597
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications

ORCID Icon, , , & ORCID Icon

References

  • Addae, E., X. Dong, E. McCoy, C. Yang, W. Chen, and L. Yang. 2014. Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells. Journal of Biological Engineering 8:11.
  • Ahmed, K. B. A., and V. Anbazhagan. 2017. Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Advances 7 (58):36644–52. doi: 10.1039/C7RA05636B.
  • Ahmed, M. W., M. A. Haque, M. Mohibbullah, M. S. I. Khan, M. A. Islam, M. H. T. Mondal, and R. Ahmmed. 2022. A review on active packaging for quality and safety of foods: Current trends. Applications, Prospects, and Challenges. Food Packaging and Shelf Life 33:100913.
  • Alfei, S., B. Marengo, and G. Zuccari. 2020. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Research International (Ottawa, ON) 137:109664.
  • Ali, Z. I., F. M. Mosallam, R. Sokary, T. A. Afify, and M. Bekhit. 2021. Radiation synthesis of ZnS/chitosan nanocomposites and its antibacterial activity. International Journal of Environmental Analytical Chemistry 101 (3):379–90. doi: 10.1080/03067319.2019.1667986.
  • Anvar, A. A., H. Ahari, and M. Ataee. 2021. Antimicrobial properties of food nanopackaging: A new focus on foodborne pathogens. Frontiers in Microbiology 12:1945. doi: 10.3389/fmicb.2021.690706.
  • Argueta-Figueroa, L., O. Martínez-Alvarez, J. Santos-Cruz, R. Garcia-Contreras, L. S. Acosta-Torres, J. de la Fuente-Hernández, M, and C. Arenas-Arrocena. 2017. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. Materials Science & Engineering. C, Materials for Biological Applications 76:1305–15.
  • Bahrami, S., F. Hassanzadeh-Afruzi, and A. Maleki. 2020. Synthesis and characterization of a novel and green rod-like magnetic ZnS/CuFe2O4/Agar organometallic hybrid catalyst for the synthesis of biologically-active 2-amino-tetrahydro-4h-chromene-3-carbonitrile derivatives. Applied Organometallic Chemistry 34 (11):e5949. doi: 10.1002/aoc.5949.
  • Bai, H. J., Z. M. Zhang, Y. Guo, and G. E. Yang. 2009. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces. B, Biointerfaces 70 (1):142–6.
  • Balakrishnan, A., J. D. Groeneveld, S. Pokhrel, and L. Mädler. 2021. Metal sulfide nanoparticles: Precursor chemistry. Chemistry (Weinheim an Der Bergstrasse, Germany) 27 (21):6390–406. doi: 10.1002/chem.202004952.
  • Baruah, J. M., S. Kalita, and J. Narayan. 2019. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): Their application as potential thin films and antibacterial agent. International Nano Letters 9 (2):149–59. doi: 10.1007/s40089-019-0270-x.
  • Borda, M. J., A. R. Elsetinow, D. R. Strongin, and M. A. Schoonen. 2003. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochimica et Cosmochimica Acta 67 (5):935–9. doi: 10.1016/S0016-7037(02)01222-X.
  • Chandel, V., D. Biswas, S. Roy, D. Vaidya, A. Verma, and A. Gupta. 2022. Current advancements in pectin: Extraction, properties, and multifunctional applications. Foods 11 (17):2683. doi: 10.3390/foods11172683.
  • Chandrasekaran, S., L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, and P. Zhang. 2019. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews 48 (15):4178–280.
  • Choi, S. H., K. An, E. G. Kim, J. H. Yu, J. H. Kim, and T. Hyeon. 2009. Simple and generalized synthesis of semiconducting metal sulfide nanocrystals. Advanced Functional Materials 19 (10):1645–9. doi: 10.1002/adfm.200800832.
  • Dameron, C. T., R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, and D. R. Winge. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338 (6216):596–7. doi: 10.1038/338596a0.
  • Dameron, C. T., B. R. Smith, and D. R. Winge. 1989. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. The Journal of Biological Chemistry 264 (29):17355–60.
  • Das, R., R. Bandyopadhyay, and P. Pramanik. 2018. Carbon quantum dots from natural resource: A review. Materials Today Chemistry 8:96–109. doi: 10.1016/j.mtchem.2018.03.003.
  • Dasari, A., and V. Guttena. 2016. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. Journal of Photochemistry and Photobiology B: Biology 157:57–69.
  • Dharsana, U. S., M. K. N. S. Varsha, A. A. K. Behlol, A. Veerappan, R. Thiagarajan, M. K. N. Sai Varsha, A. A. Khan Behlol, A. Veerappan, and R. Thiagarajan. 2015. Sulfidation modulates the toxicity of biogenic copper nanoparticles. RSC Advances 5 (38):30248–59. doi: 10.1039/C4RA17322H.
  • Ehsan, M. A., A. Khan, M. N. Zafar, U. A. Akber, A. S. Hakeem, and M. F. Nazar. Forthcoming. Aerosol-assisted chemical vapor deposition of nickel sulfide nanowires for electrochemical water oxidation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2021.10.231.
  • Eivazzadeh-Keihan, R., F. Ahmadpour, H. A. M. Aliabadi, F. Radinekiyan, A. Maleki, H. Madanchi, M. Mahdavi, A. E. Shalan, and S. Lanceros-Méndez. 2021. Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. International Journal of Biological Macromolecules 192:7–15.
  • Eivazzadeh-Keihan, R., H. A. M. Aliabadi, F. Radinekiyan, M. Sobhani, A. Maleki, H. Madanchi, M. Mahdavi, A. E., and Shalan, Farzane Khalili. 2021. Investigation of the biological activity, mechanical properties, and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Advances 11 (29):17914–23. doi: 10.1039/d1ra01300a.
  • Eivazzadeh-Keihan, R., F. Khalili, H. A. M. Aliabadi, A. Maleki, H. Madanchi, E. Z. Ziabari, and M. S. Bani. 2020. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. International Journal of Biological Macromolecules 162:1959–71.
  • Eivazzadeh-Keihan, R., F. Radinekiyan, H. A. M. Aliabadi, S. Sukhtezari, B. Tahmasebi, A. Maleki, and H. Madanchi. 2021. Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Scientific Reports 11 (1):1–13. doi: 10.1038/s41598-020-80133-3.
  • El-Batal, A. I., F. M. Mosalam, M. M. Ghorab, A. Hanora, and A. M. Elbarbary. 2018. Antimicrobial, antioxidant, and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. International Journal of Biological Macromolecules 107 (Pt B):2298–311.
  • Ezati, P., J.-W. Rhim, R. Molaei, R. Priyadarshi, S. Roy, S. Min, Y. H. Kim, S.-G. Lee, and S. Han. 2022. Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies 32:e00397. doi: 10.1016/j.susmat.2022.e00397.
  • Ezati, P., Z. Riahi, and J.-W. Rhim. 2022. CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocolloids 122:107104. doi: 10.1016/j.foodhyd.2021.107104.
  • Ezati, P., S. Roy, and J.-W. Rhim. 2022. Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects 636:128123. doi: 10.1016/j.colsurfa.2021.128123.
  • Fang, X., Y. Bando, G. Shen, C. Ye, U. K. Gautam, P. M. F. J. Costa, C. Zhi, C. Tang, and D. Golberg. 2007. Ultrafine ZnS nanobelts as field emitters. Advanced Materials 19 (18):2593–6. doi: 10.1002/adma.200700078.
  • Fei, W., M. Zhang, X. Fan, Y. Ye, M. Zhao, C. Zheng, Y. Li, and X. Zheng. 2021. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. Journal of Nanobiotechnology 19 (1):1–27. doi: 10.1186/s12951-021-00839-y.
  • Feng, M., Y. Lu, Y. Yang, M. Zhang, Y.-J. Xu, H.-L. Gao, L. Dong, W.-P. Xu, and S.-H. Yu. 2013. Bioinspired greigite magnetic nanocrystals: Chemical synthesis and biomedicine applications. Scientific Reports 3 (1):1–6. doi: 10.1038/srep02994.
  • Garcia, C. V., G. H. Shin, and J. T. Kim. 2018. Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends in Food Science & Technology 82:21–31. doi: 10.1016/j.tifs.2018.09.021.
  • Goel, S., F. Chen, and W. Cai. 2014. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small (Weinheim an Der Bergstrasse, Germany) 10 (4):631–45. doi: 10.1002/smll.201301174.
  • Gupta, V., D. Biswas, and S. Roy. 2022. A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials 15 (17):5899. doi: 10.3390/ma15175899.
  • Han, B., W. H. Fang, S. Zhao, Z. Yang, and B. X. Hoang. 2020. Zinc sulfide nanoparticles improve skin regeneration. Nanomedicine: Nanotechnology, Biology and Medicine 29:102263. doi: 10.1016/j.nano.2020.102263.
  • Hassanzadeh-Afruzi, F., Z. Amiri-Khamakani, S. Bahrami, M. R. Ahghari, and A. Maleki. 2022. Assessment of catalytic and antibacterial activity of biocompatible agar supported ZnS/CuFe2O4 magnetic nanotubes. Scientific Reports 12 (1):1–16. doi: 10.1038/s41598-022-08318-6.
  • Hocaoglu, I., M. N. Çizmeciyan, R. Erdem, C. Ozen, A. Kurt, A. Sennaroglu, and H. Y. Acar. 2012. Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. Journal of Materials Chemistry 22 (29):14674–81. doi: 10.1039/c2jm31959d.
  • Hojamberdiev, M., B. Czech, A. C. Göktaş, K. Yubuta, and Z. C. Kadirova. 2020. SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. Journal of Alloys and Compounds 827:154339. doi: 10.1016/j.jallcom.2020.154339.
  • Holmes, J. D., D. J. Richardson, S. Saed, R. Evans-Gowing, D. A. Russell, and J. R. Sodeau. 1997. Cadmium-specific formation of metal sulfide “q-particles” by Klebsiella pneumoniae. Microbiology 143 (8):2521–30. doi: 10.1099/00221287-143-8-2521.
  • Hoseinnejad, M., S. M. Jafari, and I. Katouzian. 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology 44 (2):161–81.
  • Hosseini, M. R., and M. N. Sarvi. 2015. Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Materials Science in Semiconductor Processing 40:293–301.
  • Hu, F., C. Li, Y. Zhang, M. Wang, D. Wu, and Q. Wang. 2015. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Research 8 (5):1637–47. doi: 10.1007/s12274-014-0653-2.
  • Huang, X., N. Hu, X. Wang, Y. S. Zhang, and R. Sun. 2017. Copper sulfide nanoparticle/cellulose composite paper: Room-temperature green fabrication for NIR laser-inducible ablation of pathogenic microorganisms. ACS Sustainable Chemistry & Engineering 5 (3):2648–55. doi: 10.1021/acssuschemeng.6b03003.
  • Kanade, C. K., H. Seok, V. K. Kanade, K. Aydin, H. U. Kim, S. B. Mitta, W. J. Yoo, and T. Kim. 2021. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Applied Materials & Interfaces 13 (7):8710–7.
  • Kim, W., T. Han, Y. Gwon, S. Park, H. Kim, and J. Kim. 2022. Biodegradable and flexible nanoporous films for design and fabrication of active food packaging systems. Nano Letters 22 (8):3480–7.
  • Klaus, T., R. Joerger, E. Olsson, and C. G. Granqvist. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96: 13611–4.
  • Krishnamoorthy, K., G. K. Veerasubramani, and S. J. Kim. 2015. Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles. Materials Science in Semiconductor Processing 40:781–6. doi: 10.1016/j.mssp.2015.06.070.
  • Labiadh, H., K. Lahbib, S. Hidouri, S. Touil, and T. Ben Chaabane. 2016. Insight of ZnS nanoparticles contribution in different biological uses. Asian Pacific Journal of Tropical Medicine 9 (8):757–62.
  • Lai, C. H., K. W. Huang, J. H. Cheng, C. Y. Lee, B. J. Hwang, and L. J. Chen. 2010. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. Journal of Materials Chemistry 20 (32):6638–45. doi: 10.1039/c0jm00434k.
  • Lai, C. H., M. Y. Lu, and L. J. Chen. 2012. Metal sulfide nanostructures: Synthesis, properties, and applications in energy conversion and storage. Journal of Materials Chemistry 22 (1):19–30. doi: 10.1039/C1JM13879K.
  • Lakshmanan, S. B., X. Zou, M. Hossu, L. Ma, C. Yang, and W. Chen. 2012. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. Journal of Biomedical Nanotechnology 8 (6):883–90.
  • Lane, L. A., A. M. Smith, T. Lian, and S. Nie. 2014. Compact and blinking-suppressed quantum dots for single-particle tracking in live cells. The Journal of Physical Chemistry. B 118 (49):14140–7.
  • LeBel, G., K. Vaillancourt, L. Yi, M. Gottschalk, and D. Grenier. 2018. Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microbial Pathogenesis 122:200–6.
  • Levard, C., E. M. Hotze, B. P. Colman, A. L. Dale, L. Truong, X. Y. Yang, A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, et al. 2013. Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environmental Science & Technology 47 (23):13440–8. doi: 10.1021/es403527n.
  • Li, M., S. Fu, and A. H. Basta. 2020. Light-induced shape-memory polyurethane composite film containing copper sulfide nanoparticles and modified cellulose nanocrystals. Carbohydrate Polymers 230:115676.
  • Li, S., Z.-H. Ge, B.-P. Zhang, Y. Yao, H.-C. Wang, J. Yang, Y. Li, C. Gao, and Y.-H. Lin. 2016. Mechanochemically synthesized Sub-5 Nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Applied Surface Science 384:272–8. doi: 10.1016/j.apsusc.2016.05.034.
  • Li, T. L., Y. L. Lee, and H. Teng. 2011. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. Journal of Materials Chemistry 21 (13):5089–98. doi: 10.1039/c0jm04276e.
  • Li, F., Y. Liu, Y. Cao, Y. Zhang, T. Zhe, Z. Guo, X. Sun, Q. Wang, and L. Wang. 2020. Copper sulfide nanoparticle-carrageenan films for packaging application. Food Hydrocolloids. 109:106094. doi: 10.1016/j.foodhyd.2020.106094.
  • Li, Y., N. Li, K. Yanagisawa, X. Li, and X. Yan. 2015. Hydrothermal synthesis of highly crystalline RuS2 nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis. Materials Research Bulletin 65:110–5. doi: 10.1016/j.materresbull.2014.12.068.
  • Li, Y., W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen. 2010. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (London, England) 5 (8):1161–71.
  • Li, C., Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang. 2014. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35 (1):393–400. doi: 10.1016/j.biomaterials.2013.10.010.
  • Lu, Q., F. Gao, and S. Komarneni. 2004. Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods. Journal of the American Chemical Society 126 (1):54–5.
  • Lu, M. Y., M. P. Lu, Y. A. Chung, M. J. Chen, Z. L. Wang, and L. J. Chen. 2009. Intercrossed sheet-like Ga-doped ZnS nanostructures with superb photocatalytic actvitiy and photoresponse. The Journal of Physical Chemistry C 113 (29):12878–82., doi: 10.1021/jp903350x.
  • Malarkodi, C., and G. Annadurai. 2013. A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles. Applied Nanoscience 3 (5):389–95. doi: 10.1007/s13204-012-0138-0.
  • Malarkodi, C., S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, and G. Annadurai. 2014. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorganic Chemistry and Applications 2014:347167.
  • Mani, A. D., N. Xanthopoulos, D. Laub, and C. H. Subrahmanyam. 2014. Combustion synthesis of cadmium sulphide nanomaterials for efficient visible light driven hydrogen production from water. Journal of Chemical Sciences 126 (4):967–73. doi: 10.1007/s12039-014-0629-5.
  • Moghaddam, A. O., A. Shokuhfar, A. Cabot, and A. Zolriasatein. 2018. Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technology 333:160–6. doi: 10.1016/j.powtec.2018.04.023.
  • Moore, D, and Z. L. Wang. 2006. Growth of anisotropic one-dimensional ZnS nanostructures. Journal of Materials Chemistry 16 (40):3898–905. doi: 10.1039/b607902b.
  • Mousavi-Kamazani, M., Z. Zarghami, and M. Salavati-Niasari. 2016. Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for increasing the efficiency of solar cells. The Journal of Physical Chemistry C 120 (4):2096–108. doi: 10.1021/acs.jpcc.5b11566.
  • Nagaraju, C., C. Gopi, J. W. Ahn, and H. J. Kim. 2018. Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New Journal of Chemistry 42 (15):12357–60. doi: 10.1039/C8NJ02822B.
  • Nandhakumar, S. R., S. Rajeshkumar, R. S. Anand, V. Malyla, K. Dua, D. Ezhilarasan, and T. Lakshmi. 2022. Biogenic metal sulfide nanoparticles synthesis and applications for biomedical and environmental technology. In Agri-waste and microbes for production of sustainable nanomaterials, 495–506. Cambridge, MA: Elsevier.
  • Paca, A. M., and P. A. Ajibade. 2021. Metal sulfide semiconductor nanomaterials and polymer microgels for biomedical applications. International Journal of Molecular Sciences 22 (22):12294. doi: 10.3390/ijms222212294.
  • Pandey, S., K. Sharma, and V. Gundabala. 2022. Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Bioscience 48:101730. doi: 10.1016/j.fbio.2022.101730.
  • Park, Y., and D. Faivre. 2022. Diversity of microbial metal sulfide biomineralization. ChemPlusChem 87 (1):e202100457.
  • Pathak, C. S., D. D. Mishra, V. Agarwala, and M. K. Mandal. 2013. Optical properties of ZnS nanoparticles prepared by high energy ball milling. Materials Science in Semiconductor Processing 16 (2):525–9. doi: 10.1016/j.mssp.2012.10.005.
  • Prasanth, S., D. Rithesh Raj, T. V. Vineeshkumar, R. K. Thomas, and C. Sudarsanakumar. 2016. Exploring the interaction of L-cysteine capped CuS nanoparticles with bovine serum albumin (BSA): A spectroscopic study. RSC Advances 6 (63):58288–95. doi: 10.1039/C6RA03583C.
  • Priyadarshi, R., P. Ezati, and J.-W. Rhim. 2022. Synthesis, properties and food packaging applications of sulfur quantum dots: A review. Environmental Chemistry Letters. Advance online publication. doi: 10.1007/s10311-022-01495-w.
  • Punia Bangar, S., V. Chaudhary, N. Thakur, P. Kajla, M. Kumar, and M. Trif. 2021. Natural antimicrobials as additives for edible food packaging applications: A review. Foods 10 (10):2282. doi: 10.3390/foods10102282.
  • Rai, M., A. P. Ingle, I. Gupta, R. Pandit, P. Paralikar, A. Gade, M. V. Chaud, and C. A. dos Santos. 2019. Smart nanopackaging for the enhancement of food shelf life. Environmental Chemistry Letters 17 (1):277–90. doi: 10.1007/s10311-018-0794-8.
  • Ramadan, S., L. Guo, Y. Li, B. Yan, and W. Lu. 2012. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. Small (Weinheim an Der Bergstrasse, Germany) 8 (20):3143–50.
  • Rasul, N. H., A. Asdagh, S. Pirsa, N. Ghazanfarirad, and I. K. Sani. 2022. Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express 9 (2):025306. doi: 10.1088/2053-1591/ac50d6.
  • Raza, Z. A., M. S. Ur Rehman, and S. Riaz. 2022. Zinc sulfide mediation of poly(hydroxybutyrate)/poly(lactic acid) nanocomposite film for potential UV protection applications. International Journal of Biological Macromolecules 222:2072–2082. doi: 10.1016/j.ijbiomac.2022.10.006.
  • Riaz, S., Z. A. Raza, M. I. Majeed, and T. Jan. 2018. Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite. Materials Research Express 5 (5):055027. doi: 10.1088/2053-1591/aac1f9.
  • Rizvi, S. B., S. Ghaderi, M. Keshtgar, and A. M. Seifalian. 2010. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Reviews 1 (1):5161. doi: 10.3402/nano.v1i0.5161.
  • Roy, S., P. Ezati, J.-W. Rhim, and R. Molaei. 2022. Preparation of turmeric-derived sulfur-functionalized carbon dots: antibacterial and antioxidant activity. Journal of Materials Science 57 (4):2941–52. doi: 10.1007/s10853-021-06804-2.
  • Roy, S., R. Priyadarshi, P. Ezati, and J.-W. Rhim. 2022. Curcumin and its uses in active and smart food packaging applications: A comprehensive review. Food Chemistry 375:131885.
  • Roy, S., R. Priyadarshi, and J.-W. Rhim. 2022. Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil pickering emulsion for enhancing the shelf life of pork meat. Food Research International (Ottawa, ON) 160:111690. doi: 10.1016/j.foodres.2022.111690.
  • Roy, S., and J.-W. Rhim. 2020a. Fabrication of copper sulfide nanoparticles and limonene incorporated pullulan/carrageenan-based film with improved mechanical and antibacterial properties. Polymers 12 (11):2665. doi: 10.3390/polym12112665.
  • Roy, S., and J.-W. Rhim. 2020b. Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. International Journal of Biological Macromolecules 164:37–44.
  • Roy, S., and J.-W. Rhim. 2021a. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules 193 (Pt B):2038–46.
  • Roy, S., and J.-W. Rhim. 2021b. New insight into melanin for food packaging and biotechnology applications. Critical Reviews in Food Science and Nutrition 62 (17):4629–55.
  • Roy, S., and J.-W. Rhim. 2021c. Gelatin-based film integrated with copper sulfide nanoparticles for active packaging applications. Applied Sciences 11 (14):6307. doi: 10.3390/app11146307.
  • Roy, S., and J.-W. Rhim. 2021d. Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids and Surfaces. B, Biointerfaces 207:111999.
  • Roy, S., and J.-W. Rhim. 2022. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. Food Bioscience 49:101867. doi: 10.1016/j.fbio.2022.101867.
  • Roy, S., J.-W. Rhim, and L. Jaiswal. 2019. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids. 93:156–66. doi: 10.1016/j.foodhyd.2019.02.034.
  • Saldanha, P. L., R. Brescia, M. Prato, H. Li, M. Povia, L. Manna, and V. Lesnyak. 2014. Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles. Chemistry of Materials 26 (3):1442–9. doi: 10.1021/cm4035598.
  • Saona, L. A., J. L. Campo-Giraldo, G. Anziani-Ostuni, N. Órdenes-Aenishanslins, F. A. Venegas, M. F. Giordana, C. Díaz, M. Isaacs, D. Bravo, and J. M. Pérez-Donoso. 2022. Cysteine-mediated green synthesis of copper sulphide nanoparticles: Biocompatibility studies and characterization as counter electrodes. Nanomaterials 12 (18):3194. doi: 10.3390/nano12183194.
  • Saxena, S. K., P. Yogi, S. Mishra, H. M. Rai, V. Mishra, M. K. Warshi, S. Roy, P. Mondal, P. R. Sagdeo, and R. Kumar. 2017. Amplification or cancellation of fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Physical Chemistry Chemical Physics 19 (47):31788–95. doi: 10.1039/C7CP04836J.
  • Sharif, S., and K. S. Ahmad. 2020. Synthesis of palladium diethyldithiocarbamate complexes as precursor for the deposition of un-doped and copper sulfide doped thin films by a facile physical vapour deposition technique. Optik 218:165014. doi: 10.1016/j.ijleo.2020.165014.
  • Stephen Inbaraj, B., and B. H. Chen. 2016. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Journal of Food and Drug Analysis 24 (1):15–28. doi: 10.1016/j.jfda.2015.05.001.
  • Störmer, A., J. Bott, D. Kemmer, and R. Franz. 2017. Critical review of the migration potential of nanoparticles in food contact plastics. Trends in Food Science and Technology 6:39–50.
  • Suresh, A. K., M. J. Doktycz, W. Wang, J. W. Moon, B. Gu, H. M. Meyer, D. K. Hensley, D. P. Allison, T. J. Phelps, and D. A. Pelletier. 2011. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomaterialia 7 (12):4253–8. doi: 10.1016/j.actbio.2011.07.007.
  • Sweeney, R. Y., C. Mao, X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou, and B. L. Iverson. 2004. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chemistry & Biology 11 (11):1553–9. doi: 10.1016/j.chembiol.2004.08.022.
  • Tan, L., A. Wan, and H. Li. 2013. Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir: The ACS Journal of Surfaces and Colloids 29 (48):15032–42.
  • Ul Ain, N., J. A. Nasir, Z. Khan, I. S. Butler, and Z. Rehman. 2022. Copper sulfide nanostructures: Synthesis and biological applications. RSC Advances 12 (12):7550–67.
  • Varzi, Z, and A. Maleki. 2019. Design and preparation of ZnS-ZnFe2O4: A green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2,4,5-triaryl-1H-imidazoles. Applied Organometallic Chemistry 33 (8):e5008. doi: 10.1002/aoc.5008.
  • Vijayan, S., C. S. Dash, G. Umadevi, M. Sundararajan, and R. Mariappan. 2021. Investigation of structural, optical and antibacterial activity of ZnS nanoparticles. Journal of Cluster Science 32 (6):1601–8. doi: 10.1007/s10876-020-01923-3.
  • Wahid, F., Y. X. Duan, X. H. Hu, L. Q. Chu, S. R. Jia, J. D. Cui, and C. Zhong. 2019. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. International Journal of Biological Macromolecules 132:692–700.
  • Wahid, F., J. J. Yin, D. D. Xue, H. Xue, Y. S. Lu, C. Zhong, and L. Q. Chu. 2016. Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules 8:273–9.
  • Wahid, F., C. Zhong, H. S. Wang, X. H. Hu, and L. Q. Chu. 2017. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 9 (12):636. doi: 10.3390/polym9120636.
  • Wang, X., J. Gao, X. Wu, X. Wang, R. Que, and K. Wu. 2016. A facile one-pot hydrothermal synthesis of Co9S8/Ni3S2 nanoflakes for supercapacitor application. RSC Advances 6 (59):54142–8. doi: 10.1039/C6RA04857A.
  • Wang, Y., X. Zhang, P. Chen, H. Liao, and S. Cheng. 2012. In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochimica Acta 80:264–8. doi: 10.1016/j.electacta.2012.07.004.
  • Wang, Y., Y. Zhang, H. Li, Y. Peng, J. Li, J. Wang, B.-J. Hwang, and J. Zhao. 2018. Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries. Chemical Engineering Journal 332:49–56. doi: 10.1016/j.cej.2017.09.070.
  • Wojtyła, S, and T. Baran. 2018. Insight on doped ZnS and its activity towards photocatalytic removing of Cr(VI) from wastewater in the presence of organic pollutants. Materials Chemistry and Physics 212:103–12. doi: 10.1016/j.matchemphys.2018.03.034.
  • Wu, Y., C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos. 2008. Synthesis and photovoltaic application of copper(1) sulfide nanocrystals. Nano Letters 8 (8):2551–5. doi: 10.1021/nl801817d.
  • Xie, Y. Y., X. H. Hu, Y. W. Zhang, F. Wahid, L. Q. Chu, S. R. Jia, and C. Zhong. 2020. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydrate Polymers 229:115456.
  • Yang, K., G. Yang, L. Chen, L. Cheng, L. Wang, C. Ge, and Z. Liu. 2015. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 38:1–9.
  • Yun, Y.-H., H.-G. Youn, J.-Y. Shin, and S.-D. Yoon. 2017. Preparation of functional chitosan-based nanocomposite films containing ZnS nanoparticles. International Journal of Biological Macromolecules 104 (Pt A):1150–7.
  • Zhang, X., Y. Zhang, B. Bin Yu, X. L. Yin, W. J. Jiang, Y. Jiang, J. S. Hu, and L. J. Wan. 2015. Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 3 (38):19277–81. doi: 10.1039/C5TA05793K.
  • Zhou, M., S. Song, R. Zhang, M. Huang, M. P. Melancon, and C. Li. 2011. A new chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous ΜPET/CT imaging and radiotherapy. The Journal of Nuclear Medicine 52:410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.