo, M. Martín-Muñoz, S. Nevot-Falcó, M. Piquer-Gibert, L. Valdesoiro-Navarrete, and Food Allergy Committee of SEICAP. 2015. Position document: IgE-mediated cow’s milk allergy. Allergologia et Immunopathologia 43 (5):507–26. doi: 10.1016/j.aller.2015.01.003.
  • Masterjohn, C. 2010. The biochemical magic of raw milk and other raw foods: Glutathione. Mother Nature Obeyed Blog, 241–6.
  • Matsuo, H., T. Yokooji, and T. Taogoshi. 2015. Common food allergens and their IgE-binding epitopes. Allergology International: Official Journal of the Japanese Society of Allergology 64 (4):332–43. doi: 10.1016/j.alit.2015.06.009.
  • Meng, X., Y. Bai, J. Gao, X. Li, and H. Chen. 2017. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Food Chemistry 219:290–6. doi: 10.1016/j.foodchem.2016.09.153.
  • Meng, X., X. Li, J. Gao, and H. Chen. 2016. Characterization of the potential allergenicity of irradiated bovine alpha-lactalbumin in a BALB/c mouse model. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 97:402–10. doi: 10.1016/j.fct.2016.10.010.
  • Monaco, S., G. Russo, A. Romano, L. Liotti, M. Verga, and S. M. Sopo. 2019. Yogurt is tolerated by the majority of children with IgE-mediated cow’s milk allergy. Allergologia et Immunopathologia 47 (4):322–7. doi: 10.1016/j.aller.2018.10.005.
  • Morales-Almaráz, E., A. Soldado, A. González, A. Martínez-Fernández, I. Domínguez-Vara, B. de la Roza-Delgado, and F. Vicente. 2010. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. The Journal of Dairy Research 77 (2):225–30. doi: 10.1017/S002202991000004X.
  • Morisset, M., C. Aubert-Jacquin, P. Soulaines, D. Moneret-Vautrin, and C. Dupont. 2011. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. European Journal of Clinical Nutrition 65 (2):175–83. doi: 10.1038/ejcn.2010.250.
  • Natale, M., C. Bisson, G. Monti, A. Peltran, L. P. Garoffo, S. Valentini, C. Fabris, E. Bertino, A. Coscia, and A. Conti. 2004. Cow’s milk allergens identification by two-dimensional immunoblotting and mass spectrometry. Molecular Nutrition & Food Research 48 (5):363–9. doi: 10.1002/mnfr.200400011.
  • Nocerino, R., M. Di Costanzo, G. Bedogni, L. Cosenza, Y. Maddalena, C. Di Scala, G. Della Gatta, L. Carucci, L. Voto, S. Coppola, et al. 2019. Dietary treatment with extensively hydrolyzed casein formula containing the probiotic lactobacillus rhamnosus GG prevents the occurrence of functional gastrointestinal disorders in children with cow’s milk allergy. The Journal of Pediatrics 213:137–42.e2. doi: 10.1016/j.jpeds.2019.06.004.
  • Noh, J., J. H. Lee, G. Noh, S. Y. Bang, H. S. Kim, W. S. Choi, S. Cho, and S. S. Lee. 2010. Characterisation of allergen-specific responses of IL-10-producing regulatory B cells (Br1) in cow milk allergy. Cellular Immunology 264 (2):143–9. doi: 10.1016/j.cellimm.2010.05.013.
  • Noh, J., G. Noh, H. S. Kim, A.-R. Kim, and W. S. Choi. 2012. Allergen-specific responses of CD19 (+) CD5 (+) Foxp3 (+) regulatory B cells (Bregs) and CD4 (+) Foxp3 (+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions. Cellular Immunology 274 (1–2):109–14. doi: 10.1016/j.cellimm.2012.01.005.
  • Nowak-Wegrzyn, A., K. A. Bloom, S. H. Sicherer, W. G. Shreffler, S. Noone, N. Wanich, and H. A. Sampson. 2008. Tolerance to extensively heated milk in children with cow’s milk allergy. The Journal of Allergy and Clinical Immunology 122 (2):342–7. doi: 10.1016/j.jaci.2008.05.043.
  • Nutrition, C. O. 2000. Hypoallergenic infant formulas. Pediatrics 106 (2):346–9.
  • Oliveira, J. P., M. V. Ramos, F. E. Lopes, I. C. Studart, J. S. Oliveira, M. D. Lobo, A. C. Monteiro-Moreira, and C. D. Freitas. 2018. Gut peptidases from a specialist herbivore of latex plants are capable of milk protein hydrolysis: Inputs for hypoallergenic milk formulas. Food Chemistry 255:260–7. doi: 10.1016/j.foodchem.2018.02.032.
  • Onwude, D. I., N. Hashim, R. Janius, K. Abdan, G. Chen, and A. O. Oladejo. 2017. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies 43:223–38. doi: 10.1016/j.ifset.2017.08.010.
  • Orcajo, J., I. Martinez de Marañon, and M. Lavilla. 2015. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment in combination with high temperature. Clinical and Translational Allergy 5 (S3):P49. doi: 10.1186/2045-7022-5-S3-P49.
  • Pan, M., J. Yang, K. Liu, X. Xie, L. Hong, S. Wang, and S. Wang. 2021. Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Research International (Ottawa, ON) 148:110578. doi: 10.1016/j.foodres.2021.110578.
  • Papastoyiannidis, G., A. Polychroniadou, A.-M. Michaelidou, and E. Alichanidis. 2006. Fermented milks fortified with b-group vitamins: Vitamin stability and effect on resulting products. Food Science and Technology International 12 (6):521–9. doi: 10.1177/1082013206073274.
  • Paschke, A., and M. Besler. 2002. Stability of bovine allergens during food processing. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology 89 (6 Suppl 1):16–20. doi: 10.1016/S1081-1206(10)62117-5.
  • Patel, H. A., and T. Huppertz. 2014. Effects of high-pressure processing on structure and interactions of milk proteins. In Milk proteins: From expression to food, ed. H. Singh, M. Boland, and A. Thompson, 2nd ed., 243–67. London: Academic Press.
  • Pekar, J., D. Ret, and E. Untersmayr. 2018. Stability of allergens. Molecular Immunology 100:14–20. doi: 10.1016/j.molimm.2018.03.017.
  • Pereira, R. N., J. Costa, R. M. Rodrigues, C. Villa, L. Machado, I. Mafra, and A. Vicente. 2020. Effects of ohmic heating on the immunoreactivity of β-lactoglobulin–A relationship towards structural aspects. Food & Function 11 (5):4002–13. doi: 10.1039/c9fo02834j.
  • Pereira, R. N., R. M. Rodrigues, O. L. Ramos, A. C. Pinheiro, J. T. Martins, J. A. Teixeira, and A. A. Vicente. 2018. Electric field processing: Novel perspectives on allergenicity of milk proteins. Journal of Agricultural and Food Chemistry 66 (43):11227–33. doi: 10.1021/acs.jafc.8b03689.
  • Pereira, R. N., J. A. Teixeira, A. A. Vicente, L. P. Cappato, M. V. da Silva Ferreira, R. da Silva Rocha, and A. G. da Cruz. 2018. Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science 22:95–101. doi: 10.1016/j.cofs.2018.01.014.
  • Perezábad, L., M. Reche, T. Valbuena, R. López-Fandiño, E. Molina, and I. López-Expósito. 2017. Oral food desensitization in children with IgE-mediated cow’s milk allergy: Immunological changes underlying desensitization. Allergy, Asthma & Immunology Research 9 (1):35–42. doi: 10.4168/aair.2017.9.1.35.
  • Permyakov, E. A., and L. J. Berliner. 2000. Α-lactalbumin: Structure and function. FEBS Letters 473 (3):269–74. doi: 10.1016/S0014-5793(00)01546-5.
  • Perusko, M., M. van Roest, D. Stanic-Vucinic, P. J. Simons, R. H. Pieters, T. Cirkovic-Velickovic, and J. J. Smit. 2018. Glycation of the major milk allergen β‐lactoglobulin changes its allergenicity by alterations in cellular uptake and degradation. Molecular Nutrition & Food Research 62 (17):1800341. doi: 10.1002/mnfr.201800341.
  • Pi, X., Y. Yang, Y. Sun, Q. Cui, Y. Wan, G. Fu, H. Chen, and J. Cheng. 2022. Recent advances in alleviating food allergenicity through fermentation. Critical Reviews in Food Science and Nutrition 62 (26):7255–68. doi: 10.1080/10408398.2021.1913093.
  • Pi, X., Y. Yang, Y. Sun, X. Wang, Y. Wan, G. Fu, X. Li, and J. Cheng. 2022. Food irradiation: A promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition 62 (24):6698–713. doi: 10.1080/10408398.2021.1904822.
  • Poza-Guedes, P., Y. Barrios, R. González Pérez, I. Sánchez-Machín, A. Franco, and V. Matheu. 2016. Yogurt in the treatment of beta-lactoglobulin-induced gastrointestinal cow’s milk allergy. Journal of Investigational Allergology and Clinical Immunology 26 (5):327–9. doi: 10.18176/jiaci.0083.
  • Rahaman, T., T. Vasiljevic, and L. Ramchandran. 2015. Conformational changes of β-lactoglobulin induced by shear, heat, and pH—Effects on antigenicity. Journal of Dairy Science 98 (7):4255–65. doi: 10.3168/jds.2014-9010.
  • Rahaman, T., T. Vasiljevic, and L. Ramchandran. 2016. Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science & Technology 49:24–34. doi: 10.1016/j.tifs.2016.01.001.
  • Razavi, R., and R. Esmailzadeh. 2020. Comparative effect of thermo sonication and conventional heat process on lipid oxidation, vitamins and microbial count of milk. Journal of Food Research 30 (1):167–82.
  • Robichaud, V., L. Bagheri, B. R. Aguilar-Uscanga, M. Millette, and M. Lacroix. 2020. Effect of γ-irradiation on the microbial inactivation, nutritional value, and antioxidant activities of infant formula. LWT 125:109211. doi: 10.1016/j.lwt.2020.109211.
  • Rodiles-López, J., I. Arroyo-Maya, M. E. Jaramillo-Flores, G. F. Gutierrez-Lopez, A. Hernández-Arana, G. Barbosa-Cánovas, K. Niranjan, and H. Hernandez-Sanchez. 2010. Effects of high hydrostatic pressure on the structure of bovine α-lactalbumin. Journal of Dairy Science 93 (4):1420–8. doi: 10.3168/jds.2009-2786.
  • Sakandar, H. A., and H. Zhang. 2021. Trends in probiotic (s)-fermented milks and their in vivo functionality: A review. Trends in Food Science & Technology 110:55–65. doi: 10.1016/j.tifs.2021.01.054.
  • Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology 71 (4):394–406. doi: 10.1007/s00253-006-0427-1.
  • Schoemaker, A. A., A. B. Sprikkelman, K. E. Grimshaw, G. Roberts, L. Grabenhenrich, L. Rosenfeld, S. Siegert, R. Dubakiene, O. Rudzeviciene, M. Reche, et al. 2015. Incidence and natural history of challenge‐proven cow’s milk allergy in European children–EuroPrevall birth cohort. Allergy 70 (8):963–72. doi: 10.1111/all.12630.
  • Scollard, P. G., T. P. Beresford, E. C. Needs, P. M. Murphy, and A. L. Kelly. 2000. Plasmin activity, β-lactoglobulin denaturation and proteolysis in high pressure treated milk. International Dairy Journal 10 (12):835–41. doi: 10.1016/S0958-6946(01)00028-0.
  • Shao, Y. H., Y. Zhang, L. Zhang, J. Liu, and Z. C. Tu. 2021. Mechanism of reduction in allergenicity and altered human intestinal microbiota of digested beta-lactoglobulin modified by ultrasonic pretreatment combined with glycation. Journal of Agricultural and Food Chemistry 69 (46):14004–12. doi: 10.1021/acs.jafc.1c03501.
  • Shao, Y. H., Y. Zhang, M. F. Zhu, J. Liu, and Z. C. Tu. 2020. Glycation of beta-lactoglobulin combined by sonication pretreatment reduce its allergenic potential. International Journal of Biological Macromolecules 164:1527–35. doi: 10.1016/j.ijbiomac.2020.07.223.
  • Sharma, R., P. Garg, P. Kumar, S. K. Bhatia, and S. Kulshrestha. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6 (4):106. doi: 10.3390/fermentation6040106.
  • Sicherer, S. H, and H. A. Sampson. 2014. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. The Journal of Allergy and Clinical Immunology 133 (2):291–307; quiz 308. doi: 10.1016/j.jaci.2013.11.020.
  • Siciliano, R. A., M. F. Mazzeo, S. Arena, G. Renzone, and A. Scaloni. 2013. Mass spectrometry for the analysis of protein lactosylation in milk products. Food Research International 54 (1):988–1000. doi: 10.1016/j.foodres.2012.10.044.
  • Singer, A. G., L. Kosowan, L. Soller, E. S. Chan, N. N. Nankissoor, R. R. Phung, and E. M. Abrams. 2021. Prevalence of physician-reported food allergy in Canadian children. The Journal of Allergy and Clinical Immunology. In Practice 9 (1):193–9. doi: 10.1016/j.jaip.2020.07.039.
  • Soller, L., J. Fragapane, M. Ben-Shoshan, D. Harrington, R. Alizadehfar, L. Joseph, Y. St Pierre, S. Godefroy, S. Elliott, and A. Clarke. 2010. Estimating the prevalence of milk, egg, and wheat allergies in the Canadian population. Allergy, Asthma & Clinical Immunology 6 (S3):1–2. doi: 10.1186/1710-1492-6-S3-P37.
  • Sopo, S., M. M. Greco, S. Monaco, A. Bianchi, B. Cuomo, L. Liotti, and I. Iacono. 2016. Matrix effect on baked milk tolerance in ­children with IgE cow milk allergy. Allergologia et Immunopathologia 44 (6):517–23. doi: 10.1016/j.aller.2016.03.005.
  • Stanic-Vucinic, D., M. Stojadinovic, M. Atanaskovic-Markovic, J. Ognjenovic, H. Grönlund, M. van Hage, R. Lantto, A. I. Sancho, T. C. Velickovic, et al. 2012. Structural changes and allergenic properties of β-lactoglobulin upon exposure to high-intensity ultrasound. Molecular Nutrition & Food Research 56 (12):1894–905. doi: 10.1002/mnfr.201200179.
  • Sun, X., J. Vivien Chua, Q. A. Le, F. J. Trujillo, M.-H. Oh, D. E. Campbell, S. Mehr, and N. A. Lee. 2021. A response surface methodology (RSM) approach for optimizing the attenuation of human IgE-reactivity to β-lactoglobulin (β-Lg) by hydrostatic high pressure processing. Foods 10 (8):1741. doi: 10.3390/foods10081741.
  • Tammineedi, C. V. R. K., R. Choudhary, G. C. Perez-Alvarado, and D. G. Watson. 2013. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Science and Technology 54 (1):35–41. doi: 10.1016/j.lwt.2013.05.020.
  • Tantoush, Z., D. Stanic, M. Stojadinovic, J. Ognjenovic, L. Mihajlovic, M. Atanaskovic-Markovic, and T. Cirkovic-Velickovic. 2011. Digestibility and allergenicity of β-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics. Food Chemistry 125 (1):84–91. doi: 10.1016/j.foodchem.2010.08.040.
  • Tiemessen, M. M., A. G. Van Ieperen-Van Dijk, C. A. Bruijnzeel-Koomen, J. Garssen, E. F. Knol, and E. Van Hoffen. 2004. Cow’s milk–specific T-cell reactivity of children with and without persistent cow’s milk allergy: Key role for IL-10. The Journal of Allergy and Clinical Immunology 113 (5):932–9. doi: 10.1016/j.jaci.2003.12.016.
  • Tsabouri, S., K. Douros and K. N. Priftis. 2014. Cow’s milk allergenicity. Endocrine, Metabolic & Immune Disorders-Drug Targets 14:16–26.
  • Uncuoglu, A., N. Yologlu, I. Simsek, Z. Uyan, and M. Aydogan. 2017. Tolerance to baked and fermented cow’s milk in children with IgE-mediated and non-IgE-mediated cow’s milk allergy in patients under two years of age. Allergologia et Immunopathologia 45 (6):560–6. doi: 10.1016/j.aller.2017.02.008.
  • Van Der Velden, V., M. Laan, M. Baert, R. De Waal Malefyt, H. Neijens, and H. Savelkoul. 2001. Selective development of a strong Th2 cytokine profile in high‐risk children who develop atopy: Risk factors and regulatory role of IFN-γ, IL-4 and IL-10. Clinical and Experimental Allergy : journal of the British Society for Allergy and Clinical Immunology 31 (7):997–1006. doi: 10.1046/j.1365-2222.2001.01176.x.
  • van Neerven, R. J. J, and H. F. J. Savelkoul. 2019. The two faces of cow’s milk and allergy: Induction of cow’s milk allergy vs. Prevention of Asthma. Nutrients 11 (8):1945. doi: 10.3390/nu11081945.
  • Vandenplas, Y. 2017. Prevention and management of cow’s milk allergy in non-exclusively breastfed infants. Nutrients 9 (7):731. doi: 10.3390/nu9070731.
  • Vazquez-Landaverde, P. A., J. A. Torres, and M. C. Qian. 2006. Effect of high-pressure − Moderate-temperature processing on the volatile profile of milk. Journal of Agricultural and Food Chemistry 54 (24):9184–92. doi: 10.1021/jf061497k.
  • Villa, C., J. Costa, M. B. P. Oliveira, and I. Mafra. 2018. Bovine milk allergens: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 17 (1):137–64. doi: 10.1111/1541-4337.12318.
  • Villas-Boas, M. B., S. Benedé, R. de Lima Zollner, F. M. Netto, and E. Molina. 2015. Epitopes resistance to the simulated gastrointestinal digestion of β-lactoglobulin submitted to two-step enzymatic modification. Food Research International 72:191–7. doi: 10.1016/j.foodres.2015.03.044.
  • Walther, B., and A. Schmid. 2017. Effect of fermentation on vitamin content in food. In Fermented foods in health and disease prevention, 131–57. London: Academic Press.
  • Wang, X.-M., Z.-C. Tu, Y.-H. Ye, G.-X. Liu, H. Wang, and Y.-M. Hu. 2021. Mechanism on the allergenicity changes of α-lactalbumin treated by sonication-assisted glycation during in vitro gastroduodenal digestion. Journal of Agricultural and Food Chemistry 69 (24):6850–9. doi: 10.1021/acs.jafc.1c02205.
  • Wang, C., Q. Xie, Y. Wang, and L. Fu. 2020. Effect of ultrasound treatment on allergenicity reduction of milk casein via colloid formation. Journal of Agricultural and Food Chemistry 68 (16):4678–86. doi: 10.1021/acs.jafc.9b08245.
  • Warren, C. M., A. Agrawal, D. Gandhi, and R. S. Gupta. 2022. The us population-level burden of cow’s milk allergy. The World Allergy Organization Journal 15 (4):100644. doi: 10.1016/j.waojou.2022.100644.
  • Waserman, S., P. Bégin, and W. Watson. 2018. IgE-mediated food allergy. Allergy, Asthma & Clinical Immunology 14 (S2):1–11. doi: 10.1186/s13223-018-0284-3.
  • Wazed, M. A., and M. Farid. 2019. Hypoallergenic and low-protein ready-to-feed (RTF) infant formula by high pressure pasteurization: A novel product. Foods 8 (9):408. doi: 10.3390/foods8090408.
  • Wills-Karp, M., and F. D. Finkelman. 2008. Untangling the complex web of IL-4 and IL-13–mediated signaling pathways. Science Signaling 1 (51):pe55-pe55. doi: 10.1126/scisignal.1.51.pe55.
  • Wróblewska, B. 2003. Effect of technological modifications on the change of cow’s milk. Alerg Astma Immunol 8 (4):157–64.
  • Wróblewska, B., A. Kaliszewska-Suchodoła, L. H. Markiewicz, A. Szyc, and E. Wasilewska. 2019. Whey prefermented with beneficial microbes modulates immune response and lowers responsiveness to milk allergens in mouse model. Journal of Functional Foods 54:41–52. doi: 10.1016/j.jff.2018.12.032.
  • Wróblewska, B., M. Karamac, R. Amarowicz, A. Szymkiewicz, A. Troszynska, and E. Kubicka. 2004. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. International Journal of Food Science and Technology 39 (8):839–50. doi: 10.1111/j.1365-2621.2004.00857.x.
  • Xie, F. T., J. S. Cao, J. Zhao, Y. Yu, F. Qi, and X. C. Dai. 2015. IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3+ regulatory t cells. Transplant Immunology 33 (2):69–77. doi: 10.1016/j.trim.2015.05.003.
  • Xing, G., C. V. L. Giosafatto, A. Fusco, M. Dong, and L. Mariniello. 2021. Combined lactic fermentation and enzymatic treatments affect the antigenicity of β-lactoglobulin in cow milk and soymilk-cow milk mixture. LWT 143:111178. doi: 10.1016/j.lwt.2021.111178.
  • Xu, L., Y. Gong, J. E. Gern, and J. A. Lucey. 2020. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin e binding capacity with blood sera obtained from patients with a cow milk protein allergy. Journal of Dairy Science 103 (2):1141–50. doi: 10.3168/jds.2019-17187.
  • Xu, Q., J. Shi, M. Yao, M. Jiang, and Y. Luo. 2016. Effects of heat treatment on the antigenicity of four milk proteins in milk protein concentrates. Food and Agricultural Immunology 27 (3):401–13. doi: 10.1080/09540105.2015.1117059.
  • Yang, J., F. Ren, H. Zhang, L. Jiang, Y. Hao, and X. Luo. 2015. Induction of regulatory dendritic cells by lactobacillus paracasei L9 prevents allergic sensitization to bovine beta-lactoglobulin in mice. Journal of Microbiology and Biotechnology 25 (10):1687–96. doi: 10.4014/jmb.1503.03022.
  • Yang, J., H. Zhang, L. Jiang, H. Guo, X. Luo, and F. Ren. 2015. Bifidobacterium longum BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine beta-lactoglobulin in mice. Journal of Applied Microbiology 119 (4):1127–37. doi: 10.1111/jam.12923.
  • Yang, F., L. Zou, Y. Wu, Z. Wu, A. Yang, H. Chen, and X. Li. 2020. Structure and allergenicity assessments of bovine beta-lactoglobulin treated by sonication-assisted irradiation. Journal of Dairy Science 103 (5):4109–20. doi: 10.3168/jds.2019-17070.
  • Yanjun, C., Z. Shengyun, and L. Linfeng. 2016. Identification of the critical amino acid residues of immunoglobulin e and immunoglobulin g epitopes in α-lactalbumin by alanine scanning analysis. Journal of Food Science 81 (10):T2597–T2603. doi: 10.1111/1750-3841.13425.
  • Yao, M., Q. Xu, Y. Luo, J. Shi, and Z. Li. 2015. Study on reducing antigenic response and IgE‐binding inhibitions of four milk proteins of Lactobacillus casei 1134. Journal of the Science of Food and Agriculture 95 (6):1303–12. doi: 10.1002/jsfa.6823.
  • Yuan, F., I. Ahmed, L. Lv, Z. Li, Z. Li, H. Lin, H. Lin, J. Zhao, S. Tian, and J. Ma. 2018. Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine beta-lactoglobulin. Food & Function 9 (7):3944–55. doi: 10.1039/c8fo00909k.
  • Yu, X. X., W. Y. Liang, J. Y. Yin, Q. Zhou, D. M. Chen, and Y. H. Zhang. 2021. Combining experimental techniques with molecular dynamics to investigate the impact of different enzymatic hydrolysis of β-lactoglobulin on the antigenicity reduction. Food Chemistry 350:129139. doi: 10.1016/j.foodchem.2021.129139.
  • Yu, X. X., C. Liu, M. H. Lu, Y. L. Liu, J. Y. Yin, and Y.-H. Zhang. 2019. Impact of enzymatic hydrolysis followed by transglutaminase-induced cross-linking on decreasing antigenicity and reserving partial interfacial properties of whey protein isolate. Food & Function 10 (3):1653–60. doi: 10.1039/c8fo01880d.
  • Zenker, H. E., A. Ewaz, Y. Deng, H. F. Savelkoul, R. J. Van Neerven, N. W. De Jong, H. J. Wichers, K. A. Hettinga, and M. Teodorowicz. 2019. Differential effects of dry vs. Wet heating of β-lactoglobulin on formation of sRAGE binding ligands and sIgE epitope recognition. Nutrients 11 (6):1432. doi: 10.3390/nu11061432.
  • Zhang, Q., Q. H. Chen, and G. Q. He. 2020. Effect of ultrasonic-ionic liquid pretreatment on the hydrolysis degree and antigenicity of enzymatic hydrolysates from whey protein. Ultrasonics Sonochemistry 63:104926. doi: 10.1016/j.ultsonch.2019.104926.
  • Zhang, Y.-H., J.-Q. Liu, D. Xu, and X.-H. Zhao. 2016. Impacts of glucosamine/oligochitosan glycation and cross-linking by transglutaminase on the structure and in vitro antigenicity of whey proteins. International Journal of Dairy Technology 69 (2):169–76. doi: 10.1111/1471-0307.12246.
  • Zhang, M., J. Zheng, K. Ge, H. Zhang, B. Fang, L. Jiang, H. Guo, Q. Ding, and F. Ren. 2014. Glycation of α-lactalbumin with different size saccharides: Effect on protein structure and antigenicity. International Dairy Journal 34 (2):220–8. doi: 10.1016/j.idairyj.2013.09.003.
  • Zhao, W., Q. Shu, G. He, and C. Qihe. 2020. Reducing antigenicity of bovine whey proteins by kluyveromyces marxianus fermentation combined with ultrasound treatment. Food Chemistry 311:125893. doi: 10.1016/j.foodchem.2019.125893.
  • Zhao, L., Q. Xie, F. Shi, S. Liang, Q. Chen, S. E. Evivie, J. Qiu, B. Li, and G. Huo. 2021. Proteolytic activities of combined fermentation with lactobacillus helveticus klds 1.8701 and lactobacillus plantarum klds 1.0386 reduce antigenic response to cow milk proteins. Journal of Dairy Science 104 (11):11499–508. doi: 10.3168/jds.2021-20668.
  • Zhong, J., Y. Tu, W. Liu, S. Luo, and C. Liu. 2015. Comparative study on the effects of nystose and fructofuranosyl nystose in the glycation reaction on the antigenicity and conformation of β-lactoglobulin. Food Chemistry 188:658–63. doi: 10.1016/j.foodchem.2015.05.015.
  • Zhou, F., S. He, H. Sun, Y. Wang, and Y. Zhang. 2021. Advances in epitope mapping technologies for food protein allergens: A review. Trends in Food Science & Technology 107:226–39. doi: 10.1016/j.tifs.2020.10.035.
  • Zhu, Y., W. Wang, T. Chen, and G. Zhou. 2018. The effect of ultra-high pressure and heat on the allergenicity and structural properties of bovine serum albumin. Biomedical Research 2018(Special Issue):S438–S443. doi: 10.4066/biomedicalresearch.29-16-2065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.