386
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates

&

References

  • Abidi, F., N. Aissaoui, J. C. Gaudin, J. M. Chobert, T. Haertlé, and M. N. Marzouki. 2013. MS analysis and molecular characterization of Botrytis cinerea protease Prot-2. Use in bioactive peptides production. Applied Biochemistry and Biotechnology 170 (2):231–47. doi: 10.1007/s12010-013-0186-2.
  • Abidi, F., N. Aissaoui, J. M. Chobert, T. Haertlé, and M. N. Marzouki. 2014. Neutral serine protease from Penicillium italicum. Purification, biochemical characterization, and use for antioxidative peptide preparation from Scorpaena notata muscle. Applied Biochemistry and Biotechnology 174 (1):186–205. doi: 10.1007/s12010-014-1052-6.
  • Agrebi, R., A. Haddar, M. Hajji, F. Frikha, L. Manni, K. Jellouli, and M. Nasri. 2009. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: Characterization and statistical ­media optimization. Canadian Journal of Microbiology 55 (9):1049–61. doi: 10.1139/W09-057.
  • Aguilar, J. G. S., and H. H. Sato. 2018. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International (Ottawa, ON) 103:253–62. doi: 10.1016/j.foodres.2017.10.044.
  • Aissaoui, N., F. Abidi, S. Mahat, and M. N. Marzouki. 2014. Purification and biochemical characterization of a novel protease from Penicillium digitatum – Use in bioactive peptides production. Journal of Basic Microbiology 54 (S1):S178–S189. doi: 10.1002/jobm.201400179.
  • Aissaoui, N., F. Abidi, and M. N. Marzouki. 2015. ACE inhibitory and antioxidant activities of red scorpionfish (Scorpaena notata) protein hydrolysates. Journal of Food Science and Technology 52 (11):7092–102. doi: 10.1007/s13197-015-1862-8.
  • Aissaoui, N., J. M. Chobert, T. Haertlé, M. N. Marzouki, and F. Abidi. 2017. Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Applied Biochemistry and Biotechnology 182 (2):831–45. doi: 10.1007/s12010-016-2365-4.
  • Aissaoui, N., F. Abidi, J. Hardouin, Z. Abdelkafi, N. Marrakchi, T. Jouenne, and M. N. Marzouki. 2017a. ACE inhibitory and antioxidant activities of novel peptides from Scorpaena notata by-product protein hydrolysate. International Journal of Peptide Research and Therapeutics 23 (1):13–23. doi: 10.1007/s10989-016-9536-6.
  • Aissaoui, N., F. Abidi, J. Hardouin, Z. Abdelkafi, N. Marrakchi, T. Jouenne, and M. N. Marzouki. 2017b. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate. Biotechnology and Applied Biochemistry 64 (2):201–10. doi: 10.1002/bab.1478.
  • Akanbi, T. O., D. Ji, and D. Agyei. 2020. Revisiting the scope and applications of food enzymes from extremophiles. Journal of Food Biochemistry 44 (11):e13475. doi: 10.1111/jfbc.13475.
  • Alolod, G. A. L., S. N. Nuñal, M. G. G. Nillos, and J. P. Peralta. 2019. Bioactivity and functionality of gelatin hydrolysates from the skin of oneknife unicornfish (Naso thynnoides). Journal of Aquatic Food Product Technology 28 (10):1013–26. doi: 10.1080/10498850.2019.1682094.
  • Ariaeenejad, S., K. Kavousi, A. S. A. Mamaghani, R. Ghasemitabesh, and G. H. Salekdeh. 2022. Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. The Science of the Total Environment 815:152796. doi: 10.1016/j.scitotenv.2021.152796.
  • Arya, P. S., S. M. Yagnik, K. N. Rajput, R. R. Panchal, and V. H. Raval. 2021. Understanding the basis of occurrence, biosynthesis, and implications of thermostable alkaline proteases. Applied Biochemistry and Biotechnology 193 (12):4113–50. doi: 10.1007/s12010-021-03701-x.
  • Atma, Y., D. Fitriani, and A. Z. Mustopa. 2021. Radical-scavenging activity of fish gelatin hydrolysates from bone of Pangasius catfish (Pangasius sutchi) by microbial proteases hydrolysis. Biointerface Research in Applied Chemistry 11:7903–11. doi: 10.33263/BRIAC111.79037911.
  • Balti, R., A. Bougatef, N. El Hadj Ali, D. Zekri, A. Barkia, and M. Nasri. 2010. Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of the Science of Food and Agriculture 90 (12):2006–14. doi: 10.1002/jsfa.4045.
  • Balti, R., N. Nedjar-Arroume, E. Y. Adjé, D. Guillochon, and M. Nasri. 2010. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. Journal of Agricultural and Food Chemistry 58 (6):3840–6. doi: 10.1021/jf904300q.
  • Balti, R., A. Bougatef, A. Sila, D. Guillochon, P. Dhulster, and N. Nedjar-Arroume. 2015. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry 170:519–25. doi: 10.1016/j.foodchem.2013.03.091.
  • Banerjee, P., and C. Shanthi. 2012. Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochemistry 47 (12):2335–46. doi: 10.1016/j.procbio.2012.09.012.
  • Banerjee, P., G. Suseela, and C. Shanthi. 2012. Isolation and identification of cryptic bioactive regions in bovine achilles tendon collagen. The Protein Journal 31 (5):374–86. doi: 10.1007/s10930-012-9415-8.
  • Ben Khaled, H., Z. Ghlissi, Y. Chtourou, A. Hakim, N. Ktari, M. A. Fatma, A. Barkia, Z. Sahnoun, and M. Nasri. 2012. Effect of protein hydrolysates from sardinelle (Sardinella aurita) on the oxidative status and blood lipid profile of cholesterol-fed rats. Food Research International 45 (1):60–8. doi: 10.1016/j.foodres.2011.10.003.
  • Ben Khaled, H., N. Ktari, O. Ghorbel-Bellaaj, M. Jridi, I. Lassoued, and M. Nasri. 2014. Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. Journal of Food Science and Technology 51 (4):622–33. doi: 10.1007/s13197-011-0544-4.
  • Ben Salem, R. B.-S., I. Bkhairia, O. Abdelhedi, and M. Nasri. 2017. Octopus vulgaris protein hydrolysates: Characterization, antioxidant and functional properties. Journal of Food Science and Technology 54 (6):1442–54. doi: 10.1007/s13197-017-2567-y.
  • Beyan, S. M., S. V. Prabhu, T. K. Mumecha, and M. T. Gemeda. 2021. Production of alkaline proteases using Aspergillus sp. isolated from Injera: RSM-GA based process optimization and enzyme kinetics aspect. Current Microbiology 78 (5):1823–34. doi: 10.1007/s00284-021-02446-4.
  • Białkowska, A. M., J. Krysiak, T. Florczak, K. M. Szulczewska, M. Wanarska, and M. Turkiewicz. 2018. The psychrotrophic yeast Sporobolomyces roseus LOCK 1119 as a source of a highly active aspartic protease for the in vitro production of antioxidant peptides. Biotechnology and Applied Biochemistry 65 (5):726–38. doi: 10.1002/bab.1656.
  • Bougatef, A., N. Nedjar-Arroume, R. Ravallec-Plé, Y. Leroy, D. Guillochon, A. Barkia, and M. Nasri. 2008. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry 111 (2):350–6. doi: 10.1016/j.foodchem.2008.03.074.
  • Bougatef, A., N. Nedjar-Arroume, L. Manni, R. Ravallec, A. Barkia, D. Guillochon, and M. Nasri. 2010. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry 118 (3):559–65. doi: 10.1016/j.foodchem.2009.05.021.
  • Bounouala, F. Z., S. Roudj, N. E. Karam, I. Recio, and B. Miralles. 2017. Casein hydrolysates by Lactobacillus brevis and Lactococcus lactis proteases: Peptide profile discriminates strain-dependent enzyme specificity. Journal of Agricultural and Food Chemistry 65 (42):9324–32. doi: 10.1021/acs.jafc.7b03203.
  • Brandelli, A., L. Sala, and S. J. Kalil. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International 73:3–12. doi: 10.1016/j.foodres.2015.01.015.
  • Budiarto, B. R., A. Z. Mustopa, and T. Indarmawan. 2016. Characterization of partially extracellular proteases from bekasam-isolated Lactobacillus plantarum S31 and its application to hydrolyze skimmed-milk with antibacterial property. International Food Research Journal 23:340–9.
  • Castro, R. J. S., and H. H. Sato. 2014a. Advantages of an acid protease from Aspergillus oryzae over commercial preparations for production of whey protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology 3 (3):58–65. doi: 10.1016/j.bcab.2013.11.012.
  • Castro, R. J. S., and H. H. Sato. 2014b. Antioxidant activities and functional properties of soy protein isolate hydrolysates obtained using microbial proteases. International Journal of Food Science & Technology 49 (2):317–28. doi: 10.1111/ijfs.12285.
  • Castro, R. J. S., and H. H. Sato. 2015a. Synergistic actions of proteolytic enzymes for production of soy protein hydrolysates with antioxidant activities: An approach based on enzymes specificities. Biocatalysis and Agricultural Biotechnology 4 (4):694–702. doi: 10.1016/j.bcab.2015.08.012.
  • Castro, R. J. S., and H. H. Sato. 2015b. A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology 4 (1):55–62. doi: 10.1016/j.bcab.2014.07.001.
  • Cha, M., and J. R. Park. 2005. Production and characterization of a soy protein-derived angiotensin I-converting enzyme inhibitory hydrolysate. Journal of Medicinal Food 8 (3):305–10. doi: 10.1089/jmf.2005.8.305.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chalamaiah, M., S. K. Ulug, H. Hong, and J. Wu. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods 58:123–9. doi: 10.1016/j.jff.2019.04.050.
  • Chang, C., S. Gong, Z. Liu, Q. Yan, and Z. Jiang. 2021. High level expression and biochemical characterization of an alkaline serine protease from Geobacillus stearothermophilus to prepare antihypertensive whey protein hydrolysate. BMC Biotechnology 21 (1):21. doi: 10.1186/s12896-021-00678-7.
  • Chang, C. Y., J. D. Jin, H. L. Chang, K. C. Huang, Y. F. Chiang, M. Ali, and S. M. Hsia. 2021. Antioxidative activity of soy, wheat and pea protein isolates characterized by multi-enzyme hydrolysis. Nanomaterials 11 (6):1509. doi: 10.3390/nano11061509.
  • Chen, X.-L., M. Peng, J. Li, B.-L. Tang, X. Shao, F. Zhao, C. Liu, X.-Y. Zhang, P.-Y. Li, M. Shi, et al. 2017. Preparation and functional evaluation of collagen oligopeptide-rich hydrolysate from fish skin with the serine collagenolytic protease from Pseudoalteromonas sp. SM9913. Scientific Reports 7 (1):15716. doi: 10.1038/s41598-017-15971-9.
  • Chen, W., Y. Zeng, L. Zheng, W. Liu, and Q. Lyu. 2021. Discovery and characterization of a novel protease from the Antarctic soil. Process Biochemistry 111:270–7. doi: 10.1016/j.procbio.2021.10.032.
  • Cheng, J. H., X. Y. Zhang, Z. Wang, X. Zhang, S. C. Liu, X. Y. Song, Y. Z. Zhang, J. M. Ding, X. L. Chen, and F. Xu. 2021. Potential of thermolysin-like protease A69 in preparation of bovine collagen peptides with moisture-retention ability and antioxidative activity. Marine Drugs 19 (12):676. doi: 10.3390/md19120676.
  • Corrêa, A. P. F., D. J. Daroit, and A. Brandelli. 2010. Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. International Biodeterioration & Biodegradation 64 (1):1–6. doi: 10.1016/j.ibiod.2009.06.015.
  • Corrêa, A. P. F., D. J. Daroit, J. Coelho, S. M. M. Meira, F. C. Lopes, J. Segalin, P. H. Risso, and A. Brandelli. 2011. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture 91 (12):2247–54. doi: 10.1002/jsfa.4446.
  • Corrêa, A. P. F., D. J. Daroit, R. Fontoura, S. M. M. Meira, J. Segalin, and A. Brandelli. 2014. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides 61:48–55. doi: 10.1016/j.peptides.2014.09.001.
  • Cunha, I. C., A. Brandelli, A. R. C. Braga, L. Sala, and S. J. Kalil. Forthcoming. Feather meal as a source of peptides with antioxidant activity from enzymatic hydrolysis. Waste and Biomass Valorization doi: 10.1007/s12649-022-01886-8.
  • Danilova, I., and M. Sharipova. 2020. The practical potential of Bacilli and their enzymes for industrial production. Frontiers in Microbiology 11:1782. doi: 10.3389/fmicb.2020.01782.
  • Daroit, D. J., A. P. F. Corrêa, and A. Brandelli. 2011. Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. International Biodeterioration & Biodegradation 65 (1):45–51. doi: 10.1016/j.ibiod.2010.04.014.
  • Daroit, D. J., A. P. F. Corrêa, M. M. Canales, J. G. Coelho, M. E. Hidalgo, D. M. Tichota, P. H. Risso, and A. Brandelli. 2012. Physicochemical properties and biological activities of ovine caseinate hydrolysates. Dairy Science & Technology 92 (4):335–51. doi: 10.1007/s13594-012-0068-3.
  • Daroit, D. J., and A. Brandelli. 2021. In vivo bioactivities of food protein-derived peptides – A current review. Current Opinion in Food Science 39:120–9. doi: 10.1016/j.cofs.2021.01.002.
  • De Gobba, C., G. Tompa, and J. Otte. 2014. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chemistry 165:205–15. doi: 10.1016/j.foodchem.2014.05.082.
  • Delgado-García, M., A. C. Flores-Gallegos, M. Kirchmayr, J. A. Rodríguez, J. C. Mateos-Díaz, C. N. Aguilar, M. Muller, and R. M. Camacho-Ruíz. 2019. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electronic Journal of Biotechnology 39:52–60. doi: 10.1016/j.ejbt.2019.03.001.
  • Deng, J. J., D. Shi, M. Zhao, Z. Q. Li, D. L. Lu, S. Xu, Z. J. You, J. Z. Li, and X. C. Luo. 2021. Recombinant neutral protease rNpI as fish feed additive to improve protein digestion and growth. Aquaculture Research 52 (1):273–81. doi: 10.1111/are.14890.
  • Djellouli, M., M. E. López-Caballero, S. Roudj, and O. Martínez-Álvarez. 2021. Hydrolysis of shrimp cooking juice waste for the production of antioxidant peptides and proteases by Enterococcus faecalis DM19. Waste and Biomass Valorization 12 (7):3741–52. doi: 10.1007/s12649-020-01263-3.
  • Doan, C. T., T. N. Tran, V. B. Nguyen, A. D. Nguyen, and S. L. Wang. 2020. Utilization of seafood processing by-products for production of proteases by Paenibacillus sp. TKU052 and their application in biopeptides’ preparation. Marine Drugs 18 (11):574. doi: 10.3390/md18110574.
  • Duarte Neto, J. M. W., J. C. Maciel, J. F. Campos, L. B. Carvalho Jr., D. A. V. Marques, C. A. Lima, and A. L. F. Porto. 2017. Optimization of Penicillium aurantiogriseum protease Immobilization on magnetic nanoparticles for antioxidant peptides’ obtainment. Preparative Biochemistry & Biotechnology 47 (7):644–54. doi: 10.1080/10826068.2017.1292286.
  • Eckert, E., A. Zambrowicz, Ł. Bobak, A. Zabłocka, J. Chrzanowska, and T. Trziszka. 2019. Production and identification of biologically active peptides derived from by-product of hen egg-yolk phospholipid extraction. International Journal of Peptide Research and Therapeutics 25 (2):669–80. doi: 10.1007/s10989-018-9713-x.
  • El Hadj-Ali, N., R. Agrebi, B. Ghorbel-Frikha, A. Sellami-Kamoun, S. Kanoun, and M. Nasri. 2007. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme and Microbial Technology 40 (4):515–23. doi: 10.1016/j.enzmictec.2006.05.007.
  • Emran, M. A., S. A. Ismail, and A. M. Abdel-Fattah. 2020. Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. Biocatalysis and Agricultural Biotechnology 27:101674. doi: 10.1016/j.bcab.2020.101674.
  • Fakhfakh-Zouari, N., A. Haddar, N. Hmidet, F. Frikha, and M. Nasri. 2010. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochemistry 45 (5):617–26. doi: 10.1016/j.procbio.2009.12.007.
  • Gaonkar, S. K., and I. J. Furtado. 2021. Valorization of low-cost agro-wastes residues for the maximum production of protease and lipase haloextremozymes by Haloferax lucentensis GUBF-2 MG076078. Process Biochemistry 101:72–88. doi: 10.1016/j.procbio.2020.10.019.
  • Ghorbel-Bellaaj, O., K. Jellouli, and H. Maalej. 2017. Shrimp processing by-products protein hydrolysates: Evaluation of antioxidant activity and application in biomass and proteases production. Biocatalysis and Biotransformation 35 (4):287–97. doi: 10.1080/10242422.2017.1334766.
  • Ghorbel-Frikha, B., A. Sellami-Kamoun, N. Fakhfakh, A. Haddar, L. Manni, and M. Nasri. 2005. Production and purification of a calcium-dependent protease from Bacillus cereus BG1. Journal of Industrial Microbiology & Biotechnology 32 (5):186–94. doi: 10.1007/s10295-005-0228-z.
  • Gimenes, N. C., E. Silveira, and E. B. Tambourgi. 2021. An overview of proteases: Production, downstream processes and industrial applications. Separation & Purification Reviews 50 (3):223–43. doi: 10.1080/15422119.2019.1677249.
  • Gupta, R. K., D. Prasad, J. Sathesh, R. B. Naidu, N. R. Kamini, S. Palanivel, and M. K. Gowthaman. 2012. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. Journal of Microbiology and Biotechnology 22 (9):1230–6. doi: 10.4014/jmb.1203.03021.
  • Haddar, A., R. Agrebi, A. Bougatef, N. Hmidet, A. Sellami-Kamoun, and M. Nasri. 2009. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology 100 (13):3366–73. doi: 10.1016/j.biortech.2009.01.061.
  • Hajji, M., S. Kanoun, M. Nasri, and N. Gharsallah. 2007. Purification and characterization of an alkaline serine-protease produced by a new isolated Aspergillus clavatus ES1. Process Biochemistry 42 (5):791–7. doi: 10.1016/j.procbio.2007.01.011.
  • Hajji, M., N. Hmidet, K. Jellouli, T. Vallaeys, M. Nasri, and A. Sellami-Kamoun. 2010. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochemistry 45 (10):1746–52. doi: 10.1016/j.procbio.2010.07.005.
  • Hamin Neto, Y. A. A., J. C. Rosa, and H. Cabral. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Preparative Biochemistry & Biotechnology 49 (7):639–48. doi: 10.1080/10826068.2019.1566147.
  • Hammami, A., M. Hamdi, O. Abdelhedi, M. Jridi, M. Nasri, and A. Bayoudh. 2017. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: Characterization and potential applications in chitin extraction and as a detergent additive. International Journal of Biological Macromolecules 96:272–81. doi: 10.1016/j.ijbiomac.2016.12.035.
  • Hammami, A., A. Bayoudh, O. Abdelhedi, and M. Nasri. 2018. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. Annals of Microbiology 68 (8):473–84. doi: 10.1007/s13213-018-1352-0.
  • He, H. L., X. L. Chen, C. Y. Sun, Y. Z. Zhang, and P. Gao. 2006. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresource Technology 97 (3):385–90. doi: 10.1016/j.biortech.2005.03.016.
  • He, H. L., X. L. Chen, C. Y. Sun, Y. Z. Zhang, and B. C. Zhou. 2006. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis. Journal of Peptide Science 12:726–33. doi: 10.1002/psc.
  • He, H. L., X. L. Chen, H. Wu, C. Y. Sun, Y. Z. Zhang, and B. C. Zhou. 2007. High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresource Technology 98 (18):3499–505. doi: 10.1016/j.biortech.2006.11.036.
  • He, H. L., H. Wu, X. L. Chen, M. Shi, X. Y. Zhang, C. Y. Sun, Y. Z. Zhang, and B. C. Zhou. 2008. Pilot and plant scaled production of ACE inhibitory hydrolysates from Acetes chinensis and its in vivo antihypertensive effect. Bioresource Technology 99 (13):5956–9. doi: 10.1016/j.biortech.2007.10.038.
  • Hidalgo, M. E., D. J. Daroit, A. P. F. Corrêa, S. Pieniz, A. Brandelli, and P. H. Risso. 2012. Physicochemical and antioxidant properties of bovine caseinate hydrolysates obtained through microbial protease treatment. International Journal of Dairy Technology 65 (3):342–52. doi: 10.1111/j.1471-0307.2011.00752.x.
  • Hidalgo, M. E., A. P. F. Corrêa, M. M. Canales, D. J. Daroit, A. Brandelli, and P. Risso. 2015. Biological and physicochemical properties of bovine sodium caseinate hydrolysates obtained by a bacterial protease preparation. Food Hydrocolloids 43:510–20. doi: 10.1016/j.foodhyd.2014.07.009.
  • Huang, Y., J. Wang, Y. Hou, and S. Q. Hu. 2020. Production of yeast hydrolysates by Bacillus subtilis derived enzymes and antihypertensive activity in spontaneously hypertensive rats. Food Biotechnology 34 (3):262–81. doi: 10.1080/08905436.2020.1791174.
  • Hwang, C. F., Y. A. Chen, C. Luo, and W. D. Chiang. 2016. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. International Journal of Food Science & Technology 51 (3):681–9. doi: 10.1111/ijfs.13030.
  • Jamrath, T., C. Lindner, M. K. Popović, and R. Bajpai. 2012. Production of amylases and proteases by Bacillus caldolyticus from food industry wastes. Food Technology and Biotechnology 50:355–61.
  • Jemil, I., O. Abdelhedi, R. Nasri, L. Mora, M. Jridi, M. C. Aristoy, F. Toldrá, and M. Nasri. 2017. Novel bioactive peptides from enzymatic hydrolysate of sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases. Food Research International (Ottawa, ON) 100 (Pt 1):121–33. doi: 10.1016/j.foodres.2017.06.018.
  • Jiang, B., M. Wang, X. Wang, S. Wu, D. Li, C. Liu, Z. Feng, and J. Li. 2021. Effective separation of prolyl endopeptidase from Aspergillus niger by aqueous two phase system and its characterization and application. International Journal of Biological Macromolecules 169:384–95. doi: 10.1016/j.ijbiomac.2020.12.120.
  • Jridi, M., I. Lassoued, R. Nasri, M. A. Ayadi, M. Nasri, and N. Souissi. 2014. Characterization and potential use of cuttlefish skin gelatin hydrolysates prepared by different microbial proteases. BioMed Research International 2014:461728. doi: 10.1155/2014/461728.
  • Kamal, S., S. Rehman, and H. M. N. Iqbal. 2017. Biotechnological valorization of proteases: From hyperproduction to industrial exploitation – A review. Environmental Progress & Sustainable Energy 36 (2):511–22. doi: 10.1002/ep.12447.
  • Kasana, R. C., R. Salwan, and S. K. Yadav. 2011. Microbial proteases: Detection, production, and genetic improvement. Critical Reviews in Microbiology 37 (3):262–76. doi: 10.3109/1040841X.2011.577029.
  • Ke, Y., W.-Q. Huang, J.-Z. Li, M.-Q. Xie, and X.-C. Luo. 2012. Enzymatic characteristics of a recombinant neutral protease (rNpI) from Aspergillus oryzae expressed in Pichia pastoris. Journal of Agricultural and Food Chemistry 60 (49):12164–9. doi: 10.1016/j.pep.2019.06.002.
  • Kshetri, P., S. S. Roy, S. B. Chanu, T. S. Singh, K. Tamreihao, S. K. Sharma, M. A. Ansari, and N. Prakash. 2020. Valorization of chicken feather waste into bioactive keratin hydrolysate by a newly purified keratinase from Bacillus sp. RCM-SSR-102. Journal of Environmental Management 273:111195. doi: 10.1016/j.jenvman.2020.111195.
  • Kshetri, P., P. L. Singh, S. B. Chanu, T. S. Singh, C. Rajiv, K. Tamreihao, H. N. Singh, T. Chongtham, A. K. Devi, S. K. Sharma, et al. 2022. Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electronic Journal of Biotechnology 60:11–8. doi: 10.1016/j.ejbt.2022.08.001.
  • Ktari, N., N. Fakhfakh, R. Balti, H. Ben Khaled, M. Nasri, and A. Bougatef. 2013. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of Aquatic Food Product Technology 22 (5):436–48. doi: 10.1080/10498850.2012.658961.
  • Kusumaningtyas, E., M. Nurilmala, and D. Sibarani. 2019. Antioxidant and antifungal activities of collagen hydrolysates from skin of milkfish (Chanos chanos) hydrolyzed using various Bacillus proteases. IOP Conference Series: Earth and Environmental Science 278 (1):012040. doi: 10.1088/1755-1315/278/1/012040.
  • Lapsongphon, N., and J. Yongsawatdigul. 2013. Production and purification of antioxidant peptides from a mungbean meal hydrolysate by Virgibacillus sp. SK37 proteinase. Food Chemistry 141 (2):992–9. doi: 10.1016/j.foodchem.2013.04.054.
  • Lassoued, I., L. Mora, A. Barkia, M. C. Aristoy, M. Nasri, and F. Toldrá. 2015. Bioactive peptides identified in thornback ray skin’s gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics 128:8–17. doi: 10.1016/j.jprot.2015.06.016.
  • Lassoued, I., L. Mora, R. Nasri, M. Aydi, F. Toldrá, M. C. Aristoy, A. Barkia, and M. Nasri. 2015. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics 128:458–68. doi: 10.1016/j.jprot.2015.05.007.
  • Lassoued, I., L. Mora, R. Nasri, M. Jridi, F. Toldrá, M. C. Aristoy, A. Barkia, and M. Nasri. 2015. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods 13:225–38. doi: 10.1016/j.jff.2014.12.042.
  • Lassoued, I., L. Mora, A. Barkia, M. C. Aristoy, M. Nasri, and F. Toldrá. 2016. Angiotensin I-converting enzyme inhibitory peptides FQPSF and LKYPI identified in Bacillus subtilis A26 hydrolysate of thornback ray muscle. International Journal of Food Science & Technology 51 (7):1604–9. doi: 10.1111/ijfs.13130.
  • Laxman, R. S., A. P. Sonawane, S. V. More, B. S. Rao, M. V. Rele, V. V. Jogdand, V. V. Deshpande, and M. B. Rao. 2005. Optimization and scale up of production of alkaline protease from Conidioboluis coronatus. Process Biochemistry 40 (9):3152–8. doi: 10.1016/j.procbio.2005.04.005.
  • Lee, D. H., C. T. Doan, T. N. Tran, V. B. Nguyen, A. D. Nguyen, C. L. Wang, and S. L. Wang. 2021. Proteases production and chitin preparation from the liquid fermentation of chitinous fishery by-products by Paenibacillus elgii. Marine Drugs 19 (9):477. doi: 10.3390/md19090477.
  • Lermen, A. M., N. J. Clerici, and D. J. Daroit. 2020. Biochemical properties of a partially purified protease from Bacillus sp. CL18 and its use to obtain bioactive soy protein hydrolysates. Applied Biochemistry and Biotechnology 192 (2):643–64. doi: 10.1007/s12010-020-03355-1.
  • Lermen, A. M., N. J. Clerici, D. B. Maciel, and D. J. Daroit. Forthcoming. Characterization and application of a crude bacterial protease to produce antioxidant hydrolysates from whey protein. Preparative Biochemistry & Biotechnology: 1–10. doi: 10.1080/10826068.2022.2033997.
  • Li, Y., F. A. Sadiq, L. Fu, H. Zhu, M. Zhong, and M. Sohail. 2016. Identification of angiotensin I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of razor clam Sinonovacula constricta. Marine Drugs 14 (6):110. doi: 10.3390/md14060110.
  • Li-Chan, E. C. Y. 2015. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science 1:28–37. doi: 10.1016/j.cofs.2014.09.005.
  • Lima, C. A., J. F. Campos, J. L. Lima Filho, A. Converti, M. G. C. Cunha, and A. L. F. Porto. 2015. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology 52 (7):4459–66. doi: 10.1007/s13197-014-1463-y.
  • Liu, D., J. Huang, C. Wu, C. Liu, R. Huang, W. Wang, T. Yin, X. Yan, H. He, and L. Chen. 2019. Purification, characterization, and application for preparation of antioxidant peptides of extracellular protease from Pseudoalteromonas sp. H2. Molecules 24 (18):3373. doi: 10.3390/molecules24183373.
  • Lorenzo, J. M., P. E. S. Munekata, B. Gómez, F. J. Barba, L. Mora, C. Pérez-Santaescolástica, and F. Toldrá. 2018. Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology 79:136–47. doi: 10.1016/j.tifs.2018.07.003.
  • Ma, C., X. Ni, Z. Chi, L. Ma, and L. Gao. 2007. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Marine Biotechnology (New York, N.Y.) 9 (3):343–51. doi: 10.1007/s10126-006-6105-6.
  • Manni, L., O. Ghorbel-Bellaaj, K. Jellouli, I. Younes, and M. Nasri. 2010. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Applied Biochemistry and Biotechnology 162 (2):345–57. doi: 10.1007/s12010-009-8846-y.
  • Manzoor, M., J. Singh, and A. Gani. 2022. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chemistry 373 (Pt A):131395. doi: 10.1016/j.foodchem.2021.131395.
  • Martin, M., and A. Deussen. 2019. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Critical Reviews in Food Science and Nutrition 59 (8):1264–83. doi: 10.1080/10408398.2017.1402750.
  • Mechri, S., M. B. E. Berrouina, M. O. Benmrad, N. Z. Jaouadi, H. Rekik, E. Moujehed, A. Chebbi, S. Sayadi, M. Chamkha, S. Bejar, et al. 2017. Characterization of a novel protease from Aeribacillus pallidus strainVP3 with potential biotechnological interest. International Journal of Biological Macromolecules 94 (Pt A):221–32. doi: 10.1016/j.ijbiomac.2016.09.112.
  • Mechri, S., K. Bouacem, N. Z. Jaouadi, H. Rekik, M. Ben Elhoul, M. O. Benmrad, H. Hacene, S. Bejar, A. Bouanane, B. Darenfed, et al. 2019. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles: Life under Extreme Conditions 23 (6):687–706. doi: 10.1007/s00792-019-01123-6.
  • Mechri, S., I. Sellem, K. Bouacem, F. Jabeur, M. Chamkha, H. Hacene, A. Bouanane-Darenfed, and B. Jaouadi. 2020. Antioxidant and enzyme inhibitory activities of Metapenaeus monoceros by-product hydrolysates elaborated by purified alkaline proteases. Waste and Biomass Valorization 11 (12):6741–55. doi: 10.1007/s12649-020-00942-5.
  • Mechri, S., I. Jaballi, F. Ben Taheur, F. Jabeur, J. Elloumi, W. Bejar, C. Mansour, M. Hajji, H. Fetoui, R. Mzoughi, et al. 2022. Anti-biofilm, antioxidant and cytotoxic potential of F5, a peptide derived from waste generated during the processing of the white shrimp, Metapenaeus monoceros (Fabricius, 1798). Waste and Biomass Valorization 13 (7):3233–44. doi: 10.1007/s12649-022-01722-z.
  • Millan, G. C. L., F. F. Veras, P. Stincone, M. E. Pailliè-Jiménez, and A. Brandelli. 2022. Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. Biocatalysis and Agricultural Biotechnology 43:102415. doi: 10.1016/j.bcab.2022.102415.
  • Mukhia, S., A. Kumar, and R. Kumar. 2021. Generation of antioxidant peptides from soy protein isolate through psychrotrophic Chryseobacterium sp. derived alkaline broad temperature active protease. LWT 143:111152. doi: 10.1016/j.lwt.2021.111152.
  • Nascimento, T. C. E., S. A. R. Sena, J. E. G. Gomes, W. L. Santos, G. S. A. Montalvo, E. B. Tambourgi, E. V. Medeiros, L. D. Sette, A. Pessoa Jr., and K. A. Moreira. 2015. Extracellular serine proteases by Acremonium sp. L1-4B isolated from Antarctica: Overproduction using cactus pear extract with response surface methodology. Biocatalysis and Agricultural Biotechnology 4 (4):737–44. doi: 10.1016/j.bcab.2015.10.006.
  • Nascimento, T. C. E. S., J. V. D. Molino, P. R. S. Donado, G. S. A. Montalvo, W. L. Santos, J. E. G. Gomes, J. H. P. M. Santos, R. Silva, L. D. Sette, A. Pessoa Jr., et al. 2021. Antarctic fungus proteases generate bioactive peptides from caseinate. Food Research International (Ottawa, ON) 139:109944. doi: 10.1016/j.foodres.2020.109944.
  • Nasri, R., A. Bougatef, H. Ben Khaled, N. Nedjar-Arroume, M. K. Chaâbouni, P. Dhulster, and M. Nasri. 2012. Antioxidant and free radical-scavenging activities of goby (Zosterisessor ophiocephalus) muscle protein hydrolysates obtained by enzymatic treatment. Food Biotechnology 26 (3):266–79. doi: 10.1080/08905436.2012.699203.
  • Nasri, R., G. Chataigné, A. Bougatef, M. K. Chaâbouni, P. Dhulster, M. Nasri, and N. Nedjar-Arroume. 2013. Novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of goby (Zosterisessor ophiocephalus) muscle proteins. Journal of Proteomics 91:444–52. doi: 10.1016/j.jprot.2013.07.029.
  • Ni, X., Z. Chi, Z. Liu, and L. Yue. 2008. Screening of protease-producing marine yeasts for production of the bioactive peptides. Acta Oceanologica Sinica 27:116–25.
  • Ni, X., L. Yue, Z. Chi, J. Li, X. Wang, and C. Madzak. 2009. Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Marine Biotechnology (New York, N.Y.) 11 (1):81–9. doi: 10.1007/s10126-008-9122-9.
  • Oliveira, C. F., D. Coletto, A. P. F. Corrêa, D. J. Daroit, R. Toniolo, F. Cladera-Olivera, and A. Brandelli. 2014. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease. International Food Research Journal 21:775–81.
  • Oliveira, C. F., A. P. F. Corrêa, D. Coletto, D. J. Daroit, F. Cladera-Olivera, and A. Brandelli. 2015. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. Journal of Food Science and Technology 52 (5):2668–78. doi: 10.1007/s13197-014-1317-7.
  • Ortiz, G. E., D. G. Noseda, M. C. P. Mora, M. N. Recupero, M. Blasco, and E. Albertó. 2016. A comparative study of new Aspergillus strains for proteolytic enzymes production by solid state fermentation. Enzyme Research 2016:3016149. doi: 10.1155/2016/3016149.
  • Perna, A., A. Simonetti, V. Acquaviva, R. Rossano, G. Grassi, and E. Gambacorta. 2020. Hydrolytic degree and antioxidant activity of purified casein characterised by different haplotypes (αS1-, β- and k-casein) after enzymatic hydrolysis with pepsin and enzymatic extract from Pleurotus eryngii. International Journal of Food Science & Technology 55 (5):2020–8. doi: 10.1111/ijfs.14448.
  • Pessoa, T. B. A., R. P. Rezende, E. L. S. Marques, C. P. Pirovani, T. F. Santos, A. C. S. Gonçalves, C. C. Romano, N. C. Dotivo, A. C. O. Freitas, L. C. Salay, et al. 2017. Metagenomic alkaline protease from mangrove sediment. Journal of Basic Microbiology 57 (11):962–73. doi: 10.1002/jobm.201700159.
  • Pillaca-Pullo, O. S., A. Intiquilla, J. H. P. M. Santos, I. Sánchez-Moguel, A. Brandelli, and A. I. Zavaleta. 2021. Purification of Pseudomonas sp. proteases through aqueous biphasic systems as an alternative source to obtain bioactive protein hydrolysates. Biotechnology Progress 37 (3):e3003. doi: 10.1002/btpr.3003.
  • Pokora, M., A. Zambrowicz, A. Zabłocka, A. Dąbrowska, M. Szołtysik, K. Babij, E. Eckert, T. Trziszka, and J. Chrzanowska. 2017. The use of serine protease from Yarrowia lipolytica yeast in the production of biopeptides from denatured egg white proteins. Acta Biochimica Polonica 64 (2):245–53. doi: 10.18388/abp.2016_1316.
  • Power, O., P. Jakeman, and R. J. Fitzgerald. 2013. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44 (3):797–820. doi: 10.1007/s00726-012-1393-9.
  • Prasad, R., T. K. Abraham, and A. J. Nair. 2014. Scale up of production in a bioreactor of a halotolerant protease from halophilic Bacillus sp. isolated from soil. Brazilian Archives of Biology and Technology 57 (3):448–55. doi: 10.1590/S1516-89132014005000014.
  • Prathumpai, W., A. Promboon, B. Werapan, P. Nutaratat, P. Chim-Anek, and U. Ninpetch. 2022. Pilot-scale protease production by Bacillus sp. C4 for silk degumming processes. Journal of Natural Fibers 19 (3):1055–68. doi: 10.1080/15440478.2020.1788482.
  • Rahulan, R., K. S. Dhar, K. M. Nampoothiri, and A. Pandey. 2012. Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. Journal of Food Science 77 (7):C791–C797. doi: 10.1111/j.1750-3841.2012.02773.x.
  • Ramesh, R. R., V. Muralidharan, and S. Palanivel. 2018. Preparation and application of unhairing enzyme using solid wastes from the leather industry – An attempt toward internalization of solid wastes within the leather industry. Environmental Science and Pollution Research International 25 (3):2121–36. doi: 10.1007/s11356-017-0550-9.
  • Ravindran, R., S. S. Hassan, G. A. Williams, and A. K. Jaiswal. 2018. A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 5 (4):93. doi: 10.3390/bioengineering5040093.
  • Rivero-Pino, F., F. J. Espejo-Carpio, and E. M. Guadix. 2020. Antidiabetic food-derived peptides for functional feeding: Production, functionality and in vivo evidences. Foods 9 (8):983. doi: 10.3390/foods9080983.
  • Rojas, L. F., P. Zapata, and L. Ruiz-Tirado. 2022. Agro-industrial waste enzymes: Perspectives in circular economy. Current Opinion in Green and Sustainable Chemistry 34:100585. doi: 10.1016/j.cogsc.2021.100585.
  • Roy, M. K., Y. Watanabe, and Y. Tamai. 2000. Yeast protease B-digested skimmed milk inhibits angiotensin-I-converting-enzyme activity. Biotechnology and Applied Biochemistry 31 (2):95–100. doi: 10.1042/ba19990081.
  • Samaranayaka, A. G. P., and E. C. Y. Li-Chan. 2011. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods 3 (4):229–54. doi: 10.1016/j.jff.2011.05.006.
  • Sarmadi, B. H., and A. Ismail. 2010. Antioxidative peptides from food proteins: A review. Peptides 31 (10):1949–56. doi: 10.1016/j.peptides.2010.06.020.
  • Sharma, K. M., R. Kumar, S. Panwar, and A. Kumar. 2017. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal, Genetic Engineering & Biotechnology 15 (1):115–26. doi: 10.1016/j.jgeb.2017.02.001.
  • Singh, S., and B. K. Bajaj. 2017. Potential application spectrum of microbial proteases for clean and green industrial production. Energy, Ecology and Environment 2 (6):370–86. doi: 10.1007/s40974-017-0076-5.
  • Solanki, P., C. Putatunda, A. Kumar, R. Bhatia, and A. Walia. 2021. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech 11 (10):428. doi: 10.1007/s13205-021-02928-z.
  • Souza, T. S., P. C. J. Andrade, M. G. B. Koblitz, A. E., and C. Fai. Forthcoming. Microbial peptidase in food processing: Current state of the art and future trends. Catalysis Letters doi: 10.1007/s10562-022-03965-w.
  • Sun, Q., F. Chen, F. Geng, Y. Luo, S. Gong, and Z. Jiang. 2018. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chemistry 245:570–7. doi: 10.1016/j.foodchem.2017.10.113.
  • Tacias-Pascacio, V. G., D. Castañeda-Valbuena, R. Morellon-Sterling, O. Tavano, Á. Berenguer-Murcia, G. Vela-Gutiérrez, I. A. Rather, and R. Fernandez-Lafuente. 2021. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules 184:415–28. doi: 10.1016/j.ijbiomac.2021.06.076.
  • Taktak, W., R. Nasri, A. López-Rubio, M. Hamdi, L. G. Gómez-Mascaraque, M. Nasri, and M. Karra-Chaâbouni. 2021. Enzymatic production of novel european eel proteins hydrolysates: Biological activities, techno-functional properties and maltodextrin-hydrolysates efficient electrosprayability. International Journal of Peptide Research and Therapeutics 27 (2):1129–48. doi: 10.1007/s10989-020-10156-x.
  • Tatta, E. R., M. Imchen, J. Moopantakath, and R. Kumavath. 2022. Bioprospecting of microbial enzymes: Current trends in industry and healthcare. Applied Microbiology and Biotechnology 106 (5–6):1813–35. doi: 10.1007/s00253-022-11859-5.
  • Tavano, O. L., A. Berenguer-Murcia, F. Secundo, and R. Fernandez-Lafuente. 2018. Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety 17 (2):412–36. doi: 10.1111/1541-4337.12326.
  • Toldrá, F., M. Gallego, M. Reig, M. C. Aristoy, and L. Mora. 2020. Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity. Journal of Agricultural and Food Chemistry 68 (46):12842–55. doi: 10.1021/acs.jafc.9b08297.
  • Toopcham, T., S. Roytrakul, and J. Yongsawatdigul. 2015. Characterization and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from tilapia using Virgibacillus halodenitrificans SK1-3-7 proteinases. Journal of Functional Foods 14:435–44. doi: 10.1016/j.jff.2015.01.050.
  • Tovar-Jiménez, X., C. R. Muro-Urista, A. Tellez-Jurado, Y. Mercado-Flores, A. Abreu-Corona, and A. Arana-Cuenca. 2017. Hydrolysate antimicrobial activity released from bovine whey protein concentrate by the aspartyl protease Eap1 of Sporisorium reilianum. Revista Mexicana de Ingeniería Química 16 (1):11–8. doi: 10.24275/rmiq/Bio693.
  • Tovar-Jiménez, X., A. Téllez-Jurado, C. A. Gómez-Aldapa, Y. Mercado-Flores, and A. Arana-Cuenca. 2021. Antioxidant and antihypertensive activity of bovine whey protein concentrate enzymatic hydrolysates. Biotecnia 23:161–9. doi: 10.18633/biotecnia.v23i1.1321.
  • Tufvesson, P., J. Lima-Ramos, M. Nordblad, and J. M. Woodley. 2011. Guidelines and cost analysis for catalyst production in biocatalytic processes. Organic Process Research & Development 15 (1):266–74. doi: 10.1021/op1002165.
  • Vieira, E. F., J. Teixeira, and I. M. P. L. V. O. Ferreira. 2016. Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. European Food Research and Technology 242 (11):1975–84. doi: 10.1007/s00217-016-2696-y.
  • Vieira, E. F., and I. M. P. L. V. O. Ferreira. 2017. Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. International Journal of Food Properties 20 (3):662–73. doi: 10.1080/10942912.2016.1176036.
  • Vieira, E. F., D. D. Silva, H. Carmo, and I. M. P. L. V. O. Ferreira. 2017. Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chemistry 228:602–9. doi: 10.1016/j.foodchem.2017.02.050.
  • Vieira, E. F., O. Pinho, and I. M. P. L. V. O. Ferreira. 2017. Bio-functional properties of sardine protein hydrolysates obtained by brewer’s spent yeast and commercial proteases. Journal of the Science of Food and Agriculture 97 (15):5414–22. doi: 10.1002/jsfa.8432.
  • Vieira, E. F., J. Neves, I. M. P. L., and V. O. Ferreira. 2021. Bioactive protein hydrolysate obtained from canned sardine and brewing by-products: Impact of gastrointestinal digestion and transepithelial absorption. Waste and Biomass Valorization 12 (3):1281–92. doi: 10.1007/s12649-020-01113-2.
  • Vollet Marson, G., M.-P. Belleville, S. Lacour, and M. Dupas Hubinger. 2021. Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes 11 (1):23. doi: 10.3390/membranes11010023.
  • Winarti, A., F. Rahmawati, N. A. Fitriyanto, J. Jamhari, and Y. Erwanto. 2019. Hydrolyzation of duck meat protein using Bacillus cereus TD5B protease, pepsin, trypsin and their potency as an angiotensin converting enzyme inhibitor. Journal of the Indonesian Tropical Animal Agriculture 44 (3):266–76. doi: 10.14710/jitaa.44.3.266-276.
  • Wiriyaphan, C., B. Chitsomboon, and J. Yongsawadigul. 2012. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry 132 (1):104–11. doi: 10.1016/j.foodchem.2011.10.040.
  • Wiriyaphan, C., B. Chitsomboon, S. Roytrakul, and J. Yongsawadigul. 2013. Isolation and identification of antioxidative peptides from hydrolysate of threadfin bream surimi processing byproduct. Journal of Functional Foods 5 (4):1654–64. doi: 10.1016/j.jff.2013.07.009.
  • Wiriyaphan, C., H. Xiao, E. A. Decker, and J. Yongsawatdigul. 2015. Chemical and cellular antioxidative properties of threadfin bream (Nemipterus spp.) surimi byproduct hydrolysates fractionated by ultrafiltration. Food Chemistry 167:7–15. doi: 10.1016/j.foodchem.2014.06.077.
  • Wu, H., H. L. He, X. L. Chen, C. Y. Sun, Y. Z. Zhang, and B. C. Zhou. 2008. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochemistry 43 (4):457–61. doi: 10.1016/j.procbio.2008.01.018.
  • Wu, R., L. Chen, D. Liu, J. Huang, J. Zhang, X. Xiao, M. Lei, Y. Chen, and H. He. 2017. Preparation of antioxidant peptides from salmon byproducts with bacterial extracellular proteases. Marine Drugs 15 (1):4. doi: 10.3390/md15010004.
  • Wu, R., C. L. Wu, D. Liu, X. H. Yang, J. F. Huang, J. Zhang, B. Liao, and H. L. He. 2018. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry 248:346–52. doi: 10.1016/j.foodchem.2017.12.035.
  • Yang, J., J. Li, Y. Hu, L. Li, L. Long, F. Wang, and S. Zhang. 2015. Characterization of a thermophilic hemoglobin-degrading protease from Streptomyces rutgersensis SCSIO 11720 and its application in antibacterial peptides production. Biotechnology and Bioprocess Engineering 20 (1):79–90. doi: 10.1007/s12257-013-0771-9.
  • Yang, X., X. Xiao, D. Liu, R. Wu, C. Wu, J. Zhang, J. Huang, B. Liao, and H. He. 2017. Optimization of collagenase production by Pseudoalteromonas sp. SJN2 and application of collagenases in the preparation of antioxidative hydrolysates. Marine Drugs 15 (12):377. doi: 10.3390/md15120377.
  • Yin, L.-J., Y.-L. Tong, and S.-T. Jiang. 2007. Improvement of the functionality of minced mackerel by hydrolysis and subsequent lactic acid bacterial fermentation. Journal of Food Science 70 (3):M172–M178. doi: 10.1111/j.1365-2621.2005.tb07146.x.
  • Zanutto-Elgui, M. R., J. C. S. Vieira, D. Z. Prado, M. A. R. Buzalaf, P. M. Padilha, D. E. Oliveira, and L. F. Fleuri. 2019. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry 278:823–31. doi: 10.1016/j.foodchem.2018.11.119.
  • Zhang, P., C. Chang, H. Liu, B. Li, Q. Yan, and Z. Jiang. 2020. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. Journal of Functional Foods 65:103751. doi: 10.1016/j.jff.2019.103751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.