769
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Industry chain and challenges of microalgal food industry-a review

ORCID Icon, , ORCID Icon, , , ORCID Icon, & show all

References

  • Abdelhafez, H., and H. Kandeal. 2018. Histological and histochemical changes in the liver of gamma-irradiated rats and the possible protective role of Aphanizomenon flos-aquae (AFA). Journal of Bioscience and Applied Research 4 (1):1–21. doi: 10.21608/jbaar.2018.126720.
  • Abdul Hamid, S. H., F. Lananan, H. Khatoon, A. Jusoh, and A. Endut. 2016. A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. International Biodeterioration & Biodegradation 113:310–7. doi: 10.1016/j.ibiod.2016.03.027.
  • AGFEP, CARD, CIFAE, IAED, IFPRI. 2021. 2021 China and global food policy report: Rethinking agrifood systems for the post-COVID world, IFPRI. https://www.ifpri.org/publication/2021-china-and-global-food-policy-report-rethinking-agrifood-systems-post-covid-world.
  • AlajİL AlslİBİ, Z., A. ÇEleklİ, and H. Bozkurt. 2021. Effect of Dunaliella salina on enhancing viability of probiotic and the nutritional value. European Journal of Science and Technology, Special Issue 28:1309–1311. doi: 10.31590/ejosat.1013107.
  • Alavosus, T. 2009. Algenuity. Accessed May 31, 2022. https://www.algenuity.com/.
  • Alhattab, M., A. Kermanshahi-Pour, and M. S.-L. Brooks. 2019. Microalgae disruption techniques for product recovery: Influence of cell wall composition. Journal of Applied Phycology 31 (1):61–88. doi: 10.1007/s10811-018-1560-9.
  • Alsaffar, A. A. 2016. Sustainable diets: The interaction between food industry, nutrition, health and the environment. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 22 (2):102–11. doi: 10.1177/1082013215572029.
  • Alvarez, X., A. Alves, M. P. Ribeiro, M. Lazzari, P. Coutinho, and A. Otero. 2021. Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydrate Polymers 254:117303. doi: 10.1016/j.carbpol.2020.117303.
  • Ambati, R. R., S. M. Phang, S. Ravi, and R. G. Aswathanarayana. 2014. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications–a review. Marine Drugs 12 (1):128–52. doi: 10.3390/md12010128.
  • Amorim, M. L., J. Soares, J. S. d. R. Coimbra, M. d. O. Leite, L. F. T. Albino, and M. A. Martins. 2021. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition 61:1976–2002. doi: 10.1080/10408398.2020.1768046.
  • An, M., L. Gao, W. Zhao, W. G. Chen, and M. Li. 2020. Effects of nitrogen forms and supply mode on lipid production of microalga scenedesmus obliquus. Energies 13 (3):697. doi: 10.3390/en13030697.
  • Andersen, R. A. 2013. The microalgal cell. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu. 2nd ed, 1–20. Hoboken, NJ: Wiley-Blackwell.
  • Angela Liou, Y., and S. M. Innis. 2009. Dietary linoleic acid has no effect on arachidonic acid, but increases n-6 eicosadienoic acid, and lowers dihomo-γ-linolenic and eicosapentaenoic acid in plasma of adult men. Prostaglandins, Leukotrienes, and Essential Fatty Acids 80 (4):201–6. doi: 10.1016/j.plefa.2009.02.003.
  • Asimakopoulou, G., A. Karnaouri, S. Staikos, S. D. Stefanidis, K. G. Kalogiannis, A. A. Lappas, and E. Topakas. 2021. Production of Omega-3 fatty acids from the microalga crypthecodinium cohnii by utilizing both pentose and hexose sugars from agricultural residues. Fermentation 7 (4):219. doi: 10.3390/fermentation7040219.
  • Babuskin, S., K. R. Krishnan, P. A. Saravana Babu, M. Sivarajan, and M. Sukumar. 2014. Functional foods enriched with marine microalga nannochloropsis oculata as a source of ω-3 fatty acids. Food Technology and Biotechnology 52:292–9.
  • Bae, M., M. B. Kim, Y. K. Park, and J. Y. Lee. 2020. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158618. doi: 10.1016/j.bbalip.2020.158618.
  • Baek, K., J. Yu, J. Jeong, S. J. Sim, S. Bae, and E. Jin. 2018. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnology and Bioengineering 115 (3):719–28. doi: 10.1002/bit.26499.
  • Baharuddin, N. N. D. E., N. S. Aziz, H. N. Sohif, W. A. A. Karim, J. R. Al-Obaidi, and M. N. Basiran. 2016. Marine microalgae flocculation using plant: the case of nannochloropsis oculata and moringa oleifera. Pakistan Journal of Botany 48:831–40.
  • Balakrishnan, J., S. Dhavamani, S. G. Sadasivam, M. Arumugam, S. Vellaikumar, J. Ramalingam, and K. Shanmugam. 2019. Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats. Journal of the Science of Food and Agriculture 99 (13):6066–75. doi: 10.1002/jsfa.9884.
  • Banerjee, S., and S. Ramaswamy. 2017. Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal Research 26:330–40. doi: 10.1016/j.algal.2017.08.011.
  • Barkia, I., L. Al‐Haj, A. Abdul Hamid, M. Zakaria, N. Saari, and F. Zadjali. 2019a. Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties. International Journal of Food Science and Technology 54:1514–22. doi: 10.1111/ijfs.14006.
  • Barkia, I., N. Saari, and S. R. Manning. 2019b. Microalgae for high-value products towards human health and nutrition. Marine Drugs 17 (5):304. doi: 10.3390/md17050304.
  • Barrera, D. J., and S. P. Mayfield. 2013. High-value recombinant protein production in microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 532–44. Hoboken, NJ: Wiley-Blackwell.
  • Barros, A. I., A. L. Gonçalves, M. Simões, and J. C. M. Pires. 2015. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews 41:1489–500. doi: 10.1016/j.rser.2014.09.037.
  • Barros, A., L. T. Guerra, M. Simões, E. Santos, D. Fonseca, J. Silva, L. Costa, and J. Navalho. 2017. Mass balance analysis of carbon and nitrogen in industrial scale mixotrophic microalgae cultures. Algal Research 21:35–41. doi: 10.1016/j.algal.2016.10.014.
  • Basheer, S., S. H. Huo, F. F. Zhu, J. Y. Qian, L. Xu, F. J. Cui, and B. Zou. 2020. Microalgae in human health and medicine. In Microalgae biotechnology for food, health and high value products, ed. M. A. Alam, J. L. Xu, and Z. M. Wang, 149–74. Singapore: Springer Singapore.
  • Becker, E. W. 2013. Microalgae for human and animal nutrition. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 461–503. Hoboken, NJ: Wiley-Blackwell.
  • Bejor, E., C. Mota, N. Ogarekpe, K. Emerson, and J. Ukpata. 2013. Low-cost harvesting of microalgae biomass from water. International Journal of Development and Sustainability 2:1–11.
  • Bélanger, A., P. K. Sarker, D. P. Bureau, Y. Chouinard, and G. W. Vandenberg. 2021. Apparent digestibility of macronutrients and fatty acids from microalgae (Schizochytrium sp.) fed to rainbow trout (Oncorhynchus mykiss): A potential candidate for fish oil substitution. Animals 11 (2):456. doi: 10.3390/ani11020456.
  • Belay, A. 2013. Biology and industrial production of Arthrospira (Spirulina). In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 339–58. Hoboken, NJ: Wiley-Blackwell.
  • Bendaoud, A., F. Z. Baba Ahmed, H. Merzouk, S. Bouanane, and S. Bendimerad. 2019. Effects of dietary microalgae Nannochloropsis gaditana on serum and redox status in obese rats subjected to a high fat diet. Phytothérapie 17 (4):177–87. doi: 10.3166/phyto-2018-0019.
  • Bernaerts, T. M. M., A. Panozzo, K. A. F. Verhaegen, L. Gheysen, I. Foubert, P. Moldenaers, M. E. Hendrickx, and A. M. Van Loey. 2018. Impact of different sequences of mechanical and thermal processing on the rheological properties of Porphyridium cruentum and Chlorella vulgaris as functional food ingredients. Food & Function 9 (4):2433–46. doi: 10.1039/c8fo00261d.
  • Bhatta, S., T. Stevanovic Janezic, and C. Ratti. 2020. Freeze-drying of plant-based foods. Foods 9 (1):87. doi: 10.3390/foods9010087.
  • Bhattacharjya, R., P. K. Singh, B. Mishra, A. Saxena, and A. Tiwari. 2021. Phycoprospecting the nutraceutical potential of Isochrysis sp as a source of aquafeed and other high‐value products. Aquaculture Research 52 (7):2988–95. doi: 10.1111/are.15143.
  • Binmeibio. 2022. Binmeibio. Accessed June 1, 2022. https://www.binmeibio.com/.
  • Blanco-Llamero, C., and F. J. Señoráns. 2021. Biobased solvents for pressurized liquid extraction of nannochloropsis gaditana Omega-3 lipids. Marine Drugs 19 (2):107. doi: 10.3390/md19020107.
  • Bluetec. 2022. Bluetec. Accessed June 1, 2022. https://bluetec.company.lookchem.cn/.
  • Borowitzka, M. A. 2013. Dunaliella: Biology, production, and markets. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 359–68. Hoboken, NJ: Wiley-Blackwell.
  • Byantara, P., and Dianursanti. 2021. Utilization of Spirulina platensis microalgae as edible coating to maintain quality of fresh strawberry (Fragaria sp.). AIP Conference Proceedings 2344:020016. doi: 10.1063/5.0047579.
  • C.B.N. 2022. C.B.N. Accessed June 1, 2022. http://www.chinaspirulina.com/.
  • Camacho, F., A. Macedo, and F. Malcata. 2019. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine Drugs 17 (6):312. doi: 10.3390/md17060312.
  • Cameron Coates, R., E. Trentacoste, and W. H. Gerwick. 2013. Bioactive and novel chemicals from microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 504–31. Hoboken, NJ: Wiley-Blackwell.
  • Can, Ö., H. Kuduğ, K. Pabuçcu, and İ. Gökçe. 2017. Electroporation-mediated GFP gene transfer into model organism chlamydomonas reinhardtii. Journal of Agriculture and Nature 20:89–94.
  • Caporgno, M. P., L. Böcker, C. Müssner, E. Stirnemann, I. Haberkorn, H. Adelmann, S. Handschin, E. J. Windhab, and A. Mathys. 2020. Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innovative Food Science & Emerging Technologies 59: 102275. doi: 10.1016/j.ifset.2019.102275.
  • Caporgno, M. P., and A. Mathys. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition 5:58. doi: 10.3389/fnut.2018.00058.
  • Castiglioni, A., S. Hettmer, M. D. Lynes, T. N. Rao, D. Tchessalova, I. Sinha, B. T. Lee, Y. H. Tseng, and A. J. Wagers. 2014. Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports 2 (1):92–106. doi: 10.1016/j.stemcr.2013.12.006.
  • Castro-Ferreira, C., J. S. Gomes-Dias, P. Ferreira-Santos, R. N. Pereira, A. A. Vicente, and C. M. R. Rocha. 2022. Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocolloids 124:107276. doi: 10.1016/j.foodhyd.2021.107276.
  • CEVA. 2020. Edible seaweed and microalgae - regulatory status in France and Europe 2019 update. CEVA. https://www.ceva-algues.com/wp-content/uploads/2020/03/CEVA-Edible-algae-FR-and-EU-regulatory-update-2019.pdf.
  • Cezare-Gomes, E. A., L. d. C. Mejia-da-Silva, L. S. Pérez-Mora, M. C. Matsudo, L. S. Ferreira-Camargo, A. K. Singh, and J. C. M. de Carvalho. 2019. Potential of microalgae carotenoids for industrial application. Applied Biochemistry and Biotechnology 188 (3):602–34. doi: 10.1007/s12010-018-02945-4.
  • Chen, C. L., J. S. Chang, and D. J. Lee. 2015. Dewatering and drying methods for microalgae. Drying Technology 33 (4):443–54. doi: 10.1080/07373937.2014.997881.
  • Chen, Z., L. Tan, B. Yang, J. Wu, T. Li, H. Wu, H. Wu, and W. Xiang. 2022. A mutant of seawater Arthrospira platensis with high polysaccharides production induced by space environment and its application potential. Algal Research 61:102562. doi: 10.1016/j.algal.2021.102562.
  • Chen, J., J. Yang, H. Du, M. Aslam, W. Wang, W. Chen, T. Li, Z. Liu, and X. Liu. 2021. Laminarin, a major polysaccharide in stramenopiles. Marine Drugs 19 (10):576. doi: 10.3390/md19100576.
  • Cheong, K. L., V. Jesumani, B. M. Khan, Y. Liu, and H. Du. 2021. Algal polysaccharides and their biological properties. In Recent advances in micro and macroalgal processing, ed. G. Rajauria and Y. V. Yuan, 1st ed., 231–77. Hoboken, NJ: Wiley-Blackwell.
  • Chiu, Y. J., H. H. Chung, C. H. Yeh, J. T. Cheng, and S. H. Lo. 2011. Improvement of insulin resistance by Chlorella in fructose-rich chow-fed rats. Phytotherapy Research: PTR 25 (9):1306–12. doi: 10.1002/ptr.3379.
  • Christakos, S., P. Dhawan, A. Verstuyf, L. Verlinden, and G. Carmeliet. 2016. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews 96 (1):365–408. doi: 10.1152/physrev.00014.2015.
  • Christenson, L., and R. Sims. 2011. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances 29 (6):686–702. doi: 10.1016/j.biotechadv.2011.05.015.
  • Conde, T. A., B. F. Neves, D. Couto, T. Melo, B. Neves, M. Costa, J. Silva, P. Domingues, and M. R. Domingues. 2021. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Marine Drugs 19 (7):357. doi: 10.3390/md19070357.
  • Cope, S., L. J. Frewer, J. Houghton, G. Rowe, A. R. H. Fischer, and J. de Jonge. 2010. Consumer perceptions of best practice in food risk communication and management: Implications for risk analysis policy. Food Policy 35 (4):349–57. doi: 10.1016/j.foodpol.2010.04.002.
  • Cuellar-Bermudez, S. P., I. Aguilar-Hernandez, D. L. Cardenas-Chavez, N. Ornelas-Soto, M. A. Romero-Ogawa, and R. Parra-Saldivar. 2015. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microbial Biotechnology 8 (2):190–209. doi: 10.1111/1751-7915.12167.
  • da Costa, E., J. Silva, S. H. Mendonça, M. H. Abreu, and M. R. Domingues. 2016. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Marine Drugs 14:101. doi: 10.3390/md14050101.
  • Danesi, E. D. G., A. C. Lemes, K. P. Takeuchi, and J. C. M. Carvalho. 2010. Development of fresh pasta with addition of Spirulina platensis biomass. Journal of Biotechnology 150:310. doi: 10.1016/j.jbiotec.2010.09.285.
  • Dantas, D. M. M., T. B. Cahú, C. Y. B. Oliveira, R. Abadie-Guedes, N. A. Roberto, W. M. Santana, A. O. Gálvez, R. C. A. Guedes, and R. S. Bezerra. 2021. Chlorella vulgaris functional alcoholic beverage: Effect on propagation of cortical spreading depression and functional properties. PloS One 16 (8):e0255996. doi: 10.1371/journal.pone.0255996.
  • Darwish, R., M. A. Gedi, P. Akepach, H. Assaye, A. S. Zaky, and D. A. Gray. 2020. Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform chlorella and spirulina. Applied Sciences 10 (19):6736. doi: 10.3390/app10196736.
  • Dassey, A. J., and C. S. Theegala. 2013. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresource Technology 128:241–5. doi: 10.1016/j.biortech.2012.10.061.
  • Davison, J., and K. Ammann. 2017. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops & Food 8 (1):13–34. doi: 10.1080/21645698.2017.1289305.
  • de Bento Flores, C. E. 2019. Extracellular polymeric substances (EPS) from the cyanobacterium Synechocystis sp. PCC 6803: from genes to polymer application as antitumor agent. PhD diss., ICBAS.
  • de Jesus Raposo, M. F., A. M. B. de Morais, and R. M. S. C. de Morais. 2015. Marine polysaccharides from algae with potential biomedical applications. Marine Drugs 13:2967–3028. doi: 10.3390/md13052967.
  • de Jesus Raposo, M. F., A. M. M. B. de Morais, and R. M. S. C. de Morais. 2021. Bioactivity and applications of polysaccharides from marine microalgae. In Polysaccharides: bioactivity and biotechnology, ed. K. G. Ramawat and J.-M. Mérillon, 1–38. Cham: Springer International Publishing.
  • de Morais, M. G., and J. A. V. Costa. 2007. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters 29 (9):1349–52. doi: 10.1007/s10529-007-9394-6.
  • de Souza, M. P., M. Hoeltz, P. D. Gressler, L. B. Benitez, and R. C. S. Schneider. 2019. Potential of microalgal bioproducts: General perspectives and main challenges. Waste and Biomass Valorization 10 (8):2139–56. doi: 10.1007/s12649-018-0253-6.
  • Dehghani, J., K. Adibkia, A. Movafeghi, A. Barzegari, M. M. Pourseif, H. Maleki Kakelar, A. Golchin, and Y. Omidi. 2018. Stable transformation of Spirulina (Arthrospira) platensis: A promising microalga for production of edible vaccines. Applied Microbiology and Biotechnology 102 (21):9267–78. doi: 10.1007/s00253-018-9296-7.
  • Del Mondo, A., A. Smerilli, L. Ambrosino, A. Albini, D. M. Noonan, C. Sansone, and C. Brunet. 2021. Insights into phenolic compounds from microalgae: Structural variety and complex beneficial activities from health to nutraceutics. Critical Reviews in Biotechnology 41 (2):155–71. doi: 10.1080/07388551.2021.1874284.
  • Del Mondo, A., A. Smerilli, E. Sané, C. Sansone, and C. Brunet. 2020. Challenging microalgal vitamins for human health. Microbial Cell Factories 19 (1):201. doi: 10.1186/s12934-020-01459-1.
  • Dose, J., S. Matsugo, H. Yokokawa, Y. Koshida, S. Okazaki, U. Seidel, M. Eggersdorfer, G. Rimbach, and T. Esatbeyoglu. 2016. Free radical scavenging and cellular antioxidant properties of astaxanthin. International Journal of Molecular Sciences 17 (1):103. doi: 10.3390/ijms17010103.
  • Draaisma, R. B., R. H. Wijffels, P. M. Slegers, L. B. Brentner, A. Roy, and M. J. Barbosa. 2013. Food commodities from microalgae. Current Opinion in Biotechnology 24 (2):169–77. doi: 10.1016/j.copbio.2012.09.012.
  • Duong, V. T., F. Ahmed, S. R. Thomas-Hall, S. Quigley, E. Nowak, and P. M. Schenk. 2015. High protein- and high lipid-producing microalgae from Northern Australia as potential feedstock for animal feed and biodiesel. Frontiers in Bioengineering and Biotechnology 3:53. doi: 10.3389/fbioe.2015.00053.
  • Duong, V. T., Y. Li, E. Nowak, and P. M. Schenk. 2012. Microalgae isolation and selection for prospective biodiesel production. Energies 5 (6):1835–49. doi: 10.3390/en5061835.
  • Echeverri, D., J. Romo, N. Giraldo, and L. Atehortúa. 2019. Microalgae protoplasts isolation and fusion for biotechnology research. Revista Colombiana de Biotecnología 21 (1):101–12. doi: 10.15446/rev.colomb.biote.v21n1.80248.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2014. Scientific opinion on the safety and efficacy of synthetic astaxanthin as feed additive for salmon and trout, other fish, ornamental fish, crustaceans and ornamental birds. EFSA Journal 12:3724. doi. doi: 10.2903/j.efsa.2014.3724.
  • Ejike, C. E. C. C., S. A. Collins, N. Balasuriya, A. K. Swanson, B. Mason, and C. C. Udenigwe. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology 59:30–6. doi: 10.1016/j.tifs.2016.10.026.
  • El Arroussi, H., R. Benhima, N. E. Mernissi, R. Bouhfid, C. Tilsaghani, I. Bennis, and I. Wahby. 2017. Screening of marine microalgae strains from Moroccan coasts for biodiesel production. Renewable Energy 113:1515–22. doi: 10.1016/j.renene.2017.07.035.
  • Eriksen, N. T. 2008. The technology of microalgal culturing. Biotechnology Letters 30 (9):1525–36. doi: 10.1007/s10529-008-9740-3.
  • Esteves, A. F., C. J. Almeida, A. L. Gonçalves, and J. C. Pires. 2020. Microalgae harvesting techniques. In Handbook of microalgae-based processes and products, ed. E. Jacob-Lopes, M. M. Maroneze, M. I. Queiroz, and L. Q. Zepka, 1st ed., 225–81. London, UK: Academic Press. doi: 10.1016/C2018-0-04111-0
  • Fábryová, T., L. Tůmová, D. C. da Silva, D. M. Pereira, P. B. Andrade, P. Valentão, P. Hrouzek, J. Kopecký, and J. Cheel. 2020. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Research 49:101947. doi: 10.1016/j.algal.2020.101947.
  • FAO, IFAD, UNICEF, WFP, WHO UNICEF. 2020. The state of food security and nutrition in the world 2020. https://www.unicef.org/reports/state-of-food-security-and-nutrition-2020.
  • FBIF. 2014. FBIF. Accessed June 1, 2022. https://www.foodtalks.cn/fbif/en.
  • Feng, J., S. Long, H. J. Zhang, S. G. Wu, G. H. Qi, and J. Wang. 2020. Comparative effects of dietary microalgae oil and fish oil on fatty acid composition and sensory quality of table eggs. Poultry Science 99 (3):1734–43. doi: 10.1016/j.psj.2019.11.005.
  • Fernandes, B. D., A. Mota, A. Ferreira, G. Dragone, J. A. Teixeira, and A. A. Vicente. 2014. Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science 117:445–54. doi: 10.1016/j.ces.2014.06.043.
  • Fernández, F. G. A., A. Reis, R. H. Wijffels, M. Barbosa, V. Verdelho, and B. Llamas. 2021. The role of microalgae in the bioeconomy. New Biotechnology 61:99–107. doi: 10.1016/j.nbt.2020.11.011.
  • Ferreira, A., and L. Gouveia. 2020. Microalgal biorefineries. In Handbook of microalgae-based processes and products, ed. E. Jacob-Lopes, M. M. Maroneze, M. I. Queiroz, and L. Q. Zepka, 1st ed., 771–98. London, UK: Academic Press.
  • Ferreira, A., I. Guerra, M. Costa, J. Silva, and L. Gouveia. 2021a. Future perspectives of microalgae in the food industry. In Cultured microalgae for the food industry, ed. T. Lafarga and G. Acién, 1st ed., 387–433. London, UK: Academic Press.
  • Ferreira, G. F., L. F. Ríos Pinto, P. O. Carvalho, M. B. Coelho, M. N. Eberlin, R. Maciel Filho, and L. V. Fregolente. 2021b. Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Conversion and Biorefinery 11 (5):1675–89. doi: 10.1007/s13399-019-00566-3.
  • Fradique, M., A. P. Batista, M. C. Nunes, L. Gouveia, N. M. Bandarra, and A. Raymundo. 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture 90 (10):1656–64. doi: 10.1002/jsfa.3999.
  • FSIN. 2021. Global report on food crises - 2021, WFP. https://www.wfp.org/publications/global-report-food-crises-2021.
  • Fu, Y. L., T. P. Chen, S. H. Y. Chen, B. Liu, P. P. Sun, H. Sun, and F. Chen. 2021. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends in Food Science & Technology 112:188–200. doi: 10.1016/j.tifs.2021.03.050.
  • Fu, W. Q., O. Gudmundsson, A. M. Feist, G. Herjolfsson, S. Brynjolfsson, and B. Ø. Palsson. 2012b. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology 161 (3):242–9. doi: 10.1016/j.jbiotec.2012.07.004.
  • Fu, W. Q., O. Guðmundsson, G. Paglia, G. Herjólfsson, O. S. Andrésson, B. O. Palsson, and S. Brynjólfsson. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology 97 (6):2395–403. doi: 10.1007/s00253-012-4502-5.
  • Fujii, K. 2012. Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga. Food and Bioproducts Processing 90 (4):762–6. doi: 10.1016/j.fbp.2012.01.006.
  • Fu, W., O. Gudmundsson, G. Herjolfsson, O. Andresson, B. Palsson, and S. Brynjolfsson. 2012a. Regulation of carotenoid accumulation in Dunaliella salina by light-emitting diode lighting along with adaptive laboratory evolution. FEBS Journal 279:265.
  • Fu, W. Q., G. Paglia, M. Magnúsdóttir, E. A. Steinarsdóttir, S. Gudmundsson, B. Ø. Palsson, Ó. S. Andrésson, and S. Brynjólfsson. 2014. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microbial Cell Factories 13:3. doi: 10.1186/1475-2859-13-3.
  • Galasso, C., A. Gentile, I. Orefice, A. Ianora, A. Bruno, D. M. Noonan, C. Sansone, A. Albini, and C. Brunet. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 11 (6):1226. doi: 10.3390/nu11061226.
  • Gantar, M., and Z. Svirčev. 2008. Microalgae and cyanobacteria: Food for thought. Journal of Phycology 44 (2):260–8. doi: 10.1111/j.1529-8817.2008.00469.x.
  • García, J. L., M. de Vicente, and B. Galán. 2017. Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology 10 (5):1017–24. doi: 10.1111/1751-7915.12800.
  • García-Segovia, P., M. J. Pagán-Moreno, I. F. Lara, and J. Martínez-Monzó. 2017. Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 23 (5):437–47. doi: 10.1177/1082013217700259.
  • Geppert, J., V. Kraft, H. Demmelmair, and B. Koletzko. 2006. Microalgal docosahexaenoic acid decreases plasma triacylglycerol in normolipidaemic vegetarians: a randomised trial. British Journal of Nutrition 95:779–86. doi: 10.1079/bjn20051720.
  • Ghani, N., N. Shahzadi, S. Sadaf, I. Ullah, E. Ali, J. Iqbal, T. Rafique, and M. Maqbool. 2020. Isolation of several indigenous microalgae from Kallar Kahar Lake, Chakwal Pakistan. Iranian Journal of Biotechnology 18 (3):e2214. doi: 10.30498/IJB.2020.122025.2214.
  • Gheysen, L., N. Lagae, J. Devaere, K. Goiris, P. Goos, T. Bernaerts, A. Van Loey, L. De Cooman, and I. Foubert. 2019. Impact of Nannochloropsis sp. dosage form on the oxidative stability of n-3 LC-PUFA enriched tomato purees. Food Chemistry 279:389–400. doi: 10.1016/j.foodchem.2018.12.026.
  • Gogoba, A. I., H. M. Matias-Peralta, H. Basri, and M. M. Nmaya. 2017. Inhibitory effect of pigment extract from Scenedesmus sp. on food spiked with foodborne staphylococcus aureus. Journal CleanWAS 1 (1):23–5. doi: 10.26480/jcleanwas.01.2017.23.25.
  • Gómez, P. I., I. Inostroza, M. Pizarro, and J. Pérez. 2013. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB PLANTS 5:plt026. doi: 10.1093/aobpla/plt026.
  • Gorry, P.-L., L. Sánchez, and M. Morales. 2018. Microalgae biorefineries for energy and coproduct production. In Energy from microalgae, ed. E. Jacob-Lopes, L. Queiroz Zepka, and M. I. Queiroz, 1st ed., 89–140. Cham: Springer International Publishing.
  • Gouveia, L., A. P. Batista, A. Raymundo, and N. Bandarra. 2008. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutrition & Food Science 38 (5):492–501. doi: 10.1108/00346650810907010.
  • GreenA. 2003. GreenA. Accessed June 1, 2022. http://www.greena.com.cn/.
  • Greiner, A., S. Kelterborn, H. Evers, G. Kreimer, I. Sizova, and P. Hegemann. 2017. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via Zinc-Finger nucleases and CRISPR/Cas9. The Plant Cell 29 (10):2498–518. doi: 10.1105/tpc.17.00659.
  • Grima, E. M., F. G. Acién Fernández, and A. R. Medina. 2013. Downstream processing of cell mass and products. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 267–309. Hoboken, NJ: Wiley-Blackwell.
  • Grobbelaar, J. U. 2013. Inorganic algal nutrition. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 123–33. Hoboken, NJ: Wiley-Blackwell.
  • Grossmann, L., J. Hinrichs, and J. Weiss. 2020. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition 60 (17):2961–89. doi: 10.1080/10408398.2019.1672137.
  • Grubišić, M., M. I. Šantek, and B. Šantek. 2019. Potential of microalgae for the production of different biotechnological products. Chemical & Biochemical Engineering Quarterly 33 (2):161–81. doi: 10.15255/CABEQ.2019.1657.
  • Guarda, I., I. Fonseca, H. Pereira, L. L. Martins, R. Gomes, J. Matos, A. Gomes-Bispo, N. M. Bandarra, C. Afonso, and C. Cardoso. 2021. Key constituents and antioxidant activity of novel functional foods developed with Skeletonema sp. biomass. Journal of Aquatic Food Product Technology 30:1189–203. doi: 10.1080/10498850.2021.1975003.
  • Guleria, P., and V. Kumar. 2020. GMO to eradicate malnutrition: Current status. Current Nutrition & Food Science 17 (1):4–10. doi: 10.2174/1573401316999200612112400.
  • Hafiz, M. A., A. H. Hawari, P. Das, S. Khan, and A. Altaee. 2020. Comparison of dual stage ultrafiltration and hybrid ultrafiltration-forward osmosis process for harvesting microalgae (Tetraselmis sp.) biomass. Chemical Engineering and Processing - Process Intensification 157:108112. doi: 10.1016/j.cep.2020.108112.
  • Hajinajaf, N., A. Mehrabadi, and O. Tavakoli. 2021. Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review. Biomass and Bioenergy 145:105941. doi: 10.1016/j.biombioe.2020.105941.
  • Halim, R. 2020. Industrial extraction of microalgal pigments. In Pigments from microalgae handbook, ed. E. Jacob-Lopes, M. I. Queiroz, and L. Q. Zepka, 1st ed., 265–308. Cham: Springer International Publishing.
  • Hallmann, A. 2007. Algal transgenics and biotechnology. Transgenic Plant Journal 1:81–98.
  • Hallmann, A. 2016. Algae biotechnology – green cell-factories on the rise. Current Biotechnology 4 (4):389–415. doi: 10.2174/2211550105666151107001338.
  • Han, D. X., Y. T. Li, and Q. Hu. 2013. Biology and commercial aspects of haematococcus pluvialis. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 388–405. Hoboken, NJ: Wiley-Blackwell.
  • Hanan, M. K. 2011. Comparative effects of autotrophic and heterotrophic growth on some vitamins, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, amino acids and protein profile of Chlorella vulgaris Beijerinck. African Journal of Biotechnology 10:13514–9. doi: 10.5897/ajb11.1931.
  • Hartung, T. 2018. Rebooting the generally recognized as safe (GRAS) approach for food additive safety in the US. ALTEX 35 (1): 3–25. doi: 10.14573/altex.1712181.
  • Health Canada. 2020. Health Canada’s proposal to enable the use of spirulina extract as a colouring agent in various foods No. NOM/ADM-0034, Health Canada. Canada. https://www.canada.ca/content/dam/hc-sc/documents/services/food-nutrition/public-involvement-partnerships/HPFB%20BCS%20NOP-ADP-0034_ENG.pdf.
  • Ho Do, M., Y. S. Seo, and H.-Y. Park. 2021. Polysaccharides: Bowel health and gut microbiota. Critical Reviews in Food Science and Nutrition 61 (7):1212–24. doi: 10.1080/10408398.2020.1755949.
  • Hong, S. J., and C. G. Lee. 2015. Microalgal systems biology through genome-scale metabolic reconstructions for industrial applications. In Handbook of marine microalgae: biotechnology advances, ed. S. K. Kim, 353–70. Boston: Academic Press.
  • Hp, K., and Z. M. 2017. Improvement of nutrition production by protoplast fusion techniques in Chlorella vulgaris. Journal of Food Processing & Technology 9 (1):5. doi: 10.4172/2157-7110.1000711.
  • Hsieh-Lo, M., G. Castillo, M. A. Ochoa-Becerra, and L. Mojica. 2019. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research 42:101600. doi: 10.1016/j.algal.2019.101600.
  • Hsu, P. D., E. S. Lander, and F. Zhang. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157 (6):1262–78. doi: 10.1016/j.cell.2014.05.010.
  • Huang, R., Z. Liu, B. Yan, Y. Li, H. Li, D. Liu, P. Wang, F. Cui, and W. Shi. 2020. Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting. Journal of Membrane Science 595:117488. doi: 10.1016/j.memsci.2019.117488.
  • Hu, C. Y., D. D. Cui, X. Sun, J. X. Shi, and N. J. Xu. 2020. Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research 46:101768. doi: 10.1016/j.algal.2019.101768.
  • Hu, J. J., D. Nagarajan, Q. G. Zhang, J. S. Chang, and D. J. Lee. 2018. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances 36 (1):54–67. doi: 10.1016/j.biotechadv.2017.09.009.
  • Insight and info. 2021. China Spirulina industry analysis report 2021 - current market situation and investment strategy research. https://www.chinabaogao.com/pdf/12/32/551232.pdf.
  • IPCC. 2015. Climate change 2014: mitigation of climate change. 1st ed. New York: Cambridge University Press.
  • Iyer, J., P. Falcone, K. Herrlinger, J. Lasrado, E. P. Fritz, N. Zakaria, J. Antony, N. Guthrie, and M. Evans. 2019. Whole cell euglena gracilis supplementation reduces upper respiratory tract infection symptoms in healthy adults (P19-009-19). Current Developments in Nutrition 3 (Supplement_1):1724. doi: 10.1093/cdn/nzz049.P19-009-19.
  • Janghel, A., S. Deo, P. Raut, D. Bhosle, C. Verma, S. S. Kumar, M. Agrawal, N. Amit, M. Sharma, T. Giri, et al. 2015. Supercritical fluid extraction (SFE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Research Journal of Pharmacy and Technology 8:775–86. doi: 10.5958/0974-360X.2015.00125.0.
  • Jeon, S., J. M. Lim, H. G. Lee, S. E. Shin, N. K. Kang, Y. I. Park, H. M. Oh, W. J. Jeong, B. R. Jeong, and Y. K. Chang. 2017. Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels 10:267.doi101186/s13068-017-0957-z. doi: 10.1186/s13068-017-0957-z.
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337 (6096):816–21. doi: 10.1126/science.1225829.
  • Johnson, E. J. 2014. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutrition Reviews 72 (9):605–12. doi: 10.1111/nure.12133.
  • Johnston, J. B., J. G. Nickerson, J. Daroszewski, T. J. Mogg, and G. W. Burton. 2014. Biologically active polymers from spontaneous carotenoid oxidation: A new frontier in carotenoid activity. PloS One 9 (10):e111346. doi: 10.1371/journal.pone.0111346.
  • K.A, A., A. Mohamed, A. S. Abdulamir, and H. A. Abas. 2008. A review on supercritical fluid extraction as new analytical method. American Journal of Biochemistry and Biotechnology 4 (4):345–53. doi: 10.3844/ajbbsp.2008.345.353.
  • Kaladharan, P. 1998. Protoplasts - a powerful tool in genetic manipulation of commercial seaweeds. In Proceedings of the first National Seminar on Trends in Marine Biotechnology, 83–8. Nagercoil, India: Institute for Coastal Area Studies, Nagercoil: CMFRI.
  • Kałduńska, J., K. Jakubczak, I. Gutowska, B. Dalewski, and K. Janda. 2020. Fluoride content in dietary supplements of spirulina (Arthrospira spp.) from conventional and organic cultivation. Fluoride 5:469–76.
  • Kanamoto, A., Y. Kato, E. Yoshida, T. Hasunuma, and A. Kondo. 2021. Development of a method for fucoxanthin production using the haptophyte marine microalga Pavlova sp. OPMS 30543. Marine Biotechnology 23:331–41. doi: 10.1007/s10126-021-10028-5.
  • Kaur, P. 2020. Microalgae as nutraceutical for achieving sustainable food solution in future. In Microbial biotechnology: Basic research and applications, ed. J. Singh, A. Vyas, S. Wang, and R. Prasad, 1st ed., 91–125. Singapore: Springer Singapore.
  • Kawaroe, M., A. Sudrajat, J. Hwangbo, and D. Augustine. 2015. Chemical mutagenesis of microalgae Nannochloropsis sp. using EMS (Ethyl Methanesulfonate). British Journal of Applied Science & Technology 8 (5):494–505. doi: 10.9734/BJAST/2015/16862.
  • Kemp. 2013. Kemp. Accessed June 1, 2022. http://www.kempcn.com/.
  • Khanra, S., M. Mondal, G. Halder, O. N. Tiwari, K. Gayen, and T. K. Bhowmick. 2018. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing 110:60–84. doi: 10.1016/j.fbp.2018.02.002.
  • Kimura, Y., S. Kimura, S. Sato, H. Katoh, T. Abe, M. Arai, and K. Tomita-Yokotani. 2015. Evaluation of a Cyanobacterium, Nostoc sp. HK-01, as food material for space agriculture on Mars. Biological Sciences in Space 29:24–31. doi: 10.2187/bss.29.24.
  • King Dnarmsa. 2022. King Dnarmsa. Accessed June 1, 2022. http://en.kingdnarmsa.cn/.
  • Kiran, U., and N. K. Pandey. 2020. Transgenic food crops: Public acceptance and IPR. In Transgenic technology based value addition in plant biotechnology, ed. U. Kiran, M. Z. Abdin, and Kamaluddin, 1st ed., 273–307. London, UK: Academic Press.
  • Kita, K., S. Okada, H. Sekino, K. Imou, S. Yokoyama, and T. Amano. 2010. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Applied Energy 87 (7):2420–3. doi: 10.1016/j.apenergy.2009.11.036.
  • Kothale, D., U. Verma, N. Dewangan, P. Jana, A. Jain, and D. Jain. 2020. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Current Drug Delivery 17 (9):755–75. doi: 10.2174/1567201817666200810110226.
  • Kouba, A., J. Velíšek, A. Stará, J. Masojídek, and P. Kozák. 2014. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BioMed Research International 2014:408270. doi: 10.1155/2014/408270.
  • Koyande, A. K., K. W. Chew, K. Rambabu, Y. Tao, D. T. Chu, and P. L. Show. 2019a. Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness 8 (1):16–24. doi: 10.1016/j.fshw.2019.03.001.
  • Koyande, A. K., P.-L. Show, R. Guo, B. Tang, C. Ogino, and J.-S. Chang. 2019b. Bio-processing of algal bio-refinery: A review on current advances and future perspectives. Bioengineered 10 (1):574–92. doi: 10.1080/21655979.2019.1679697.
  • Krinsky, N. I., J. T. Landrum, and R. A. Bone. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition 23:171–201. doi: 10.1146/annurev.nutr.23.011702.073307.
  • Krzemińska, I., M. Oleszek, and D. Wiącek. 2019. Liquid anaerobic digestate as a source of nutrients for lipid and fatty acid accumulation by auxenochlorella protothecoides. Molecules 24 (19):3582. doi: 10.3390/molecules24193582.
  • Kumar, G., A. Shekh, S. Jakhu, Y. Sharma, R. Kapoor, and T. R. Sharma. 2020a. Bioengineering of microalgae: Recent advances, perspectives, and regulatory challenges for industrial application. Frontiers in Bioengineering and Biotechnology 8:914. doi: 10.3389/fbioe.2020.00914.
  • Kumar, M., Y. Sun, R. Rathour, A. Pandey, I. S. Thakur, and D. C. W. Tsang. 2020b. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. The Science of the Total Environment 716:137116. doi: 10.1016/j.scitotenv.2020.137116.
  • Kurita, T., K. Moroi, M. Iwai, K. Okazaki, S. Shimizu, S. Nomura, F. Saito, S. Maeda, A. Takami, A. Sakamoto, et al. 2020. Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES‐2145. Genes to Cells: Devoted to Molecular & Cellular Mechanisms 25 (10):695–702. doi: 10.1111/gtc.12805.
  • Lafarga, T. 2020. Cultured microalgae and compounds derived thereof for food applications: Strain selection and cultivation, drying, and processing strategies. Food Reviews International 36 (6):559–83. doi: 10.1080/87559129.2019.1655572.
  • Lafarga, T., R. Rodríguez-Bermúdez, A. Morillas-España, S. Villaró, M. García-Vaquero, L. Morán, A. Sánchez-Zurano, C. V. González-López, and F. G. Acién-Fernández. 2021. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Research 54:102174. doi: 10.1016/j.algal.2020.102174.
  • Landrum, J. T., and R. A. Bone. 2001. Lutein, zeaxanthin, and the macular pigment. Archives of Biochemistry and Biophysics 385 (1):28–40. doi: 10.1006/abbi.2000.2171.
  • Larkum, A. W. D., I. L. Ross, O. Kruse, and B. Hankamer. 2012. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology 30 (4):198–205. doi 10.1016/j.tibtech.2011.11.003.
  • Lee, B., G.-G. Choi, Y.-E. Choi, M. Sung, M. S. Park, and J.-W. Yang. 2014. Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii. Korean Journal of Chemical Engineering 31 (6):1036–42. doi: 10.1007/s11814-014-0007-5.
  • Lerer, L. 2018. BYAS. Accessed June 1, 2022. https://www.algaesciences.com/.
  • Liang, Y. N. 2013. Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy 104:860–8. doi: 10.1016/j.apenergy.2012.10.067.
  • Liao, Y. C., A. Bokhary, E. Maleki, and B. Q. Liao. 2018. A review of membrane fouling and its control in algal-related membrane processes. Bioresource Technology 264:343–58. doi: 10.1016/j.biortech.2018.06.102.
  • Li, S. X., T. Y. Hu, Y. Z. Xu, J. Y. Wang, R. Y. Chu, Z. H. Yin, F. Mo, and L. D. Zhu. 2020. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives. Renewable and Sustainable Energy Reviews 131:110005. doi: 10.1016/j.rser.2020.110005.
  • Lim, D. K. Y., H. Schuhmann, K. Sharma, and P. M. Schenk. 2015. Isolation of high-lipid tetraselmis suecica strains following repeated UV-C Mutagenesis, FACS, and high-throughput growth selection. BioEnergy Research 8 (2):750–9. doi: 10.1007/s12155-014-9553-2.
  • Lin, L. P. 1985. Microstructure of spray-dried and freeze-dried microalgal powders. Food Structure 4:17.
  • Lin, J. Y., S. I. Tan, Y. C. Yi, C. C. Hsiang, C. H. Chang, C. Y. Chen, J. S. Chang, and I. S. Ng. 2022. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environmental Research 206:112283. doi: 10.1016/j.envres.2021.112283.
  • Liu, J., and Q. Hu. 2013. Chlorella: Industrial production of cell mass and chemicals. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 327–38. Hoboken, NJ: Wiley-Blackwell.
  • Liu, S., Y. Zhao, L. Liu, X. Ao, L. Ma, M. Wu, and F. Ma. 2015. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology 175 (7):3507–18. doi: 10.1007/s12010-015-1521-6.
  • Li, D., W. Xing, G. Li, and Y. Liu. 2009. Cytochemical changes in the developmental process of Nostoc sphaeroides (cyanobacterium). Journal of Applied Phycology 21 (1):119–25. doi: 10.1007/s10811-008-9340-6.
  • M. U., N., J. G. Mehar, S. N. Mudliar, and A. Y. Shekh. 2019. Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Comprehensive Reviews in Food Science and Food Safety 18:1882–97. doi: 10.1111/1541-4337.12500.
  • Ma, C., W. Song, J. Yang, C. Ren, H. Du, T. Tang, S. Qin, Z. Liu, and H. Cui. 2022. The role and mechanism of commercial macroalgae for soil conditioner and nutrient uptake catalyzer. Plant Growth Regulation 97 (3):455–76. doi: 10.1007/s10725-022-00819-8.
  • Markou, G. 2020. Overview of microalgal cultivation, biomass processing and application. In Handbook of algal science, technology and medicine, ed. O. Konur, 1st ed., 343–52. London, UK: Academic Press.
  • Masojídek, J., G. Torzillo, and M. Koblížek. 2013. Photosynthesis in microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 21–36. Hoboken, NJ: Wiley-Blackwell.
  • Mat Aron, N. S., K. S. Khoo, K. W. Chew, A. Veeramuthu, J.-S. Chang, and P. L. Show. 2021. Microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies. Journal of Water Process Engineering 39:101701. doi: 10.1016/j.jwpe.2020.101701.
  • Mathimani, T., and N. Mallick. 2018. A comprehensive review on harvesting of microalgae for biodiesel – key challenges and future directions. Renewable and Sustainable Energy Reviews 91:1103–20. doi: 10.1016/j.rser.2018.04.083.
  • Matos, Â. P. 2017. The impact of microalgae in food science and technology. Journal of the American Oil Chemists’ Society 94 (11):1333–50. doi: 10.1007/s11746-017-3050-7.
  • Matsunaga, T., and H. Takeyama. 1995. Genetic engineering in marine cyanobacteria. Journal of Applied Phycology 7:77–84. doi: 10.1007/BF00003555.
  • McCarthy, S. S., M. C. Kobayashi, and K. K. Niyogi. 2004. White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 168 (3):1249–57. doi: 10.1534/genetics.104.030635.
  • McPhee-Knowles, S. 2015. Growing food safety from the bottom up: An agent-based model of food safety inspections. Journal of Artificial Societies and Social Simulation 18 (2):9. doi: 10.18564/jasss.2717.
  • Mendes, A., T. Lopes da Silva, and A. Reis. 2007. DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technology and Biotechnology 45:38–44.
  • Mimouni, V., L. Ulmann, V. Pasquet, M. Mathieu, L. Picot, G. Bougaran, J.-P. Cadoret, A. Morant-Manceau, and B. Schoefs. 2012. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology 13 (15):2733–50. doi: 10.2174/138920112804724828.
  • Miyashita, K., and M. Hosokawa. 2017. Fucoxanthin in the management of obesity and its related disorders. Journal of Functional Foods 36:195–202. doi: 10.1016/j.jff.2017.07.009.
  • Mobin, S., and F. Alam. 2017. Some promising microalgal species for commercial applications: A review. Energy Procedia 110:510–7. doi: 10.1016/j.egypro.2017.03.177.
  • Mohamed, A., B. Abo-El-Khair, and S. M. Shalaby. 2013. Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. World Applied Sciences Journal 23:914–25. doi: 10.5829/idosi.wasj.2013.23.07.13122.
  • Molino, A., A. Iovine, P. Casella, S. Mehariya, S. Chianese, A. Cerbone, J. Rimauro, and D. Musmarra. 2018. Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health 15 (11):2436. doi: 10.3390/ijerph15112436.
  • Mooney, A. 2016. Stability of essential nutrients in pet food manufacturing and storage. PhD diss., Kansas State University.
  • Morales-Sánchez, D., O. A. Martinez-Rodriguez, J. Kyndt, and A. Martinez. 2015. Heterotrophic growth of microalgae: Metabolic aspects. World Journal of Microbiology & Biotechnology 31 (1):1–9. doi: 10.1007/s11274-014-1773-2.
  • Moura Junior, A. M., E. Bezerra Neto, M. L. Koening, and E. E. Leça. 2007. Chemical compositon of three microalgae species for possible use in mariculture. Brazilian Archives of Biology and Technology 50:461–7. doi: 10.1590/S1516-89132007000300012.
  • Mubarak, M., A. Shaija, and T. V. Suchithra. 2019. Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering 7 (4):103221. doi: 10.1016/j.jece.2019.103221.
  • Najjar, Y. S. H., and A. Abu-Shamleh. 2020. Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Research 51:102046. doi: 10.1016/j.algal.2020.102046.
  • Nakashima, A., R. Sugimoto, K. Suzuki, Y. Shirakata, T. Hashiguchi, C. Yoshida, and Y. Nakano. 2019. Anti-fibrotic activity of Euglena gracilis and paramylon in a mouse model of non-alcoholic steatohepatitis. Food Science & Nutrition 7 (1):139–47. doi: 10.1002/fsn3.828.
  • National Health and Family Planning Commission of the People’s Republic of China and State Food and Drug Administration. 2017. National standard for food safety - limits of contaminants in food No. GB 2762-2017, National Health and Family Planning Commission of the People’s Republic of China & State Food and Drug Administration. https://www.cirs-group.com/Uploads/file/20171207/1512627681_53240.pdf.
  • Navarro, F., A. Toimil, S. Ramírez, Y. Montero, J. L. Fuentes, J. S. Perona, M. Á. Castaño, R. Pásaro, J. M. Vega, and C. Vílchez. 2020. The acidophilic microalga Coccomyxa onubensis and atorvastatin equally improve antihyperglycemic and antihyperlipidemic protective effects on rats fed on high-fat diets. Journal of Applied Phycology 32 (6):3923–31. doi: 10.1007/s10811-020-02280-4.
  • Ng, D. H. P., Y. K. Ng, H. Shen, and Y. K. Lee. 2015. Microalgal biotechnology: The way forward. In Handbook of marine microalgae, ed. S. K. Kim, 69–80. Boston: Academic Press.
  • NHC. 2012. National Health Commission of the People’s Republic of China. Accessed June 9, 2022. http://en.nhc.gov.cn/.
  • Nojima, D., Y. Ishizuka, M. Muto, A. Ujiro, F. Kodama, T. Yoshino, Y. Maeda, T. Matsunaga, and T. Tanaka. 2017. Enhancement of biomass and lipid productivities of water surface-floating microalgae by chemical mutagenesis. Marine Drugs 15 (6):151. doi: 10.3390/md15060151.
  • Norzagaray-Valenzuela, C. D., L. J. Germán-Báez, M. A. Valdez-Flores, S. Hernández-Verdugo, L. M. Shelton, and A. Valdez-Ortiz. 2018. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. Journal of Microbiological Methods 150:9–17. mimet.2018.05.010. doi: 10.1016/j.mimet.2018.05.010.
  • Obeid, S., N. Beaufils, S. Camy, H. Takache, A. Ismail, and P.-Y. Pontalier. 2018. Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Research 34:49–56. doi: 10.1016/j.algal.2018.07.003.
  • Oda, T. 2015. Biological activities of marine-derived oligosaccharides. In Springer handbook of marine biotechnology, ed. S.-K. Kim, 1071–87. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • OECD and FAO. 2020. OECD–FAO agricultural outlook 2020-2029. Rome & Paris: FAO & OECD Publishing.
  • Ohse, S., R. B. Derner, R. A. Ozorio, M. V. D. C. Braga, P. Cunha, C. P. Lamarca, and M. E. D. Santos. 2009. Production of biomass and carbon, hydrogen, nitrogen and protein contents in microalgae. Ciência Rural 39 (6):1760–7. doi: 10.1590/S0103-84782009000600019.
  • Oslan, S. N. H., N. F. Shoparwe, A. H. Yusoff, A. A. Rahim, C. S. Chang, J. S. Tan, S. N. Oslan, K. Arumugam, A. B. Ariff, A. Z. Sulaiman, et al. 2021. A review on haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11 (2):256. doi: 10.3390/biom11020256.
  • Osório, C., S. Machado, J. Peixoto, S. Bessada, F. B. Pimentel, R. C. Alves, and M. B. P. P. Oliveira. 2020. Pigments content (chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations 7 (2):33. doi: 10.3390/separations7020033.
  • Pereira, J., M. Simões, and J. L. Silva. 2019. Microalgal assimilation of vitamin B12 toward the production of a superfood. Journal of Food Biochemistry 43 (8):e12911. doi: 10.1111/jfbc.12911.
  • Pérez-Lloréns, J. L. 2020. Microalgae: From staple foodstuff to avant-garde cuisine. International Journal of Gastronomy and Food Science 21:100221. doi: 10.1016/j.ijgfs.2020.100221.
  • Pourkarimi, S., A. Hallajisani, A. Alizadehdakhel, A. Nouralishahi, and A. Golzary. 2020. Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatalysis and Agricultural Biotechnology 29:101771. doi: 10.1016/j.bcab.2020.101771.
  • Qiu, B. S., J. Y. Liu, Z. L. Liu, and S. X. Liu. 2002. Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. Journal of Applied Phycology 14 (5):423–9. doi: 10.1023/A:1022198605743.
  • Quitain, A. T., T. Kai, M. Sasaki, and M. Goto. 2013. Supercritical carbon dioxide extraction of fucoxanthin from undaria pinnatifida. Journal of Agricultural and Food Chemistry 61 (24):5792–7. doi: 10.1021/jf400740p.
  • Radkova, M., M. Stoyneva-Gärtner, I. Dincheva, P. Stoykova, B. Uzunov, P. Dimitrova, C. Borisova, and G. Gärtner. 2019. Chlorella vulgaris H1993 and Desmodesmus communis H522 for low-cost production of high-value microalgal products. Biotechnology & Biotechnological Equipment 33 (1):243–9. doi: 10.1080/13102818.2018.1562381.
  • Rahman, K. M. 2020. Food and high value products from microalgae: Market opportunities and challenges. In Microalgae biotechnology for food, health and high value products, ed. M. A. Alam, J. L. Xu, and Z. M. Wang, 3–27. Singapore: Springer Singapore.
  • Rajam, M. V., and S. V. Kumar. 2007. Green alga (Chlamydomonas reinhardtii). In Agrobacterium protocols, ed. K. Wang, 421–33. Totowa, NJ: Humana Press.
  • Ramirez, M. 2016. Why lutein is important for the eye and the brain. OCL 23 (1):D107. doi: 10.1051/ocl/2015027.
  • Randhir, A., D. W. Laird, G. Maker, R. Trengove, and N. R. Moheimani. 2020. Microalgae: A potential sustainable commercial source of sterols. Algal Research 46:101772. doi: 10.1016/j.algal.2019.101772.
  • Rasala, B. A., J. A. Gimpel, M. Tran, M. J. Hannon, S. J. Miyake-Stoner, E. A. Specht, and S. P. Mayfield. 2013. Genetic engineering to improve algal biofuels production. In Algae for biofuels and energy, ed. M. A. Borowitzka and N. R. Moheimani, 99–113. Dordrecht: Springer Netherlands.
  • Remize, M., Y. Brunel, J. L. Silva, J.-Y. Berthon, and E. Filaire. 2021. Microalgae n-3 PUFAs production and use in food and feed industries. Marine Drugs 19 (2):113–3390. doi10/md19020113. doi: 10.3390/md19020113.
  • Richmond, A. 2013. Biological principles of mass cultivation of photoautotrophic microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 169–204. Hoboken, NJ: Wiley-Blackwell.
  • Richmond, A., E. Lichtenberg, B. Stahl, and A. Vonshak. 1990. Quantitative assessment of the major limitations on productivity ofSpirulina platensis in open raceways. Journal of Applied Phycology 2 (3):195–206. doi: 10.1007/BF02179776.
  • Rowles, J. L., and J. W. Erdman. 2020. Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158613. doi: 10.1016/j.bbalip.2020.158613.
  • Roy, M., and K. Mohanty. 2019. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. Algal Research 44:101683. doi: 10.1016/j.algal.2019.101683.
  • Rubio, R., M. J. Ruiz-Chancho, J. F. López-Sánchez, R. Rubio, and J. F. López-Sánchez. 2010. Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. TrAC Trends in Analytical Chemistry 29 (1):53–69. doi: 10.1016/j.trac.2009.10.002.
  • Sabar, M., and R. Benhamman. 2019. Somatic hybridization for microalgae domestication. In Microalgae biotechnology for development of biofuel and wastewater treatment, ed. M. A. Alam and Z. M. Wang, 115–33. Singapore: Springer.
  • Salas, A. A. O. 2017. Cultivation of the Microalga Thalassiosira weissflogii to feed the Rotifer Brachionus rotundiformis. Journal of Aquaculture & Marine Biology 6 (5):1–2. doi: 10.15406/jamb.2017.06.00169.
  • Sansone, C., and C. Brunet. 2019. Promises and challenges of microalgal antioxidant production. Antioxidants 8 (7):199. doi: 10.3390/antiox8070199.
  • Sarwar, M. F., M. H. Sarwar, and M. Sarwar. 2021. Deficiency of vitamin B-Complex and its relation with body disorders. In B-complex vitamins - sources, intakes and novel applications, ed. J. G. LeBlanc, 1st ed., 79–100. London, UK: BoD.
  • Sathasivam, R., R. Radhakrishnan, A. Hashem, and E. F. Abd Allah. 2019. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26 (4):709–22. doi: 10.1016/j.sjbs.2017.11.003.
  • Schurr, R, and A. Kuehnle. 2014. Microalgae crop improvement: Tools for quality control and molecular breeding. Industrial Biotechnology 10 (3):237–43. doi10ind.2013.0035. doi: 10.1089/ind.2013.0035.
  • Sekar, P., and A. Chauhan. 2019. Effect of vitamin-E integration on delivery of prostaglandin analogs from therapeutic lenses. Journal of Colloid and Interface Science 539:457–67. doi: 10.1016/j.jcis.2018.12.036.
  • Setyaningsih, E. P., T. Nurhidayati, S. Nurhatika, D. Ermavitalini, A. Muhibudin, K. I. Purwani, and E. Setyawan. 2017. Total lipid and morphology microalgae skeletonema costatum on nitrogen nutrition physiological stress. In Proceedings of the International Conference on Green Technology, 187–90.
  • Severien, A. 2013. Algama. Accessed May 31, 2022. https://www.algamafoods.com/.
  • Shah, S. M. U., C. Che Radziah, S. Ibrahim, F. Latiff, M. F. Othman, and M. A. Abdullah. 2014. Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Annals of Microbiology 64 (1):157–64. doi: 10.1007/s13213-013-0645-6.
  • Shahid, A., S. Malik, H. Zhu, J. Xu, M. Z. Nawaz, S. Nawaz, M. Asraful Alam, and M. A. Mehmood. 2020. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. The Science of the Total Environment 704:135303. doi: 10.1016/j.scitotenv.2019.135303.
  • Shakeel Syed, M., M. Rafeie, R. Henderson, D. Vandamme, M. Asadnia, and M. Ebrahimi Warkiani. 2017. A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae. Lab on a Chip 17:2459–69. doi: 10.1039/c7lc00294g.
  • Sheng, J., F. Yu, Z. Xin, L. Zhao, X. Zhu, and Q. Hu. 2007. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chemistry 105 (2):533–9. doi: 10.1016/j.foodchem.2007.04.018.
  • Shi, Q., C. Chen, W. Zhang, P. Wu, M. Sun, H. Wu, H. Wu, P. Fu, and J. Fan. 2021. Transgenic eukaryotic microalgae as green factories: Providing new ideas for the production of biologically active substances. Journal of Applied Phycology 33 (2):705–28. doi: 10.1007/s10811-020-02350-7.
  • Sidari, R., and R. Tofalo. 2019. A comprehensive overview on microalgal-fortified/based food and beverages. Food Reviews International 35 (8):778–805. doi: 10.1080/87559129.2019.1608557.
  • Silva-Espinoza, M. A., C. Ayed, T. Foster, M. D. M. Camacho, and N. Martínez-Navarrete. 2019. The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 9 (1):32. doi: 10.3390/foods9010032.
  • Singab, A. N., N. Ibrahim, A. E-k Elsayed, W. El-Senousy, H. Aly, A. Abd Elsamiae, and A. Matloub. 2018. Antiviral, cytotoxic, antioxidant and anti-cholinesterase activities of polysaccharides isolated from microalgae Spirulina platensis, Scenedesmus obliquus and Dunaliella salina. Archives of Pharmaceutical Sciences Ain Shams University 2 (2):121–37. doi: 10.21608/aps.2018.18740.
  • Sizova, I., A. Greiner, M. Awasthi, S. Kateriya, and P. Hegemann. 2013. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. The Plant Journal: For Cell and Molecular Biology 73 (5):873–82. doi: 10.1111/tpj.12066.
  • Smalley, T., F. J. Fields, A. J. E. Berndt, J. T. Ostrand, V. Heredia, and S. P. Mayfield. 2020. Improving biomass and lipid yields of Desmodesmus armatus and Chlorella vulgaris through mutagenesis and high-throughput screening. Biomass and Bioenergy 142:105755. doi: 10.1016/j.biombioe.2020.105755.
  • Smyatskaya, Y., A. Toumi, I. Atamaniuk, I. Vladimirov, F. K. Donaev, and I. G. Akhmetova. 2019. Influence of the drying method on the sorption properties the biomass of Chlorella sorokiniana microalgae. E3S Web of Conferences 124:01051. doi: 10.1051/e3sconf/201912401051.
  • Sobczuk, T. M., F. G. Camacho, E. M. Grima, and Y. Chisti. 2006. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering 28 (4):243–50. doi: 10.1007/s00449-005-0030-3.
  • Soni, R. A., K. Sudhakar, and R. S. Rana. 2017. Spirulina – from growth to nutritional product: A review. Trends in Food Science & Technology 69:157–71. doi: 10.1016/j.tifs.2017.09.010.
  • Srinivasan, R., S. Babu, and K. M. Gothandam. 2017. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresource Technology 242:311–8. doi: 10.1016/j.biortech.2017.03.042.
  • Stephens, E., L. Wagner, I. L. Ross, and B. Hankamer. 2018. Data from: Microalgal production systems: Global impact of industry scale-up. (dataset). Berlin, DE: De Gruyter. Accessed doi: 10.1515/energyo.0114.00005.
  • Sugiharto, S. 2020. Chlorella vulgaris and Spirulina platensis: Their nutrient contents and bioactive compounds for improving poultry productivity. Indonesian Bulletin of Animal and Veterinary Sciences 30 (3):123–38. doi: 10.14334/wartazoa.v30i3.2523.
  • Sun, Y., L. Cheng, X. X. Zeng, X. Zhang, Y. Liu, Z. F. Wu, and P. F. Weng. 2021. The intervention of unique plant polysaccharides - dietary fiber on depression from the gut-brain axis. International Journal of Biological Macromolecules 170:336–42. doi: 10.1016/j.ijbiomac.2020.12.164.
  • Suparmaniam, U., M. K. Lam, Y. Uemura, J. W. Lim, K. T. Lee, and S. H. Shuit. 2019. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews 115:109361. doi: 10.1016/j.rser.2019.109361.
  • Svennerholm, L., and M.-T. Vanier. 1973. The distribution of lipids in the human nervous system. III. Fatty acid composition of phosphoglycerides of human foetal and infant brain. Brain Research 50 (2):341–51. doi: 10.1016/0006-8993(73)90735-X.
  • Syed, M. S., C. Marquis, R. Taylor, and M. E. Warkiani. 2021. A two-step microengineered system for high-density cell retention from bioreactors. Separation and Purification Technology 254:117610. doi: 10.1016/j.seppur.2020.117610.
  • Takahashi, K., Y. Ide, J. Hayakawa, Y. Yoshimitsu, I. Fukuhara, J. Abe, Y. Kasai, and S. Harayama. 2018. Lipid productivity in TALEN-induced starchless mutants of the unicellular green alga Coccomyxa sp. strain Obi. Algal Research 32:300–7. doi: 10.1016/j.algal.2018.04.020.
  • Takaichi, S. 2011. Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs 9 (6):1101–18. doi: 10.3390/md9061101.
  • Tang, D. Y. Y., K. S. Khoo, K. W. Chew, Y. Tao, S.-H. Ho, and P. L. Show. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology 304:122997. doi: 10.1016/j.biortech.2020.122997.
  • Tibbetts, S. M., C. G. Whitney, M. J. MacPherson, S. Bhatti, A. H. Banskota, R. Stefanova, and P. J. McGinn. 2015. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11:435–47. doi: 10.1016/j.algal.2014.11.011.
  • Tjahjono, A. E., T. Kakizono, Y. Hayama, N. Nishio, and S. Nagai. 1994. Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. Journal of Fermentation and Bioengineering 77 (4):352–7. doi: 10.1016/0922-338X(94)90003-5.
  • Toker, O. S. 2019. Porphyridum Cruentum as a natural colorant in chewing gum. Food Science and Technology 39 (suppl 1):195–201. doi: 10.1590/fst.41817.
  • Tokuşoglu, O., and M. K. Uunal. 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 68 (4):1144–8. doi: 10.1111/j.1365-2621.2003.tb09615.x.
  • Topuz, O. K. 2016. Algal oil: a novel source of omega-3 fatty acids for human nutrition. Scientific Bulletin. Series F. Biotechnologies 20:178–83.
  • Torres-Tiji, Y., F. J. Fields, and S. P. Mayfield. 2020. Microalgae as a future food source. Biotechnology Advances 41:107536. doi: 10.1016/j.biotechadv.2020.107536.
  • Transparency market research. 2022. Transparency market research. Accessed June 1, 2022. https://www.transparencymarketresearch.com/.
  • Tredici, M. R., N. Biondi, E. Ponis, L. Rodolfi, and G. Chini Zittelli. 2009. Advances in microalgal culture for aquaculture feed and other uses. In New technologies in aquaculture, ed. G. Burnell and G. Allan, 610–76. Cambridge, UK: Woodhead Publishing.
  • Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2 (1):012701. doi: 10.1063/1.3294480.
  • Valeriote, F., R. E. Moore, G. M. L. Patterson, V. J. Paul, P. J. Scheuer, and T. Corbett. 1994. Discovery of natural products from microalgae and marine organisms. In Anticancer drug discovery and development: Natural products and new molecular models, ed. F. A. Valeriote, T. H. Corbett, and L. H. Baker, 1–25. Boston, MA: Springer US.
  • Van Haver, L., and S. Nayar. 2017. Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications. Algal Research 24:167–80. doi: 10.1016/j.algal.2017.03.022.
  • Vandamme, D., I. Foubert, and K. Muylaert. 2013. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology 31 (4):233–9. doi: 10.1016/j.tibtech.2012.12.005.
  • Vasistha, S., A. Khanra, M. Clifford, and M. P. Rai. 2021. Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renewable and Sustainable Energy Reviews 137:110498. doi: 10.1016/j.rser.2020.110498.
  • Veldurthy, V., R. Wei, L. Oz, P. Dhawan, Y. H. Jeon, and S. Christakos. 2016. Vitamin D, calcium homeostasis and aging. Bone Research 4:16041. doi: 10.1038/boneres.2016.41.
  • Vendruscolo, R. G., A. S. Fernandes, M. B. Fagundes, L. Q. Zepka, C. R. de Menezes, E. Jacob–Lopes, and R. Wagner. 2021. Development of a new method for simultaneous extraction of chlorophylls and carotenoids from microalgal biomass. Journal of Applied Phycology 33 (4):1987–97. doi: 10.1007/s10811-021-02470-8.
  • Verawaty, M., E. Melwita, P. Apsari, and M. Wiyahsari. 2017. Cultivation strategy for freshwater macro- and micro-algae as biomass stock for lipid production. Journal of Engineering and Technological Sciences 49 (2):261–74. doi: 10.5614/j.eng.technol.sci.2017.49.2.8.
  • Villaró, S., I. Viñas, and T. Lafarga. 2021. Consumer acceptance and attitudes toward microalgae and microalgal-derived products as food. In Cultured microalgae for the food industry, ed. T. Lafarga and G. Acién, 367–85. London, UK: Academic Press.
  • Vishwakarma, J., and V. L. Sirisha. 2020. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Applied Microbiology and Biotechnology 104 (14):6299–314. doi: 10.1007/s00253-020-10653-5.
  • Viswanathan, T., S. Mani, K. C. Das, S. Chinnasamy, and A. Bhatnagar. 2011. Drying characteristics of a microalgae consortium developed for biofuels production. Transactions of the ASABE 54 (6):2245–52. doi: 10.13031/2013.40637.
  • Wahyuni, F. D., I. M. Shalihah, and W. Nurtiana. 2020. Carotenoids as natural colorant: A review. Food ScienTech Journal 2 (2):94. doi: 10.33512/fsj.v2i2.9940.
  • Wan, C., M. A. Alam, X. Q. Zhao, X. Y. Zhang, S. L. Guo, S. H. Ho, J. S. Chang, and F. W. Bai. 2015. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology 184:251–7. doi: 10.1016/j.biortech.2014.11.081.
  • Wang, L., B. Pan, Y. X. Gao, C. Li, J. Ye, L. Yang, Y. S. Chen, Q. Hu, and X. Z. Zhang. 2019. Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. Journal of Cleaner Production 218:83–95. doi: 10.1016/j.jclepro.2019.01.321.
  • Wang, S., S. Wu, G. P. Yang, K. H. Pan, L. L. Wang, and Z. L. Hu. 2021. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnology Advances 53:107865. doi: 10.1016/j.biotechadv.2021.107865.
  • Wang, A., K. Yan, D. Chu, M. Nazer, N. T. Lin, E. Samaranayake, and J. Chang. 2020. Microalgae as a mainstream food ingredient: Demand and supply perspective. In Microalgae biotechnology for food, health and high value products, ed. M. A. Alam, J. L. Xu, & Z. M. Wang, 29–79. Singapore: Springer Singapore.
  • Wang, X. Q., and X. W. Zhang. 2013. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress 29:681–7. doi: 10.1002/btpr.1725.
  • Watson, E. 2010. Spirulina faces legal questions. Foodnavigator.com.
  • Williams, P. J., and l. B. L. M. L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science 3 (5):554–90. doi: 10.1039/b924978h.
  • World Food Progarmme. 2022. Food systems. Accessed June 1, 2022. https://www.wfp.org/food-systems.
  • Xiaozao tech. 2022. Xiaozao tech. Accessed June 1, 2022. http://www.xiaozaotech.com/.
  • Xie, F. X., F. F. Zhang, K. Zhou, Q. Zhao, H. B. Sun, S. Wang, Y. J. Zhao, and J. R. Fu. 2020. Breeding of high protein Chlorella sorokiniana using protoplast fusion. Bioresource Technology 313:123624. doi: 10.1016/j.biortech.2020.123624.
  • Xu, Y. F., Y. Fu, and D. Zhang. 2017. Cost-effectiveness analysis on magnetic harvesting of algal cells. Materials Today: Proceedings 4 (1):50–6. doi: 10.1016/j.matpr.2017.01.192.
  • Xue, Z., S. Li, W. Yu, X. Gao, X. Zheng, Y. Yu, and X. Kou. 2021. Research advancement and commercialization of microalgae edible oil: A review. Journal of the Science of Food and Agriculture 101 (14):5763–74. doi: 10.1002/jsfa.11390.
  • Yaakob, Z., E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff. 2014. An overview: Biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research (Thessalonike, Greece) 21 (1):6. doi: 10.1186/2241-5793-21-6.
  • Yamada, K., H. Suzuki, T. Takeuchi, Y. Kazama, S. Mitra, T. Abe, K. Goda, K. Suzuki, and O. Iwata. 2016. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Scientific Reports 6:26327. doi: 10.1038/srep26327.
  • Yen, H.-W., S.-C. Yang, C.-H. Chen, Jesisca, and J.-S. Chang. 2015. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource Technology 184:291–6. doi: 10.1016/j.biortech.2014.10.030.
  • Zaparoli, M., F. G. Ziemniczak, L. Mantovani, J. A. V. Costa, and L. M. Colla. 2020. Cellular stress conditions as a strategy to increase carbohydrate productivity in Spirulina platensis. BioEnergy Research 13 (4):1221–34. doi: 10.1007/s12155-020-10133-8.
  • Zare, M., Z. Norouzi Roshan, E. Assadpour, and S. M. Jafari. 2021. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition 61 (3):522–34. doi: 10.1080/10408398.2020.1738999.
  • Zhan, J., J. F. Rong, and Q. Wang. 2017. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy 42 (12):8505–17. doi: 10.1016/j.ijhydene.2016.12.021.
  • Zhang, Y. S., Q. C. Chao, Y. Chen, J. Y. Zhang, M. Wang, Y. Zhang, and X. Yu. 2021b. China’s carbon neutrality: Leading global climate governance and green transformation. Chinese Journal of Urban and Environmental Studies 9 (3):2150019. doi: 10.1142/S2345748121500196.
  • Zhang, J. Y., B. S. F. Müller, K. N. Tyre, H. L. Hersh, F. Bai, Y. Hu, M. F. R. Resende, Jr., B. Rathinasabapathi, and A. M. Settles. 2020. Competitive growth assay of mutagenized chlamydomonas reinhardtii compatible with the international space station veggie plant growth chamber. Frontiers in Plant Science 11:631. doi: 10.3389/fpls.2020.00631.
  • Zhang, H., Y. B. Tang, Y. Zhang, S. F. Zhang, J. Qu, X. Wang, R. Kong, C. C. Han, and Z. Q. Liu. 2015. Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine: eCAM 2015:723515. doi: 10.1155/2015/723515.
  • Zhang, Z., Y. Y. Tan, W. L. Wang, W. M. Bai, J. H. Fan, J. K. Huang, M. X. Wan, and Y. G. Li. 2019b. Efficient heterotrophic cultivation of Chlamydomonas reinhardtii. Journal of Applied Phycology 31 (3):1545–54. doi: 10.1007/s10811-018-1666-0.
  • Zhang, C., R. Wohlhueter, and H. Zhang. 2016. Genetically modified foods: A critical review of their promise and problems. Food Science and Human Wellness 5 (3):116–23. doi: 10.1016/j.fshw.2016.04.002.
  • Zhang, B., J. Y. Wu, and F. P. Meng. 2021a. Adaptive laboratory evolution of microalgae: A review of the regulation of growth, stress resistance, metabolic processes, and biodegradation of pollutants. Frontiers in Microbiology 12:737248. doi: 10.3389/fmicb.2021.737248.
  • Zhang, M. J., L. S. Yao, E. Maleki, B. Q. Liao, and H. J. Lin. 2019a. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Research 44:101686. doi: 10.1016/j.algal.2019.101686.
  • Zhang, X., X.-F. Zhang, H.-P. Li, L.-Y. Wang, C. Zhang, X.-H. Xing, and C.-Y. Bao. 2014. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology 98 (12):5387–96. doi: 10.1007/s00253-014-5755-y.
  • Zhao, F. Y., C. J. Ao, L. Du, and P. Cao. 2010. The anti-oxidative effect of Spirulina (Arthrospira) patensis polysaccharide in vitro. Heilongjiang Animal Science and Veterinary Medicine 2010 (17):14–16.
  • Zhao, Z. Y., Y. Li, K. Muylaert, and I. F. J. Vankelecom. 2020. Synergy between membrane filtration and flocculation for harvesting microalgae. Separation and Purification Technology 240:116603. doi: 10.1016/j.seppur.2020.116603.
  • Zhuang, L. L., D. W. Yu, J. Zhang, F. F. Liu, Y. H. Wu, T. Y. Zhang, G. H. Dao, and H. Y. Hu. 2018. The characteristics and influencing factors of the attached microalgae cultivation: a review. Renewable and Sustainable Energy Reviews 94:1110–9. doi: 10.1016/j.rser.2018.06.006.
  • Zittelli, G. C., N. Biondi, L. Rodolfi, and M. R. Tredici. 2013. Photobioreactors for mass production of microalgae. In Handbook of microalgal culture, ed. A. Richmond and Q. Hu, 2nd ed., 225–66. Hoboken, NJ: Wiley-Blackwell.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.