1,186
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Architectural design of advanced aluminum matrix composites: a review of recent developments

, ORCID Icon, , , &

References

  • Zhang, X.; Zhao, N.; He, C. The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design–A Review. Prog. Mater. Sci. 2020, 113, 100672. doi:10.1016/j.pmatsci.2020.100672
  • Ashby, M. Designing Architectured Materials. Scr. Mater. 2013, 68, 4–7. doi:10.1016/j.scriptamat.2012.04.033
  • Estrin, Y.; Bréchet, Y.; Dunlop, J.; Fratzl, P. Architectured Materials in Nature and Engineering; Springer Nature Switzerland AG; Cham, Switzerland, 2019.
  • Estrin, Y.; Beygelzimer, Y.; Kulagin, R.; Gumbsch, P.; Fratzl, P.; Zhu, Y.; Hahn, H. Architecturing Materials at Mesoscale: Some Current Trends. Mater. Res. Lett. 2021, 9, 399–421. doi:10.1080/21663831.2021.1961908
  • Li, Z.; Guo, Q.; Li, Z. Q.; Fan, G. L.; Xiong, D. B.; Su, Y. S.; Zhang, J.; Zhang, D. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure. Nano Lett. 2015, 15, 8077–8083. doi:10.1021/acs.nanolett.5b03492
  • Jiang, L.; Li, Z. Q.; Fan, G. L.; Cao, L. L.; Zhang, D. Strong and Ductile Carbon Nanotube/Aluminum Bulk Nanolaminated Composites with Two-Dimensional Alignment of Carbon Nanotubes. Scr. Mater. 2012, 66, 331–334. doi:10.1016/j.scriptamat.2011.11.023
  • Zhang, W.; Li, Z.; Jiang, L.; Kai, X.; Dai, X.; Fan, G.; Guo, Q.; Xiong, D.; Su, Y.; Zhang, D. Flake Thickness Effect of Al2O3/Al Biomimetic Nanolaminated Composites Fabricated by Flake Powder Metallurgy. Mater. Sci. Eng. A 2014, 594, 324–329. doi:10.1016/j.msea.2013.11.086
  • Jiang, L.; Li, Z. Q.; Fan, G. L.; Zhang, D. A Flake Powder Metallurgy Approach to Al2O3/Al Biomimetic Nanolaminated Composites with Enhanced Ductility. Scr. Mater. 2011, 65, 412–415. doi:10.1016/j.scriptamat.2011.05.022
  • Espinosa, H. D.; Juster, A. L.; Latourte, F. J.; Loh, O. Y.; Gregoire, D.; Zavattieri, P. D. Tablet-Level Origin of Toughening in Abalone Shells and Translation to Synthetic Composite Materials. Nat. Commun. 2011, 2, 173. doi:10.1038/ncomms1172
  • Zhang, Z.; Li, Z.; Tan, Z.; Zhao, H.; Fan, G.; Xu, Y.; Xiong, D-b.; Li, Z. Bioinspired Hierarchical Al2O3/Al Laminated Composite Fabricated by Flake Powder Metallurgy. Compos. Part A Appl. Sci. Manufact. 2021, 140, 106187. doi:10.1016/j.compositesa.2020.106187
  • Zhang, Y.; Li, X. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness. Nano Lett. 2017, 17, 6907–6915. doi:10.1021/acs.nanolett.7b03308
  • Wu, H.; Fan, G. An Overview of Tailoring Strain Delocalization for Strength-Ductility Synergy. Prog. Mater. Sci. 2020, 113, 100675. doi:10.1016/j.pmatsci.2020.100675
  • Surappa, M. K. Aluminium Matrix Composites: Challenges and Opportunities. Sadhana Acad. Proc. Eng. Sci. 2003, 28, 319–334. doi:10.1007/BF02717141
  • Zhu, Y.; Ameyama, K.; Anderson, P. M.; Beyerlein, I. J.; Gao, H.; Kim, H. S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R. O.; et al. Heterostructured Materials: superior Properties from Hetero-Zone Interaction. Mater. Res. Lett. 2021, 9, 1–31. doi:10.1080/21663831.2020.1796836
  • Malic, B.; Rojac, T. High Piezoelectricity via Enhanced Disorder. Nat Mater 2018, 17, 297–298. doi:10.1038/s41563-018-0046-0
  • Liu, Y.; Aziguli, H.; Zhang, B.; Xu, W.; Lu, W.; Bernholc, J.; Wang, Q. Ferroelectric Polymers Exhibiting Behaviour Reminiscent of a Morphotropic Phase Boundary. Nature 2018, 562, 96–100. doi:10.1038/s41586-018-0550-z
  • Ma, E.; Zhu, T. Towards Strength–Ductility Synergy through the Design of Heterogeneous Nanostructures in Metals. Mater. Today 2017, 20, 323–331. doi:10.1016/j.mattod.2017.02.003
  • Kim, W.; Lee, S. H. High-Temperature Deformation Behavior of Carbon Nanotube (CNT)-Reinforced Aluminum Composites and Prediction of Their High-Temperature Strength. Compos. Part A Appl. Sci. Manufact. 2014, 67, 308–315. doi:10.1016/j.compositesa.2014.09.008
  • Yoo, S.; Han, S.; Kim, W. Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes. Scr. Mater. 2013, 68, 711–714. doi:10.1016/j.scriptamat.2013.01.013
  • Wu, X.; Zhu, Y. Heterogeneous Materials: A New Class of Materials with Unprecedented Mechanical Properties. Mater. Res. Lett. 2017, 5, 527–532. doi:10.1080/21663831.2017.1343208
  • Brechet, Y.; Embury, J. D. Architectured Materials: Expanding Materials Space. Scr. Mater. 2013, 68, 1–3. doi:10.1016/j.scriptamat.2012.07.038
  • Estrin, Y.; Beygelzimer, Y.; Kulagin, R. Design of Architectured Materials Based on Mechanically Driven Structural and Compositional Patterning. Adv. Eng. Mater. 2019, 21, 1900487. doi:10.1002/adem.201900487
  • Bechthold, M.; Weaver, J. C. Materials Science and Architecture. Nat. Rev. Mater. 2017, 2, 17082. doi:10.1038/natrevmats.2017.82
  • Stabnikov, V.; Ivanov, V.; Chu, J. Construction Biotechnology: A New Area of Biotechnological Research and Applications. World J. Microbiol. Biotechnol. 2015, 31, 1303–1314. doi:10.1007/s11274-015-1881-7
  • Zhao, L.; Guo, Q.; Li, Z.; Li, Z.; Fan, G.; Xiong, D.-B.; Su, Y.; Zhang, J.; Tan, Z.; Zhang, D. Strain-Rate Dependent Deformation Mechanism of graphene-Al Nanolaminated Composites Studied Using Micro-Pillar Compression. Int. J. Plast. 2018, 105, 128–140. doi:10.1016/j.ijplas.2018.02.006
  • Walther, A.; Bjurhager, I.; Malho, J. M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O. Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways. Nano Lett. 2010, 10, 2742–2748. doi:10.1021/nl1003224
  • Ji, B.; Gao, H. Mechanical Properties of Nanostructure of Biological Materials. J. Mech. Phys. Solids 2004, 52, 1963–1990. doi:10.1016/j.jmps.2004.03.006
  • Moghadam, A. D.; Omrani, E.; Menezes, P. L.; Rohatgi, P. K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene – A Review. Compos. Part B Eng. 2015, 77, 402–420. doi:10.1016/j.compositesb.2015.03.014
  • Noguchi, T.; Magario, A.; Fukazawa, S.; Shimizu, S.; Beppu, J.; Seki, M. Carbon Nanotube/Aluminium Composites with Uniform Dispersion. Mater. Trans. 2004, 45, 602–604. doi:10.2320/matertrans.45.602
  • Hwang, J.; Yoon, T.; Jin, S. H.; Lee, J.; Kim, T. S.; Hong, S. H.; Jeon, S. Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-level Mixing Process. Adv. Mater. 2013, 25, 6724–6729. doi:10.1002/adma.201302495
  • Kim, Y.; Lee, J.; Yeom, M. S.; Shin, J. W.; Kim, H.; Cui, Y.; Kysar, J. W.; Hone, J.; Jung, Y.; Jeon, S.; Han, S. M. Strengthening Effect of Single-atomic-layer Graphene in Metal-graphene Nanolayered Composites. Nat. Commun. 2013, 4, 2114. doi:10.1038/ncomms3114
  • Ovid'ko, I. A.; Valiev, R. Z.; Zhu, Y. T. Review on Superior Strength and Enhanced Ductility of Metallic Nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540. doi:10.1016/j.pmatsci.2018.02.002
  • Cavaliere, P. Crack Initiation and Growth in Metal Alloys and Composites. In Fatigue and Fracture of Nanostructured Materials, Springer International Publishing: Cham, 2021, pp. 105–154.
  • Su, Y. S.; Li, Z.; Yu, Y.; Zhao, L.; Li, Z. Q.; Guo, Q.; Xiong, D. B.; Zhang, D. Composite Structural Modeling and Tensile Mechanical Behavior of Graphene Reinforced Metal Matrix Composites. Sci. China Mater. 2018, 61, 112–124. doi:10.1007/s40843-017-9142-2
  • Fu, X.; Tan, Z.; Min, X.; Li, Z.; Yue, Z.; Fan, G.; Xiong, D.-B.; Li, Z. Trimodal Grain Structure Enables High-Strength CNT/Al-Cu-Mg Composites Higher Ductility by Powder Assembly & Alloying. Mater. Res. Lett. 2021, 9, 50–57. doi:10.1080/21663831.2020.1818324
  • Sadeghi, B.; Qi, J.; Min, X.; Cavaliere, P. Modelling of Strain Rate Dependent Dislocation Behavior of CNT/Al Composites Based on Grain Interior/Grain Boundary Affected Zone (GI/GBAZ). Mater. Sci. Eng. A 2021, 820, 141547. doi:10.1016/j.msea.2021.141547
  • Liu, Q.; Lomov, S. V.; Gorbatikh, L. Spatial Distribution and Orientation of Nanotubes for Suppression of Stress Concentrations Optimized Using Genetic Algorithm and Finite Element Analysis. Mater. Design 2018, 158, 136–146. doi:10.1016/j.matdes.2018.08.019
  • Sadeghi, B.; Cavaliere, P.; Balog, M.; Pruncu, C. I.; Shabani, A. Microstructure Dependent Dislocation Density Evolution in Micro-Macro Rolled Al2O3/Al Laminated Composite. Mater. Sci. Eng. A 2022, 830, 142317. doi:10.1016/j.msea.2021.142317
  • Balog, M.; Krizik, P.; Svec, P.; Orovcik, L. Industrially Fabricated in-Situ Al-AlN Metal Matrix Composites (Part a): Processing, Thermal Stability, and Microstructure. J. Alloys Compd. 2021, 883, 160858. doi:10.1016/j.jallcom.2021.160858
  • Balog, M.; Krizik, P.; Dvorak, J.; Bajana, O.; Krajcovic, J.; Drienovsky, M. Industrially Fabricated in-Situ Al-AlN Metal Matrix Composites (Part B): the Mechanical, Creep, and Thermal Properties. J. Alloys Compd. 2022, 909, 164720. doi:10.1016/j.jallcom.2022.164720
  • Zhang, Y.; Sabbaghianrad, S.; Yang, H.; Topping, T. D.; Langdon, T. G.; Lavernia, E. J.; Schoenung, J. M.; Nutt, S. R. Two-Step SPD Processing of a Trimodal Al-Based Nano-Composite. Metall. Mater. Trans. A 2015, 46, 5877–5886. doi:10.1007/s11661-015-3151-6
  • Zhang, Z.; Fan, G.; Tan, Z.; Zhao, H.; Xu, Y.; Xiong, D.; Li, Z. Bioinspired Multiscale Al2O3-rGO/Al Laminated Composites with Superior Mechanical Properties. Compos. Part B Eng. 2021, 217, 108916. doi:10.1016/j.compositesb.2021.108916
  • Laha, T.; Chen, Y.; Lahiri, D.; Agarwal, A. Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming. Compos. Part A Appl. Sci. Manufact. 2009, 40, 589–594. doi:10.1016/j.compositesa.2009.02.007
  • Wang, M.; Zhou, Y.; Lv, H.; Li, M.; Gao, H.; Wang, J.; Sun, B. Mechanical Properties and Electrical Conductivity of Cold Rolled Al-7.5wt%Y Alloy with Heterogeneous Lamella Structure and Stacking Faults. J. Alloys Compd. 2021, 882, 160692. doi:10.1016/j.jallcom.2021.160692
  • Fu, X.; Tan, Z.; Ma, Z.; Li, Z.; Fan, G.; Xiong, D.-B.; Li, Z. Powder Assembly & Alloying to CNT/Al–Cu–Mg Composites with Trimodal Grain Structure and Strength-Ductility Synergy. Compos. Part B Eng. 2021, 225, 109271. doi:10.1016/j.compositesb.2021.109271
  • Zan, Y. N.; Zhou, Y. T.; Liu, Z. Y.; Ma, G. N.; Wang, D.; Wang, Q. Z.; Wang, W. G.; Xiao, B. L.; Ma, Z. Y. Enhancing Strength and Ductility Synergy through Heterogeneous Structure Design in Nanoscale Al2O3 Particulate Reinforced Al Composites. Mater. Design 2019, 166, 107629. doi:10.1016/j.matdes.2019.107629
  • Li, Z.; Fan, G. L.; Guo, Q.; Li, Z. Q.; Su, Y. S.; Zhang, D. Synergistic Strengthening Effect of Graphene-Carbon Nanotube Hybrid Structure in Aluminum Matrix Composites. Carbon 2015, 95, 419–427. doi:10.1016/j.carbon.2015.08.014
  • Xu, R.; Tan, Z.; Fan, G.; Ji, G.; Li, Z.; Guo, Q.; Li, Z.; Zhang, D. Microstructure-Based Modeling on Structure-Mechanical Property Relationships in Carbon Nanotube/Aluminum Composites. Int. J. Plast. 2019, 120, 278–295. doi:10.1016/j.ijplas.2019.05.006
  • Xu, R.; Tan, Z. Q.; Fan, G. L.; Ji, G.; Xiong, D. B.; Guo, Q.; Su, Y. S.; Li, Z. Q.; Zhang, D. High-Strength CNT/Al-Zn-Mg-Cu Composites with Improved Ductility Achieved by Flake Powder Metallurgy via Elemental Alloying. Compos. Part A Appl. Sci. Manufact. 2018, 111, 1–11. doi:10.1016/j.compositesa.2018.05.012
  • Jiang, Y. Y.; Tan, Z. Q.; Xu, R.; Fan, G. L.; Xiong, D. B.; Guo, Q.; Su, Y. S.; Li, Z. Q.; Zhang, D. Tailoring the Structure and Mechanical Properties of Graphene Nanosheet/Aluminum Composites by Flake Powder Metallurgy via Shift-Speed Ball Milling. Compos. Part A Appl. Sci. Manufact. 2018, 111, 73–82. doi:10.1016/j.compositesa.2018.05.022
  • Sadeghi, B.; Cavaliere, P. CNTs Reinforced Al-Based Composites Produced via Modified Flake Powder Metallurgy. J. Mater. Sci. 2022, 57, 2550–2566. doi:10.1007/s10853-021-06665-9
  • Zhao, L.; Guo, Q.; Li, Z.; Xiong, D.-B.; Osovski, S.; Su, Y.; Zhang, D. Strengthening and Deformation Mechanisms in Nanolaminated graphene-Al Composite Micro-Pillars Affected by Graphene in-Plane Sizes. Int. J. Plast. 2019, 116, 265–279. doi:10.1016/j.ijplas.2019.01.006
  • Jiang, L.; Li, Z.; Fan, G.; Cao, L.; Zhang, D. The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution. Carbon 2012, 50, 1993–1998. doi:10.1016/j.carbon.2011.12.057
  • Sadeghi, B.; Shabani, A.; Cavaliere, P. Hot Rolling of Spark-Plasma-Sintered Pure Aluminium. Powder Metall. 2018, 61, 285–292. doi:10.1080/00325899.2018.1478779
  • Ma, K.; Liu, Z. Y.; Liu, K.; Chen, X. G.; Xiao, B. L.; Ma, Z. Y. Structure Optimization for Improving the Strength and Ductility of Heterogeneous Carbon Nanotube/Al–Cu–Mg Composites. Carbon 2021, 178, 190–201. doi:10.1016/j.carbon.2021.03.006
  • Morovvati, M. R.; Mollaei-Dariani, B. The Formability Investigation of CNT-Reinforced Aluminum Nano-Composite Sheets Manufactured by Accumulative Roll Bonding. Int. J. Adv. Manuf. Technol. 2018, 95, 3523–3533. doi:10.1007/s00170-017-1205-1
  • Fujiwara, H.; Takata, T.; Miyamoto, H. Microstructure and Mechanical Properties of Harmonic-Structured Al-Cu Alloy. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 675–678. doi:10.2497/jjspm.63.675
  • Yu, T.; Liu, J.; He, Y.; Tian, J.; Chen, M.; Wang, Y. Microstructure and Wear Characterization of Carbon Nanotubes (CNTs) Reinforced Aluminum Matrix Nanocomposites Manufactured Using Selective Laser Melting. Wear 2021, 476, 203581. doi:10.1016/j.wear.2020.203581
  • Voyiadjis, G. Z.; Zhang, C. Size Effects and Material Length Scales in Nanoindentation for Metals. In Handbook of Nonlocal Continuum Mechanics for Materials and Structures; G.Z. Voyiadjis, Ed. Springer International Publishing: Cham, 2017, pp. 1–36.
  • Jiang, L.; Wen, H.; Yang, H.; Hu, T.; Topping, T.; Zhang, D.; Lavernia, E. J.; Schoenung, J. M. Influence of Length-Scales on Spatial Distribution and Interfacial Characteristics of B4C in a Nanostructured Al Matrix. Acta Mater. 2015, 89, 327–343. doi:10.1016/j.actamat.2015.01.062
  • Nix, W. D.; Greer, J. R.; Feng, G.; Lilleodden, E. T. Deformation at the Nanometer and Micrometer Length Scales: Effects of Strain Gradients and Dislocation Starvation. Thin Solid Films 2007, 515, 3152–3157. doi:10.1016/j.tsf.2006.01.030
  • Misra, A.; Hirth, J. P.; Hoagland, R. G. Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites. Acta Mater. 2005, 53, 4817–4824. doi:10.1016/j.actamat.2005.06.025
  • Liang, Z.; De Hosson, J.; Huang, M. Size Effect on Deformation Twinning in Face-Centred Cubic Single Crystals: Experiments and Modelling. Acta Mater. 2017, 129, 1–10. doi:10.1016/j.actamat.2017.02.063
  • Yu, Q.; Shan, Z.-W.; Li, J.; Huang, X.; Xiao, L.; Sun, J.; Ma, E. Strong Crystal Size Effect on Deformation Twinning. Nature 2010, 463, 335–338. doi:10.1038/nature08692
  • Wang, B. B.; Xie, G. M.; Wu, L. H.; Xue, P.; Ni, D. R.; Xiao, B. L.; Liu, Y. D.; Ma, Z. Y. Grain Size Effect on Tensile Deformation Behaviors of Pure Aluminum. Mater. Sci. Eng. A 2021, 820, 141504. doi:10.1016/j.msea.2021.141504
  • Sadeghi, B.; Tan, Z.; Qi, J.; Li, Z.; Min, X.; Yue, Z.; Fan, G. Enhanced Mechanical Properties of CNT/Al Composite through Tailoring Grain Interior/Grain Boundary Affected Zones. Compos. Part B Eng. 2021, 223, 109133. doi:10.1016/j.compositesb.2021.109133
  • Sadeghi, B.; Cavaliere, P.; Perrone, A. Effect of Al2O3, SiO2 and Carbon Nanotubes on the Microstructural and Mechanical Behavior of Spark Plasma Sintered Aluminum Based Nanocomposites. Part. Sci. Technol. 2020, 38, 7–8. doi:10.1080/02726351.2018.1457109
  • Sadeghi, B.; Cavaliere, P.; Shamanian, M.; Sanayei, M.; Szpunar, J. A.; Nosko, M. Electron Backscattered Diffraction Analysis of Friction Stir Processed Nanocomposites Produced via Spark Plasma Sintering. J. Microsc. Wiley, 2018, 271(2), 145–162. doi:10.1111/jmi.12704
  • Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Wei, Y.; Huang, X.; Zhu, Y. Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501–14505. doi:10.1073/pnas.1517193112
  • Akbari beni, H.; Alizadeh, M.; Ghaffari, M.; Amini, R. Investigation of Grain Refinement in Al/Al2O3/B4C Nano-Composite Produced by ARB. Compos. Part B Eng. 2014, 58, 438–442. doi:10.1016/j.compositesb.2013.10.037
  • Sadeghi, B.; Cavaliere, P.; Nosko, M.; TremboŠovÁ, V.; Nagy, Š. Hot Deformation Behaviour of Bimodal Sized Al2O3/Al Nanocomposites Fabricated by Spark Plasma Sintering. J. Microsc. 2021, 281, 28–45. doi:10.1111/jmi.12947
  • Choi, H. J.; Bae, D. H. Strengthening and Toughening of Aluminum by Single-Walled Carbon Nanotubes. Mater. Sci. Eng. A 2011, 528, 2412–2417. doi:10.1016/j.msea.2010.11.090
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Rizzo, A. Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering. J. Mater. Eng. Perform 2017, 26, 2928–2936. doi:10.1007/s11665-017-2699-2
  • Xu, R.; Fan, G. L.; Tan, Z. Q.; Ji, G.; Chen, C.; Beausir, B.; Xiong, D. B.; Guo, Q.; Guo, C. P.; Li, Z. Q.; Zhang, D. Back Stress in Strain Hardening of Carbon Nanotube/Aluminum Composites. Mater. Res. Lett. 2018, 6, 113–120. doi:10.1080/21663831.2017.1405371
  • Wang, Y.; Chen, M.; Zhou, F.; Ma, E. High Tensile Ductility in a Nanostructured Metal. Nature 2002, 419, 912–915. doi:10.1038/nature01133
  • Jiang, L.; Ma, K.; Yang, H.; Li, M.; Lavernia, E. J.; Schoenung, J. M. The Microstructural Design of Trimodal Aluminum Composites. JOM 2014, 66, 898–908. doi:10.1007/s11837-014-0906-2
  • Wang, Y. M.; Ma, E. Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal. Acta Mater. 2004, 52, 1699–1709. doi:10.1016/j.actamat.2003.12.022
  • Harsha, R. N.; Mithun Kulkarni, V.; Satish Babu, B. Severe Plastic Deformation–A Review. Mater. Today: Proc. 2018, 5, 22340–22349. doi:10.1016/j.matpr.2018.06.600
  • Valiev, R. Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties. Nat. Mater. 2004, 3, 511–516. doi:10.1038/nmat1180
  • Valiev, R. Z.; Estrin, Y.; Horita, Z.; Langdon, T. G.; Zehetbauer, M. J.; Zhu, Y. T. Fundamentals of Superior Properties in Bulk NanoSPD Materials. Mater. Res. Lett. 2016, 4, 1–21. doi:10.1080/21663831.2015.1060543
  • Ogawa, F.; Masuda, C. Fabrication and the Mechanical and Physical Properties of Nanocarbon-Reinforced Light Metal Matrix Composites: A Review and Future Directions. Mater. Sci. Eng. A 2021, 820, 141542. doi:10.1016/j.msea.2021.141542
  • Sadeghi, B.; Fan, G.; Tan, Z.; Li, Z.; Kondo, A.; Naito, M. Smart Mechanical Powder Processing for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites. KONA 2022, 39, 219–229. doi:10.14356/kona.2022004
  • Song, J.; Guo, Q.; Ouyang, Q.; Su, Y.; Zhang, J.; Lavernia, E. J.; Schoenung, J. M.; Zhang, D. Influence of Interfaces on the Mechanical Behavior of SiC Particulate-Reinforced Al–Zn–Mg–Cu Composites. Mater. Sci. Eng. A 2015, 644, 79–84. doi:10.1016/j.msea.2015.07.050
  • Suh, Y. S.; Joshi, S. P.; Ramesh, K. T. An Enhanced Continuum Model for Size-Dependent Strengthening and Failure of Particle-Reinforced Composites. Acta Mater. 2009, 57, 5848–5861. doi:10.1016/j.actamat.2009.08.010
  • Liu, C.; Qin, S.; Zhang, G.; Naka, M. Micromechanical Properties of High Fracture Performance SiCp–6061Al/6061Al Composite. Mater. Sci. Eng. A 2002, 332, 203–209. doi:10.1016/S0921-5093(01)01739-7
  • Ye, J.; He, J.; Schoenung, J. M. Cryomilling for the Fabrication of a Particulate B4C Reinforced Al Nanocomposite: Part I. Effects of Process Conditions on Structure. Metall. Mat. Trans. A 2006, 37, 3099–3109. doi:10.1007/s11661-006-0190-z
  • Barai, P.; Weng, G. J. The Competition of Grain Size and Porosity in the Viscoplastic Response of Nanocrystalline Solids. Int. J. Plast. 2008, 24, 1380–1410. doi:10.1016/j.ijplas.2007.09.010
  • Huang, C. X.; Wang, Y. F.; Ma, X. L.; Yin, S.; Höppel, H. W.; Göken, M.; Wu, X. L.; Gao, H. J.; Zhu, Y. T. Interface Affected Zone for Optimal Strength and Ductility in Heterogeneous Laminate. Mater. Today 2018, 21, 713–719. doi:10.1016/j.mattod.2018.03.006
  • Zhao, J.; Kan, Q.; Zhou, L.; Kang, G.; Fan, H.; Zhang, X. Deformation Mechanisms Based Constitutive Modelling and Strength-Ductility Mapping of Gradient Nano-Grained Materials. Mater. Sci. Eng. A 2019, 742, 400–408. doi:10.1016/j.msea.2018.10.096
  • Sadeghi, B.; Cavaliere, P.; Pruncu, C. I. Architecture Dependent Strengthening Mechanisms in Graphene/Al Heterogeneous Lamellar Composites. Mater. Charact. 2022, 188, 111913. doi:10.1016/j.matchar.2022.111913
  • Ma, L.; Zhou, J.; Zhu, R.; Li, S. Effects of Strain Gradient on the Mechanical Behaviors of Nanocrystalline Materials. Mater. Sci. Eng. A 2009, 507, 42–49. doi:10.1016/j.msea.2008.11.055
  • Dong, S.; Zhou, J.; Hui, D. A Quantitative Understanding on the Mechanical Behaviors of Carbon Nanotube Reinforced Nano/Ultrafine-Grained Composites. Int. J. Mech. Sci. 2015, 101-102, 29–37. doi:10.1016/j.ijmecsci.2015.07.019
  • Dong, S.; Zhou, J.; Hui, D.; Wang, Y.; Zhang, S. Size Dependent Strengthening Mechanisms in Carbon Nanotube Reinforced Metal Matrix Composites. Compos. Part A Appl. Sci. Manufact. 2015, 68, 356–364. doi:10.1016/j.compositesa.2014.10.018
  • Suryanarayana, C. Synthesis of Nanocomposites by Mechanical Alloying. J. Alloys Compd. 2011, 509, S229–S234. doi:10.1016/j.jallcom.2010.09.063
  • Peng, L.; Zhu, S. Creep of Metal Matrix Composites Reinforced by Combining Nano-Sized Dispersoids with Micro-Sized Ceramic Particulates or Whiskers. IJMPT 2003, 18, 215–254. doi:10.1504/IJMPT.2003.003593
  • Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J. J. Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions. Prog. Mater. Sci. 2014, 60, 130–207. doi:10.1016/j.pmatsci.2013.09.002
  • Al-Aqeeli, N.; Mendoza-Suarez, G.; Suryanarayana, C.; Drew, R. A. L. Development of New Al-Based Nanocomposites by Mechanical Alloying. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2008, 480, 392–396. doi:10.1016/j.msea.2007.09.060
  • Nie, J.; Liu, Y.; Wang, F.; Zhou, H.; Cao, Y.; Liu, X.; An, X.; Liao, X.; Zhu, Y.; Zhao, Y. Key Roles of Particles in Grain Refinement and Material Strengthening for an Aluminum Matrix Composite. Mater. Sci. Eng. A 2021, 801, 140414. doi:10.1016/j.msea.2020.140414
  • Nayak, S.; Pabi, S.; Murty, B. Al–(L12) Al3Ti Nanocomposites Prepared by Mechanical Alloying: Synthesis and Mechanical Properties. J. Alloys Compd. 2010, 492, 128–133. doi:10.1016/j.jallcom.2009.10.274
  • Azarniya, A.; Azarniya, A.; Sovizi, S.; Hosseini, H. R. M.; Varol, T.; Kawasaki, A.; Ramakrishna, S. Physicomechanical Properties of Spark Plasma Sintered Carbon Nanotube-Reinforced Metal Matrix Nanocomposites. Prog. Mater. Sci. 2017, 90, 276–324. doi:10.1016/j.pmatsci.2017.07.007
  • Ruslan, Z. V.; Evgeny, V. P.; Georgy, I. R.; Irina, P. S.; Ludek, D. Bulk Nanostructured Metals for Advanced Medical Implants and Devices. IOP Conf. Ser: Mater. Sci. Eng. 2018, 461, 012089.
  • Asgharzadeh, H.; Joo, S.-H.; Kim, H. S. Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion. Metall. Mater. Trans. A 2014, 45, 4129–4137. doi:10.1007/s11661-014-2354-6
  • Kaibyshev, R.; Sitdikov, O.; Goloborodko, A.; Sakai, T. Grain Refinement in as-Cast 7475 Aluminum Alloy under Hot Deformation. Mater. Sci. Eng. A 2003, 344, 348–356. doi:10.1016/S0921-5093(02)00440-9
  • Liu, Z.; Xiao, B.; Wang, W.; Ma, Z. Modelling of Carbon Nanotube Dispersion and Strengthening Mechanisms in Al Matrix Composites Prepared by High Energy Ball Milling-Powder Metallurgy Method. Compos. Part A Appl. Sci. Manufact. 2017, 94, 189–198. doi:10.1016/j.compositesa.2016.11.029
  • Sinclair, C. W.; Poole, W. J.; Bréchet, Y. A Model for the Grain Size Dependent Work Hardening of Copper. Scr. Mater. 2006, 55, 739–742. doi:10.1016/j.scriptamat.2006.05.018
  • Huang, Y.; Bazarnik, P.; Wan, D.; Luo, D.; Pereira, P. H. R.; Lewandowska, M.; Yao, J.; Hayden, B. E.; Langdon, T. G. The Fabrication of Graphene-Reinforced Al-Based Nanocomposites Using High-Pressure Torsion. Acta Mater. 2019, 164, 499–511. doi:10.1016/j.actamat.2018.10.060
  • Zhao, Y. H.; Liao, X. Z.; Cheng, S.; Ma, E.; Zhu, Y. T. Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys. Adv. Mater. 2006, 18, 2280–2283. +. doi:10.1002/adma.200600310
  • Zhao, Y. H.; Zhu, Y. T.; Lavernia, E. J. Strategies for Improving Tensile Ductility of Bulk Nanostructured Materials. Adv. Eng. Mater. 2010, 12, 769–778. doi:10.1002/adem.200900335
  • Semenova, I.; Salimgareeva, G.; Da Costa, G.; Lefebvre, W.; Valiev, R. Enhanced Strength and Ductility of Ultrafine‐Grained Ti Processed by Severe Plastic Deformation. Adv. Eng. Mater. 2010, 12, 803–807. doi:10.1002/adem.201000059
  • Polyakov, A. V.; Semenova, I. P.; Valiev, R. Z.; Huang, Y.; Langdon, T. G. Influence of Annealing on Ductility of Ultrafine-Grained Titanium Processed by Equal-Channel Angular Pressing–Conform and Drawing. MRS Commun. 2013, 3, 249–253. doi:10.1557/mrc.2013.40
  • Zhao, Y. H.; Lavernia, E. J. 13 - The Mechanical Properties of Multi-Scale Metallic Materials. In Nanostructured Metals and Alloys, S. H. Whang, Ed. Sawston, Cambridge UK: Woodhead Publishing, 2011, pp. 375–429
  • Xiang, Y.; Wang, X.; Hu, X.; Meng, L.; Song, Z.; Li, X.; Sun, Z.; Zhang, Q.; Wu, K. Achieving Ultra-High Strengthening and Toughening Efficiency in Carbon Nanotubes/Magnesium Composites via Constructing Micro-Nano Layered Structure. Compos. Part A Appl. Sci. Manufact. 2019, 119, 225–234. doi:10.1016/j.compositesa.2019.02.006
  • Huang, M.; Xu, C.; Fan, G. H.; Maawad, E.; Gan, W. M.; Geng, L.; Lin, F. X.; Tang, G. Z.; Wu, H.; Du, Y.; et al. Role of Layered Structure in Ductility Improvement of Layered Ti-Al Metal Composite. Acta Mater. 2018, 153, 235–249. doi:10.1016/j.actamat.2018.05.005
  • Balog, M.; Krizik, P.; Bajana, O.; Hu, T.; Yang, H.; Schoenung, J. M.; Lavernia, E. J. Influence of Grain Boundaries with Dispersed Nanoscale Al2O3 Particles on the Strength of Al for a Wide Range of Homologous Temperatures. J. Alloys Compd. 2019, 772, 472–481. doi:10.1016/j.jallcom.2018.09.164
  • Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvorak, J.; Bajana, O. Ultrafine-Grained Al Composites Reinforced with in-Situ Al3Ti Filaments. Mater. Sci. Eng. A 2016, 657, 6–14. doi:10.1016/j.msea.2016.01.047
  • Balog, M.; Krizik, P.; Yan, M.; Simancik, F.; Schaffer, G. B.; Qian, M. SAP-like Ultrafine-Grained Al Composites Dispersion Strengthened with Nanometric AlN. Mater. Sci. Eng. A 2013, 588, 181–187. doi:10.1016/j.msea.2013.09.027
  • Hazzledine, P. Direct versus Indirect Dispersion Hardening. Scr. Metall. Mater. 1992, 26, 57–58. doi:10.1016/0956-716X(92)90368-O
  • Schneibel, J. H.; Heilmaier, M. Hall–Petch Breakdown at Elevated Temperatures. Mater. Trans. 2014, 55, 44–51. doi:10.2320/matertrans.MA201309
  • Schneibel, J. H.; Heilmaier, M.; Blum, W.; Hasemann, G.; Shanmugasundaram, T. Temperature Dependence of the Strength of Fine- and Ultrafine-Grained Materials. Acta Mater. 2011, 59, 1300–1308. doi:10.1016/j.actamat.2010.10.062
  • Yu, C. Y.; Kao, P. W.; Chang, C. P. Transition of Tensile Deformation Behaviors in Ultrafine-Grained Aluminum. Acta Mater. 2005, 53, 4019–4028. doi:10.1016/j.actamat.2005.05.005
  • Bach, J.; Stoiber, M.; Schindler, L.; Höppel, H. W.; Göken, M. Deformation Mechanisms and Strain Rate Sensitivity of Bimodal and Ultrafine-Grained Copper. Acta Mater. 2020, 186, 363–373. doi:10.1016/j.actamat.2019.12.044
  • Ďurišinová, K.; Ďurišin, J.; Orolínová, M.; Ďurišin, M. Effect of Particle Additions on Microstructure Evolution of Aluminium Matrix Composite. J. Alloys Compd. 2012, 525, 137–142. doi:10.1016/j.jallcom.2012.02.098
  • Asgharzadeh, H.; McQueen, H. J. Grain Growth and Stabilisation of Nanostructured Aluminium at High Temperatures: review. Mater. Sci. Technol. 2015, 31, 1016–1034. doi:10.1179/1743284714Y.0000000706
  • Balog, M.; Rosova, A.; Szundiova, B.; Orovcik, L.; Krizik, P.; Svec, P.; Kulich, M.; Kopera, L.; Kovac, P.; Husek, I.; Ibrahim, A. M. H. HITEMAL-an Outer Sheath Material for MgB2 Superconductor Wires: The Effect of Annealing at 595–655°C on the Microstructure and Properties. Mater. Design 2018, 157, 12–23. doi:10.1016/j.matdes.2018.07.033
  • Ringer, S. P.; Li, W. B.; Easterling, K. E. On the Interaction and Pinning of Grain Boundaries by Cubic Shaped Precipitate Particles. Acta Metall. 1989, 37, 831–841. doi:10.1016/0001-6160(89)90010-2
  • Hansen, N. Strengthening of Aluminium by a Three-Dimensional Network of Aluminium-Oxide Particles. Acta Metall. 1969, 17, 637–642. doi:10.1016/0001-6160(69)90123-0
  • Balog, M.; Krizik, P.; Nosko, M.; Hajovska, Z.; Victoria Castro Riglos, M.; Rajner, W.; Liu, D.-S.; Simancik, F. Forged HITEMAL: Al-Based MMCs Strengthened with Nanometric Thick Al2O3 Skeleton. Mater. Sci. Eng. A 2014, 613, 82–90. doi:10.1016/j.msea.2014.06.070
  • Koch, C.; Scattergood, R.; Darling, K.; Semones, J. Stabilization of Nanocrystalline Grain Sizes by Solute Additions. J. Mater. Sci. 2008, 43, 7264–7272. doi:10.1007/s10853-008-2870-0
  • Shaw, L.; Luo, H.; Villegas, J.; Miracle, D. Thermal Stability of Nanostructured Al93Fe3Cr2Ti2 Alloys Prepared via Mechanical Alloying. Acta Mater. 2003, 51, 2647–2663. doi:10.1016/S1359-6454(03)00075-2
  • Balog, M.; Simancik, F.; Krizik, P.; Nosko, M.; Rajner, W.; Walcher, M.; Qian, M. Novel Ultrafine-Grained Aluminium Metal Matrix Composites Prepared from Fine Atomized Al Powders. Light Metals 2014, 1425–1430. doi:10.1007/978-3-319-48144-9_238
  • Sawangrat, C.; Kato, S.; Orlov, D.; Ameyama, K. Harmonic-Structured Copper: performance and Proof of Fabrication Concept Based on Severe Plastic Deformation of Powders. J. Mater. Sci. 2014, 49, 6579–6585. doi:10.1007/s10853-014-8258-4
  • Sharma, B.; Miyakoshi, M.; Vajpai, S. K.; Dirras, G.; Ameyama, K. Extra-Strengthening in a Harmonic Structure Designed Pure Titanium Due to Preferential Recrystallization Phenomenon through Thermomechanical Treatment. Mater. Sci. Eng. A 2020, 797, 140227. doi:10.1016/j.msea.2020.140227
  • Fu, X.; Xu, R.; Yuan, C.; Tan, Z.; Fan, G.; Ji, G.; Xiong, D.-B.; Guo, Q.; Li, Z.; Zhang, D. Strain Rate Sensitivity and Deformation Mechanism of Carbon Nanotubes Reinforced Aluminum Composites. Metall. Mat. Trans A 2019, 50, 3544–3554. doi:10.1007/s11661-019-05284-z
  • Guo, X.; Liu, Y.; Weng, G. J.; Zhu, L. L.; Lu, J.; Chen, G. Microstructure‐Property Relations in the Tensile Behavior of Bimodal Nanostructured Metals. Adv. Eng. Mater. 2020, 22, 2000097. doi:10.1002/adem.202000097
  • Zhang, H.; Ye, J.; Joshi, S.; Schoenung, J.; Chin, E.; Ramesh, K. Rate-Dependent Behavior of Hierarchical Al Matrix Composites. Scr. Mater. 2008, 59, 1139–1142. doi:10.1016/j.scriptamat.2008.07.036
  • Moon, R. J.; Tilbrook, M.; Hoffman, M.; Neubrand, A. Al–Al2O3 Composites with Interpenetrating Network Structures: composite Modulus Estimation. J Am. Ceram. Soc. 2005, 88, 666–674. doi:10.1111/j.1551-2916.2005.00115.x
  • Chen, J.; Hao, C.; Zhang, J. Fabrication of 3D-SiC Network Reinforced Aluminum–Matrix Composites by Pressureless Infiltration. Mater. Lett. 2006, 60, 2489–2492. doi:10.1016/j.matlet.2006.01.027
  • Lu, k. Nanomaterials. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456. doi:10.1126/science.1255940
  • Wu, X.; Jiang, P.; Chen, L.; Yuan, F.; Zhu, Y. T. Extraordinary Strain Hardening by Gradient Structure. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 7197–7201. doi:10.1073/pnas.1324069111
  • Wang, Y. F.; Wang, M. S.; Fang, X. T.; Guo, F. J.; Liu, H. Q.; Scattergood, R. O.; Huang, C. X.; Zhu, Y. T. Extra Strengthening in a Coarse/Ultrafine Grained Laminate: Role of Gradient Interfaces. Int. J. Plast. 2019, 123, 196–207. doi:10.1016/j.ijplas.2019.07.019
  • Cao, Z. H.; Sun, W.; Ma, Y. J.; Li, Q.; Fan, Z.; Cai, Y. P.; Zhang, Z. J.; Wang, H.; Zhang, X.; Meng, X. K. Strong and Plastic Metallic Composites with Nanolayered Architectures. Acta Mater. 2020, 195, 240–251. doi:10.1016/j.actamat.2020.04.061
  • Yuan, R.; Beyerlein, I. J.; Zhou, C. Homogenization of Plastic Deformation in Heterogeneous Lamella Structures. Mater. Res. Lett. 2017, 5, 251–257. doi:10.1080/21663831.2016.1255264
  • Zhang, X. Heterostructures: new Opportunities for Functional Materials. Mater. Res. Lett. 2020, 8, 49–59. doi:10.1080/21663831.2019.1691668
  • Wu, X.; Zhu, Y. Heterostructured Materials: Novel Materials with Unprecedented Mechanical Properties; Boca Raton, Florida: CRC Press, 2021.
  • Jiang, Y.; Xu, R.; Tan, Z.; Ji, G.; Fan, G.; Li, Z.; Xiong, D.-B.; Guo, Q.; Li, Z.; Zhang, D. Interface-Induced Strain Hardening of Graphene Nanosheet/Aluminum Composites. Carbon 2019, 146, 17–27. doi:10.1016/j.carbon.2019.01.094
  • Li, Z. K.; Fang, X. T.; Wang, Y. F.; Jiang, P.; Wang, J. J.; Liu, C. M.; Wu, X. L.; Zhu, Y. T.; Koch, C. C. Tuning Heterostructures with Powder Metallurgy for High Synergistic Strengthening and Hetero-Deformation Induced Hardening. Mater. Sci. Eng. A 2020, 777, 139074. doi:10.1016/j.msea.2020.139074
  • Wang, Y.; Yang, M.; Ma, X.; Wang, M.; Yin, K.; Huang, A.; Huang, C. Improved Back Stress and Synergetic Strain Hardening in Coarse-Grain/Nanostructure Laminates. Mater. Sci. Eng. A 2018, 727, 113–118. doi:10.1016/j.msea.2018.04.107
  • Wang, Y. F.; Huang, C. X.; Fang, X. T.; Höppel, H. W.; Göken, M.; Zhu, Y. T. Hetero-Deformation Induced (HDI) Hardening Does Not Increase Linearly with Strain Gradient. Scr. Mater. 2020, 174, 19–23. doi:10.1016/j.scriptamat.2019.08.022
  • Zhao, Y. H.; Lavernia, E. J. The Mechanical Properties of Multi-Scale Metallic Materials. Nanostruct. Metals Alloy 2011, 375–429. doi:10.1533/9780857091123.3.375
  • Chu, K.; Jia, C.; Liang, X.; Chen, H.; Guo, H. The Thermal Conductivity of Pressure Infiltrated SiCp/Al Composites with Various Size Distributions: Experimental Study and Modeling. Mater. Design 2009, 30, 3497–3503. doi:10.1016/j.matdes.2009.03.009
  • Vogt, R.; Zhang, Z.; Huskins, E.; Ahn, B.; Nutt, S.; Ramesh, K. T.; Lavernia, E. J.; Schoenung, J. M. High Strain Rate Deformation and Resultant Damage Mechanisms in Ultrafine-Grained Aluminum Matrix Composites. Mater. Sci. Eng. A 2010, 527, 5990–5996. doi:10.1016/j.msea.2010.05.092
  • Sadeghi, B.; Shamanian, M.; Cavaliere, P.; Ashrafizadeh, F.; Sanayei, M.; Szpunar, J. A. Microstructural and Mechanical Behavior of Bimodal Reinforced Al-Based Composites Produced by Spark Plasma Sintering and FSP. Int. J. Adv. Manuf. Technol. 2018, 94, 3903–3916. doi:10.1007/s00170-017-1144-x
  • Mao, D.; Meng, X.; Xie, Y.; Yang, Y.; Xu, Y.; Qin, Z.; Chang, Y.; Wan, L.; Huang, Y. Strength-Ductility Balance Strategy in SiC Reinforced Aluminum Matrix Composites via Deformation-Driven Metallurgy. J. Alloys Compd. 2022, 891, 162078. doi:10.1016/j.jallcom.2021.162078
  • Zhao, Y.; Topping, T.; Bingert, J. F.; Thornton, J. J.; Dangelewicz, A. M.; Li, Y.; Liu, W.; Zhu, Y.; Zhou, Y.; Lavernia, E. J. High Tensile Ductility and Strength in Bulk Nanostructured Nickel. Adv. Mater 2008, 20, 3028–3033. doi:10.1002/adma.200800214
  • Li, L.; Dong, L.; Huo, W.; Zhang, W.; Liu, Y.; Lu, J. A Simple Approach to Obtaining Enhanced Mechanical Properties of Graphene/Copper Composites with Heterogeneous Grain Structures. Mater. Sci. Eng. A 2022, 832, 142438. doi:10.1016/j.msea.2021.142438
  • Arpón, R.; Molina, J. M.; Saravanan, R. A.; García-Cordovilla, C.; Louis, E.; Narciso, J. Thermal Expansion Behaviour of Aluminium/SiC Composites with Bimodal Particle Distributions. Acta Mater. 2003, 51, 3145–3156. doi:10.1016/S1359-6454(03)00126-5
  • Tayebi, M.; Tayebi, M.; Rajaee, M.; Ghafarnia, V.; Rizi, A. M. Improvement of Thermal Properties of Al/Cu/SiC Composites by Tailoring the Reinforcement Microstructure and Comparison to Thermoelastic Models. J. Alloys Compd. 2021, 853, 156794. doi:10.1016/j.jallcom.2020.156794
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Rizzo, A. Wear Behavior of Al-Based Nanocomposites Reinforced with Bimodal Micro- and Nano-Sized Al2O3 Particles Produced by Spark Plasma Sintering. Matls. Perf. Charact. 2018, 7, 20180039. doi:10.1520/MPC20180039
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Sanayei, M.; Szpunar, J. A. Microstructural Behaviour of Spark Plasma Sintered Composites Containing Bimodal Micro- and Nano-Sized Al2O3 Particles. Powder Metall. 2018, 61, 50–63. doi:10.1080/00325899.2017.1391504
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Rizzo, A. Friction Stir Processing of Spark Plasma Sintered Aluminum Matrix Composites with Bimodal Micro- and Nano-Sized Reinforcing Al 2 O 3 Particles. J. Manuf. Processes 2018, 32, 412–424. doi:10.1016/j.jmapro.2018.03.013
  • Ma, E. Instabilities and Ductility of Nanocrystalline and Ultrafine-Grained Metals. Scr. Mater. 2003, 49, 663–668. doi:10.1016/S1359-6462(03)00396-8
  • Liu, Z. Y.; Ma, K.; Fan, G. H.; Zhao, K.; Zhang, J. F.; Xiao, B. L.; Ma, Z. Y. Enhancement of the Strength-Ductility Relationship for Carbon Nanotube/Al–Cu–Mg Nanocomposites by Material Parameter Optimisation. Carbon 2020, 157, 602–613. doi:10.1016/j.carbon.2019.10.080
  • Han, B.; Huang, J.; Zhu, Y.; Lavernia, E. Strain Rate Dependence of Properties of Cryomilled Bimodal 5083 Al Alloys. Acta Mater. 2006, 54, 3015–3024. doi:10.1016/j.actamat.2006.02.045
  • Witkin, D. B.; Lavernia, E. J. Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling. Prog. Mater. Sci. 2006, 51, 1–60. doi:10.1016/j.pmatsci.2005.04.004
  • Wang, M.; Li, Y.; Chen, B.; Shi, D.; Umeda, J.; Kondoh, K.; Shen, J. The Rate-Dependent Mechanical Behavior of CNT-Reinforced Aluminum Matrix Composites under Tensile Loading. Mater. Sci. Eng. A 2021, 808, ) 140893. doi:10.1016/j.msea.2021.140893
  • Kallip, K.; Babu, N. K.; AlOgab, K. A.; Kollo, L.; Maeder, X.; Arroyo, Y.; Leparoux, M. Microstructure and Mechanical Properties of near Net Shaped Aluminium/Alumina Nanocomposites Fabricated by Powder Metallurgy. J. Alloys Compd. 2017, 714, 133–143. doi:10.1016/j.jallcom.2017.04.233
  • Yuan, C.; Zhang, Z.; Tan, Z.; Xu, L.; Zhang, S.; Fan, G.; Zhang, P.; Li, Z. Enhanced Ductility by Mg Addition in the CNT/Al-Cu Composites via Flake Powder Metallurgy. Mater. Today Commun. 2021, 26, 101854. doi:10.1016/j.mtcomm.2020.101854
  • Rong, X.; Zhang, X.; Zhao, D.; He, C.; Shi, C.; Liu, E.; Zhao, N. In-Situ Al2O3-Al Interface Contribution towards the Strength-Ductility Synergy of Al-CuO Composite Fabricated by Solid-State Reactive Sintering. Scr. Mater. 2021, 198, 113825. doi:10.1016/j.scriptamat.2021.113825
  • Sadeghi, B.; Cavaliere, P. Effect of Bimodal Grain Structure on the Microstructural and Mechanical Evolution of Al-Mg/CNTs Composite. Metals 2021, 11, 1524. doi:10.3390/met11101524
  • Fan, H.; Wang, Q.; El-Awady, J. A.; Raabe, D.; Zaiser, M. Strain Rate Dependency of Dislocation Plasticity. Nat. Commun. 2021, 12, 1845. doi:10.1038/s41467-021-21939-1
  • Zheng, J.-H.; Pruncu, C.; Zhang, K.; Zheng, K.; Jiang, J. Quantifying Geometrically Necessary Dislocation Density during Hot Deformation in AA6082 Al Alloy. Mater. Sci. Eng. A 2021, 814, 141158. doi:10.1016/j.msea.2021.141158
  • Vajpai, S. K.; Ota, M.; Watanabe, T.; Maeda, R.; Sekiguchi, T.; Kusaka, T.; Ameyama, K. The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution. Metall. Mat. Trans A 2015, 46, 903–914. doi:10.1007/s11661-014-2649-7
  • Witkin, D.; Lee, Z.; Rodriguez, R.; Nutt, S.; Lavernia, E. Al–Mg Alloy Engineered with Bimodal Grain Size for High Strength and Increased Ductility. Scr. Mater. 2003, 49, 297–302. doi:10.1016/S1359-6462(03)00283-5
  • Ma, K.; Liu, Z. Y.; Bi, S.; Zhang, X. X.; Xiao, B. L.; Ma, Z. Y. Microstructure Evolution and Hot Deformation Behavior of Carbon Nanotube Reinforced 2009Al Composite with Bimodal Grain Structure. J. Mater. Sci. Technol. 2021, 70, 73–82. doi:10.1016/j.jmst.2020.09.003
  • Fu, X.; Yu, Z.; Tan, Z.; Fan, G.; Li, P.; Wang, M.; Xiong, D.-B.; Li, Z. Enhanced Strain Hardening by Bimodal Grain Structure in Carbon Nanotube Reinforced Al–Mg Composites. Mater. Sci. Eng. A 2021, 803, 140726. doi:10.1016/j.msea.2020.140726
  • Salama, E. I.; Abbas, A.; Esawi, A. M. Preparation and Properties of Dual-Matrix Carbon Nanotube-Reinforced Aluminum Composites. Compos. Part A Appl. Sci. Manufact. 2017, 99, 84–93. doi:10.1016/j.compositesa.2017.04.002
  • Wang, Y. M.; Ma, E.; Chen, M. W. Enhanced Tensile Ductility and Toughness in Nanostructured Cu. Appl. Phys. Lett. 2002, 80, 2395–2397. doi:10.1063/1.1465528
  • Ye, J.; Han, B. Q.; Lee, Z.; Ahn, B.; Nutt, S. R.; Schoenung, J. M. A Tri-Modal Aluminum Based Composite with Super-High Strength. Scr. Mater. 2005, 53, 481–486. doi:10.1016/j.scriptamat.2005.05.004
  • Ye, J.; Han, B. Q.; Tang, F.; Schoenung, J. M. Mechanical Behavior of a Tri-Modal Al Matrix Composite. MRS Proc. 2005, 880, BB1.5. doi:10.1557/PROC-880-BB1.5
  • Li, Y.; Zhao, Y. H.; Ortalan, V.; Liu, W.; Zhang, Z. H.; Vogt, R. G.; Browning, N. D.; Lavernia, E. J.; Schoenung, J. M. Investigation of Aluminum-Based Nanocomposites with Ultra-High Strength. Mater. Sci. Eng. A 2009, 527, 305–316. doi:10.1016/j.msea.2009.07.067
  • Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405. doi:10.1016/j.msea.2014.12.102
  • Yao, B.; Hofmeister, C.; Patterson, T.; Sohn, Y-h.; den Bergh, M. v.; Delahanty, T.; Cho, K. Microstructural Features Influencing the Strength of Trimodal Aluminum Metal-Matrix-Composites. Compos. Part A Appl. Sci. Manufact. 2010, 41, 933–941. doi:10.1016/j.compositesa.2010.02.013
  • Orlov, D.; Ameyama, K. Critical Assesment 37. Harmonic-Structure Materials - Idea, Status and Perspectives. Mater. Sci. Technol. 2020, 36, 517–526. doi:10.1080/02670836.2020.1719306
  • Sharma, B.; Dirras, G.; Ameyama, K. Harmonic Structure Design: A Strategy for Outstanding Mechanical Properties in Structural Materials. Metals 2020, 10, 1615. doi:10.3390/met10121615
  • Vajpai, S. K.; Ota, M.; Zhang, Z.; Ameyama, K. Three-Dimensionally Gradient Harmonic Structure Design: An Integrated Approach for High Performance Structural Materials. Mater. Res. Lett. 2016, 4, 191–197. doi:10.1080/21663831.2016.1218965
  • Li, G.; Liu, M.; Lyu, S.; Nakatani, M.; Zheng, R.; Ma, C.; Li, Q.; Ameyama, K. Simultaneously Enhanced Strength and Strain Hardening Capacity in FeMnCoCr High-Entropy Alloy via Harmonic Structure Design. Scr. Mater. 2021, 191, 196–201. doi:10.1016/j.scriptamat.2020.09.036
  • Höppel, H.; Korn, M.; Lapovok, R.; Mughrabi, H. Bimodal Grain Size Distributions in UFG Materials Produced by SPD: Their Evolution and Effect on Mechanical Properties. J. Phys.: Conf. Ser. 2010, 240, 012147. doi:10.1088/1742-6596/240/1/012147
  • Orlov, D.; Kulagin, R.; Beygelzimer, Y. Strain Partitioning and Back-Stress Evaluation in Harmonic-Structure Materials. Mater. Lett. 2020, 275, 128126. doi:10.1016/j.matlet.2020.128126
  • Ueno, A.; Fujiwara, H.; Rifai, M.; Zhang, Z.; Ameyama, K. Fractographical Analysis on Fracture Mechanism of Stainless Steel Having Harmonic Microstructure. J. Soc. Mat. Sci., Japan 2012, 61, 686–691. doi:10.2472/jsms.61.686
  • Osaki, K.; Kikuchi, S.; Nakai, Y.; Kawabata, M. O.; Ameyama, K. The Effects of Thermo-Mechanical Processing on Fatigue Crack Propagation in Commercially Pure Titanium with a Harmonic Structure. Mater. Sci. Eng. A 2020, 773, 138892. doi:10.1016/j.msea.2019.138892
  • Liu, Z.; Meyers, M. A.; Zhang, Z.; Ritchie, R. O. Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications. Prog. Mater. Sci. 2017, 88, 467–498. doi:10.1016/j.pmatsci.2017.04.013
  • Lu, F.; Nie, J.; Ma, X.; Li, Y.; Jiang, Z.; Zhang, Y.; Zhao, Y.; Liu, X. Simultaneously Improving the Tensile Strength and Ductility of the AlNp/Al Composites by the Particle's Hierarchical Structure with Bimodal Distribution and Nano-Network. Mater. Sci. Eng. A 2020, 770, 138519. doi:10.1016/j.msea.2019.138519
  • Wu, H.; Huang, M.; Li, Q.; Wu, J.; Li, J.; Wang, Z.; Fan, G. Manipulating the Plastic Strain Delocalization through Ultra-Thinned Hierarchical Design for Strength-Ductility Synergy. Scr. Mater. 2019, 172, 165–170. doi:10.1016/j.scriptamat.2019.07.034
  • Lu, K. Materials science. The future of metals. Science 2010, 328, 319–320. doi:10.1126/science.1185866
  • Ma, X.; Zhao, Y. F.; Tian, W. J.; Qian, Z.; Chen, H. W.; Wu, Y. Y.; Liu, X. F. A Novel Al Matrix Composite Reinforced by nano-AlNp Network. Sci. Rep. 2016, 6, 34919. doi:10.1038/srep34919
  • You, Z.; Li, X.; Gui, L.; Lu, Q.; Zhu, T.; Gao, H.; Lu, L. Plastic Anisotropy and Associated Deformation Mechanisms in Nanotwinned Metals. Acta Mater. 2013, 61, 217–227. doi:10.1016/j.actamat.2012.09.052
  • Fu, H.; Ge, B.; Xin, Y.; Wu, R.; Fernandez, C.; Huang, J.; Peng, Q. Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins. Nano Lett. 2017, 17, 6117–6124. doi:10.1021/acs.nanolett.7b02641
  • Habibi, M. K.; Joshi, S. P.; Gupta, M. Hierarchical Magnesium Nano-Composites for Enhanced Mechanical Response. Acta Mater. 2010, 58, 6104–6114. doi:10.1016/j.actamat.2010.07.028
  • Valiev, R.; Langdon, T. Report of International NanoSPD Steering Committee and Statistics on Recent NanoSPD Activities. IOP Conf. Ser.: Mater. Sci. Eng. 2014, 63, 011002. doi:10.1088/1757-899X/63/1/011002
  • Zheng, R.; Liu, M.; Zhang, Z.; Ameyama, K.; Ma, C. Towards Strength-Ductility Synergy through Hierarchical Microstructure Design in an Austenitic Stainless Steel. Scr. Mater. 2019, 169, 76–81. doi:10.1016/j.scriptamat.2019.05.017
  • Zhu, L.; Qu, S.; Guo, X.; Lu, J. Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model. J. Mech. Phys. Solids 2015, 76, 162–179. doi:10.1016/j.jmps.2014.12.001
  • Hashin, Z.; Shtrikman, S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. J. Mech. Phys. Solids 1963, 11, 127–140. doi:10.1016/0022-5096(63)90060-7
  • Zhang, H.; Zeng, Y.; Zhang, H.; Guo, F. Computational Investigation of the Effective Thermal Conductivity of Interpenetrating Network Composites. J. Compos. Mater. 2010, 44, 1247–1260.
  • Li, S.; Xiong, D.; Liu, M.; Bai, S.; Zhao, X. Thermophysical Properties of SiC/Al Composites with Three Dimensional Interpenetrating Network Structure. Ceram. Int. 2014, 40, 7539–7544. doi:10.1016/j.ceramint.2013.12.105
  • Poletti, C.; Balog, M.; Simancik, F.; Degischer, H. P. High-Temperature Strength of Compacted Sub-Micrometer Aluminium Powder. Acta Mater. 2010, 58, 3781–3789. doi:10.1016/j.actamat.2010.03.021
  • Cavaliere, P.; Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F. Al-Based Nanocomposites Produced via Spark Plasma Sintering: Effect of Processing Route and Reinforcing Phases. In Spark Plasma Sintering of Materials: Advances in Processing and Applications, P. Cavaliere, Ed., Springer International Publishing: Cham, 2019, pp. 161–190.
  • Huang, L.; An, Q.; Geng, L.; Wang, S.; Jiang, S.; Cui, X.; Zhang, R.; Sun, F.; Jiao, Y.; Chen, X.; Wang, C. Multiscale Architecture and Superior High‐Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Adv. Mater. 2021, 33, 2000688. doi:10.1002/adma.202000688
  • Huang, L. J.; Geng, L.; Li, A.; Yang, F.; Peng, H. In Situ TiBw/Ti–6Al–4V Composites with Novel Reinforcement Architecture Fabricated by Reaction Hot Pressing. Scr. Mater. 2009, 60, 996–999. doi:10.1016/j.scriptamat.2009.02.032
  • Kaveendran, B.; Wang, G. S.; Huang, L. J.; Geng, L.; Peng, H. X. In Situ (Al3Zr + Al2O3np)/2024Al Metal Matrix Composite with Novel Reinforcement Distributions Fabricated by Reaction Hot Pressing. J. Alloys Compd. 2013, 581, 16–22. doi:10.1016/j.jallcom.2013.06.143
  • Balog, M.; Hu, T.; Krizik, P.; Castro Riglos, M. V.; Saller, B. D.; Yang, H.; Schoenung, J. M.; Lavernia, E. J. On the Thermal Stability of Ultrafine-Grained Al Stabilized by in-Situ Amorphous Al2O3 Network. Mater. Sci. Eng. A 2015, 648, 61–71. doi:10.1016/j.msea.2015.09.037
  • Gao, H.; Ji, B.; Jäger, I. L.; Arzt, E.; Fratzl, P. Materials Become Insensitive to Flaws at Nanoscale: lessons from Nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597–5600. doi:10.1073/pnas.0631609100
  • Shao, C. W.; Zhang, P.; Zhu, Y. K.; Zhang, Z. J.; Tian, Y. Z.; Zhang, Z. F. Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening from Gradient Microstructure. Acta Mater. 2018, 145, 413–428. doi:10.1016/j.actamat.2017.12.028
  • Zhao, J.; Lu, X.; Yuan, F.; Kan, Q.; Qu, S.; Kang, G.; Zhang, X. Multiple Mechanism Based Constitutive Modeling of Gradient Nanograined Material. Int. J. Plast. 2020, 125, 314–330. doi:10.1016/j.ijplas.2019.09.018
  • Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical Properties of Nanocrystalline Materials. Prog. Mater. Sci. 2006, 51, 427–556. doi:10.1016/j.pmatsci.2005.08.003
  • Wu, X. L.; Jiang, P.; Chen, L.; Zhang, J. F.; Yuan, F. P.; Zhu, Y. T. Synergetic Strengthening by Gradient Structure. Mater. Res. Lett. 2014, 2, 185–191. doi:10.1080/21663831.2014.935821
  • Suresh, S. Graded Materials for Resistance to Contact Deformation and Damage. Science 2001, 292, 2447–2451. doi:10.1126/science.1059716
  • Bever, M. B.; Duwez, P. E. Gradients in Composite Materials. Mater. Sci. Eng. B 1972, 10, 1–8. doi:10.1016/0025-5416(72)90059-6
  • Hu, S.; Hou, L.; Wang, K.; Liao, Z.; Fautrelle, Y.; Li, W.; Li, X. Formation Mechanism of Gradient Structure of Aluminum Matrix Composite under Static Magnetic Field during Directional Solidification. J. Mater. Res. Technol. 2020, 9, 4459–4468. doi:10.1016/j.jmrt.2020.02.072
  • Wu, C.; Shi, R.; Zhang, J.; Luo, G.; Shen, Q.; Gan, Z.; Liu, J.; Zhang, L. Synthesis of Functionally Graded AA7075-B4C Composite with Multi-Level Gradient Structure. Ceram. Int. 2019, 45, 7761–7766. doi:10.1016/j.ceramint.2019.01.080
  • Wu, X.; Zhu, Y. Gradient and Lamellar Heterostructures for Superior Mechanical Properties. MRS Bull. 2021, 46, 244–249. doi:10.1557/s43577-021-00056-w
  • Zhan, K.; Wu, Y.; Li, J.; Zhao, B.; Yan, Y.; Xie, L.; Wang, L.; Ji, V. Investigation on Surface Layer Characteristics of Shot Peened Graphene Reinforced Al Composite by X-Ray Diffraction Method. Appl. Surf. Sci. 2018, 435, 1257–1264. doi:10.1016/j.apsusc.2017.11.242
  • Sanamar, S.; Brokmeier, H.-G.; Schell, N. Texture Gradient in a Rectangular Extruded Al60Mg40 Metal Matrix Composite. Metals 2019, 9, 167. doi:10.3390/met9020167
  • Wang, Z. J.; Qiu, Z. X.; Sun, H. Y.; Liu, W. C. Effect of TiC Content on the Microstructure, Texture and Mechanical Properties of 1060/Al–TiC/1060 Laminated Composites. J. Alloys Compd. 2019, 806, 788–797. doi:10.1016/j.jallcom.2019.07.317
  • Li, S.; Yang, L.; Qin, N. Development of through-Thickness Texture Gradient and Persistence of Shear-Type Textures during Annealing of Commercial Purity Aluminium Sheet Processed by Accumulative Roll-Bonding. J. Mater. Sci. Technol. 2018, 34, 821–831. doi:10.1016/j.jmst.2017.04.019
  • Sadeghi, B.; Cavaliere, P.; Roeen, G. A.; Nosko, M.; Shamanian, M.; Trembošová, V.; Nagy, Š.; Ebrahimzadeh, N. Hot Rolling of MWCNTs Reinforced Al Matrix Composites Produced via Spark Plasma Sintering. Adv. Compos. Hybrid Mater. 2019, 2, 549–570. doi:10.1007/s42114-019-00095-7
  • Cavaliere, P.; Jahantigh, F.; Shabani, A.; Sadeghi, B. Influence of SiO2 Nanoparticles on the Microstructure and Mechanical Properties of Al Matrix Nanocomposites Fabricated by Spark Plasma Sintering. Compos. Part B Eng. 2018, 146, 60–68. doi:10.1016/j.compositesb.2018.03.045
  • Hirosawa, E. Fiber Textures of Extruded Aluminum Alloy Rod. Trans. JIM 1964, 5, 235–237. doi:10.2320/matertrans1960.5.235
  • Mokdad, F.; Chen, D. L.; Liu, Z. Y.; Xiao, B. L.; Ni, D. R.; Ma, Z. Y. Deformation and Strengthening Mechanisms of a Carbon Nanotube Reinforced Aluminum Composite. Carbon 2016, 104, 64–77. doi:10.1016/j.carbon.2016.03.038
  • Wang, J.; Misra, A. An Overview of Interface-Dominated Deformation Mechanisms in Metallic Multilayers. Curr. Opin. Solid State Mater. Sci. 2011, 15, 20–28. doi:10.1016/j.cossms.2010.09.002
  • Misra, A.; Hirth, J. P.; Kung, H. Single-Dislocation-Based Strengthening Mechanisms in Nanoscale Metallic Multilayers. Philos. Mag. A 2002, 82, 2935–2951. doi:10.1080/01418610208239626
  • Wang, J.; Misra, A. Strain Hardening in Nanolayered Thin Films, Current Opinion in Solid State and Mater. Sci. 2014, 18, 19–28. doi:10.1016/j.cossms.2013.10.003
  • Shao, S.; Zhou, C.; Misra, A.; Wang, J. Mesoscale Modeling of Dislocation-Interactions in Multilayered Materials. In Handbook of Materials Modeling: Methods: Theory and Modeling, W. Andreoni and S. Yip, Eds., Springer International Publishing: Cham, 2018, pp. 1–30.
  • Wadsworth, J.; Lesuer, D. R. Ancient and Modern Laminated Composites—from the Great Pyramid of Gizeh to Y2K. Mater. Charact. 2000, 45, 289–313. doi:10.1016/S1044-5803(00)00077-2
  • Chawla, N.; Singh, D.; Shen, Y.-L.; Tang, G.; Chawla, K. Indentation Mechanics and Fracture Behavior of Metal/Ceramic Nanolaminate Composites. J. Mater. Sci. 2008, 43, 4383–4390. doi:10.1007/s10853-008-2450-3
  • Wang, J.; Zhou, Q.; Shao, S.; Misra, A. Strength and Plasticity of Nanolaminated Materials. Mater. Res. Lett. 2017, 5, 1–19. doi:10.1080/21663831.2016.1225321
  • Tang, G.; Shen, Y. L.; Singh, D. R. P.; Chawla, N. Indentation Behavior of Metal–Ceramic Multilayers at the Nanoscale: Numerical Analysis and Experimental Verification. Acta Mater. 2010, 58, 2033–2044. doi:10.1016/j.actamat.2009.11.046
  • Abbasi, M.; Sajjadi, S. A. Mechanical Properties and Interface Evaluation of Al/AZ31 Multilayer Composites Produced by ARB at Different Rolling Temperatures. J. Mater. Eng. Perform. 2018, 27, 3508–3520. doi:10.1007/s11665-018-3423-6
  • Duan, J. Q.; Quadir, M. Z.; Xu, W.; Kong, C.; Ferry, M. Texture Balancing in a Fcc/Bcc Multilayered Composite Produced by Accumulative Roll Bonding. Acta Mater. 2017, 123, 11–23. doi:10.1016/j.actamat.2016.10.023
  • Magalhães, D. C. C.; Sordi, V. L.; Kliauga, A. M. Microstructure Evolution of Multilayered Composite Sheets of AA1050/AA7050 Al Alloys Produced by Asymmetric Accumulative Roll-Bonding. Mater. Charact. 2020, 162, 110226. doi:10.1016/j.matchar.2020.110226
  • Shi, Y.; Lu, Y.; Ni, Z.; Zhao, L.; Li, Z.; Xiong, D.-B.; Zou, J.; Guo, Q. Correlation between Microstructural Architecture and Mechanical Behavior of Single-Walled Carbon Nanotube-Aluminum Composites. Metall. Mater. Trans. A 2020, 51, 545–551. doi:10.1007/s11661-019-05554-w
  • Vogel, T.; Ma, S.; Liu, Y.; Guo, Q.; Zhang, D. Impact of Alumina Content and Morphology on the Mechanical Properties of Bulk Nanolaminated Al2O3-Al Composites. Compos. Commun. 2020, 22, 100462. doi:10.1016/j.coco.2020.100462
  • Shi, Y.; Zhao, L.; Li, Z.; Li, Z.; Xiong, D.-B.; Su, Y.; Osovski, S.; Guo, Q. Strengthening and Deformation Mechanisms in Nanolaminated Single-Walled Carbon Nanotube-Aluminum Composites. Mater. Sci. Eng. A 2019, 764, 138273. doi:10.1016/j.msea.2019.138273
  • Zhao, L.; Guo, Q.; Shi, Y.; Liu, Y.; Osovski, S.; Li, Z.; Xiong, D.-B.; Su, Y.; Zhang, D. Interfacial Effect on the Deformation Mechanism of Bulk Nanolaminated Graphene-Al Composites. Metall. Mat. Trans A 2019, 50, 1113–1118. doi:10.1007/s11661-018-05108-6
  • Liu, J.; Fan, G.; Tan, Z.; Guo, Q.; Su, Y.; Li, Z.; Xiong, D.-B. Mechanical Properties and Failure Mechanisms at High Temperature in Carbon Nanotube Reinforced Copper Matrix Nanolaminated Composite. Compos. Part A Appl. Sci. Manufact. 2019, 116, 54–61. doi:10.1016/j.compositesa.2018.10.022
  • Zhao, M.; Xiong, D.-B.; Tan, Z.; Fan, G.; Guo, Q.; Guo, C.; Li, Z.; Zhang, D. Lateral Size Effect of Graphene on Mechanical Properties of Aluminum Matrix Nanolaminated Composites. Scr. Mater. 2017, 139, 44–48. doi:10.1016/j.scriptamat.2017.06.018
  • Fu, X.; Li, Z.; Guo, Q.; Fan, G.; Li, Z.; Xiong, D.-B.; Tan, Z.; Su, Y.; Osovski, S.; Zhang, D. Orientation-Dependent Tensile Behavior of Nanolaminated Graphene-Al Composites: An in Situ Study. Metall. Mat. Trans A 2018, 49, 5229–5234. doi:10.1007/s11661-018-4872-0
  • Launey, M. E.; Munch, E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. A Novel Biomimetic Approach to the Design of high-performance ceramic-metal composites. J. R. Soc. Interface 2010, 7, 741–753. doi:10.1098/rsif.2009.0331
  • Bouville, F.; Maire, E.; Meille, S.; Van de Moortèle, B.; Stevenson, A. J.; Deville, S. Strong, Tough and Stiff Bioinspired Ceramics from Brittle Constituents. Nat. Mater. 2014, 13, 508–514. doi:10.1038/nmat3915
  • Wang, J.; Cheng, Q.; Tang, Z. Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre. Chem. Soc. Rev. 2012, 41, 1111–1129. doi:10.1039/c1cs15106a
  • Guo, N.; Luan, B.; He, F.; Li, Z.; Liu, Q. Influence of Flake Thickness on the Shape and Distribution of Al2O3 Particles in Al Matrix Composites Fabricated by Flake Powder Metallurgy. Scr. Mater. 2014, 78-79, 1–4. doi:10.1016/j.scriptamat.2013.12.019
  • Chen, X.; Zhang, B.; Zou, Q.; Huang, G.; Liu, S.; Zhang, J.; Tang, A.; Jiang, B.; Pan, F. Design of Pure Aluminum Laminates with Heterostructures for Extraordinary Strength-Ductility Synergy. J. Mater. Sci. Technol. 2022, 100, 193–205. doi:10.1016/j.jmst.2021.05.030
  • Sadeghi, B.; Cavaliere, P. Progress of Flake Powder Metallurgy Research. Metals 2021, 11, 931. doi:10.3390/met11060931
  • Fan, G. L.; Xu, R.; Tan, Z. Q.; Zhang, D.; Li, Z. Q. Development of Flake Powder Metallurgy in Fabricating Metal Matrix Composites: A Review. Acta Metall. Sin. (Engl. Lett.) 2014, 27, 806–815. doi:10.1007/s40195-014-0148-x
  • Weng, S.; Ning, H.; Fu, T.; Hu, N.; Zhao, Y.; Huang, C.; Peng, X. Molecular Dynamics Study of Strengthening Mechanism of Nanolaminated Graphene/Cu Composites under Compression. Sci. Rep. 2018, 8, 3089. doi:10.1038/s41598-018-21390-1
  • Ma, X. L.; Huang, C. X.; Xu, W. Z.; Zhou, H.; Wu, X. L.; Zhu, Y. T. Strain Hardening and Ductility in a Coarse-Grain/Nanostructure Laminate Material. Scr. Mater. 2015, 103, 57–60. doi:10.1016/j.scriptamat.2015.03.006
  • Zhang, D. L. Processing of Advanced Materials Using High-Energy Mechanical Milling. Prog. Mater. Sci. 2004, 49, 537–560. doi:10.1016/S0079-6425(03)00034-3
  • Razavi-Tousi, S.; Szpunar, J. Microstructural Evolution and Grain Subdivision Mechanisms during Severe Plastic Deformation of Aluminum Particles by Ball Milling. Philos. Mag. 2015, 95, 1425–1447. doi:10.1080/14786435.2015.1033028
  • Ma, K. K.; Wen, H. M.; Hu, T.; Topping, T. D.; Isheim, D.; Seidman, D. N.; Lavernia, E. J.; Schoenung, J. M. Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy. Acta Mater. 2014, 62, 141–155. doi:10.1016/j.actamat.2013.09.042
  • Yoon, S.-C.; Seo, M.-H.; Hong, S.-I.; Kim, H.-S. Powder Densification Using Equal Channel Angular Pressing. J. Korean Powder Metall. Inst. 2006, 13, 124–128.
  • Silveira, A. D.; Mendonça e Silva, L. P.; Oliveira, T. C. D.; Castro, M. M.; Figueiredo, R. B.; Bolfarini, C.; Botta, W. J.; Wolf, W. Al-Matrix Composites Reinforced with Quasicrystals Consolidated at Room Temperature Using HPT. Mater. Lett. 2022, 317, 132107. doi:10.1016/j.matlet.2022.132107
  • Bachmaier, A.; Pippan*, R. Generation of Metallic Nanocomposites by Severe Plastic Deformation. Int. Mater. Rev. 2013, 58, 41–62. doi:10.1179/1743280412Y.0000000003
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P. FSW of Bimodal Reinforced Al-Based Composites Produced via Spark Plasma Sintering. Int. J. Mater. Res. 2017, 108, 1045–1054. doi:10.3139/146.111573
  • Choi, H.; Kwon, G.; Lee, G.; Bae, D. Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites. Scr. Mater. 2008, 59, 360–363. doi:10.1016/j.scriptamat.2008.04.006
  • Cavaliere, P.; Sadeghi, B.; Shabani, A. Carbon Nanotube Reinforced Aluminum Matrix Composites Produced by Spark Plasma Sintering. J. Mater. Sci. 2017, 52, 8618–8629. doi:10.1007/s10853-017-1086-6
  • Zan, Y. N.; Zhang, Q.; Zhou, Y. T.; Liu, Z. Y.; Wang, Q. Z.; Wang, D.; Xiao, B. L.; Ren, W. C.; Ma, Z. Y. Introducing Graphene (Reduced Graphene Oxide) into Al Matrix Composites for Enhanced High-Temperature Strength. Compos. Part B Eng. 2020, 195, 108095. doi:10.1016/j.compositesb.2020.108095
  • Fan, G.; Jiang, Y.; Tan, Z.; Guo, Q.; Xiong, D-b.; Su, Y.; Lin, R.; Hu, L.; Li, Z.; Zhang, D. Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy. Carbon 2018, 130, 333–339. doi:10.1016/j.carbon.2018.01.037
  • Jiang, Y.; Wang, D.; Liang, S.; Cao, F.; Zou, J.; Xiao, P. Effect of Local Alloying on Interfacial Bonding in Laminated Copper Matrix Composites Reinforced by Carbon Nanotubes. Mater. Sci. Eng. A 2019, 748, 173–179. doi:10.1016/j.msea.2019.01.013
  • Liu, X.; Li, C.; Eckert, J.; Prashanth, K. G.; Renk, O.; Teng, L.; Liu, Y.; Bao, R.; Tao, J.; Shen, T.; Yi, J. Microstructure Evolution and Mechanical Properties of Carbon Nanotubes Reinforced Al Matrix Composites. Mater. Charact. 2017, 133, 122–132. doi:10.1016/j.matchar.2017.09.036
  • Liu, Z. Y.; Xu, S. J.; Xiao, B. L.; Xue, P.; Wang, W. G.; Ma, Z. Y. Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites. Compos. Part A Appl. Sci. Manufact. 2012, 43, 2161–2168. doi:10.1016/j.compositesa.2012.07.026
  • Xu, R.; Tan, Z.; Xiong, D.; Fan, G.; Guo, Q.; Zhang, J.; Su, Y.; Li, Z.; Zhang, D. Balanced Strength and Ductility in CNT/Al Composites Achieved by Flake Powder Metallurgy via Shift-Speed Ball Milling. Compos. Part A Appl. Sci. Manufact. 2017, 96, 57–66. doi:10.1016/j.compositesa.2017.02.017
  • Naito, M.; Abe, H.; Kondo, A.; Yokoyama, T.; Huang, C. C. Smart Powder Processing for Advanced Materials. KONA 2009, 27, 130–143. doi:10.14356/kona.2009013
  • Chen, M.; Fan, G.; Tan, Z.; Xiong, D.; Guo, Q.; Su, Y.; Zhang, J.; Li, Z.; Naito, M.; Zhang, D. Design of an Efficient Flake Powder Metallurgy Route to Fabricate CNT/6061Al Composites. Mater. Design 2018, 142, 288–296. doi:10.1016/j.matdes.2018.01.044
  • Ramlakhan, M.; Wu, C. Y.; Watano, S.; Dave, R. N.; Pfeffer, R. Dry Particle Coating Using Magnetically Assisted Impaction Coating: modification of Surface Properties and Optimization of System and Operating Parameters. Powder Technol. 2000, 112, 137–148. doi:10.1016/S0032-5910(99)00314-9
  • Kita, T.; Nogi, K.; Nagai, H.; Kohno, M. 1997 Effect of Powder Treatment by Mechanofusion Process on Thermoelectric Properties of FeSi/Sub 2/System, XVI ICT'97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291), IEEE, pp. 311–314.
  • Dave, R.; Chen, W.; Mujumdar, A.; Wang, W.; Pfeffer, R. Numerical Simulation of Dry Particle Coating Processes by the Discrete Element Method. Adv. Powder Technol. 2003, 14, 449–470. doi:10.1163/156855203769710672
  • Alvarez, R. C.; Ageorges, H.; Fauchais, P.; Fournier, P.; Smith, A. The Effect of Mechanofusion Process and Planetary-Milling on Composite Powder Preparation: Agglomeration and Fragmentation. MSF Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland, 2003, 442, 67–72. doi:10.4028/www.scientific.net/MSF.442.67
  • Iwasaki, T.; Satoh, M.; Ito, T. Determination of Optimum Operating Conditions Based on Energy Requirements for Particle Coating in a Dry Process. Powder Technol. 2002, 123, 105–113. doi:10.1016/S0032-5910(01)00439-9
  • Han, X.; Ghoroi, C.; Davé, R. Dry Coating of Micronized API Powders for Improved Dissolution of Directly Compacted Tablets with High Drug Loading. Int. J. Pharm. 2013, 442, 74–85. doi:10.1016/j.ijpharm.2012.08.004
  • Ghoroi, C.; Han, X.; To, D.; Jallo, L.; Gurumurthy, L.; Davé, R. N. Dispersion of Fine and Ultrafine Powders through Surface Modification and Rapid Expansion. Chem. Eng. Sci. 2013, 85, 11–24. doi:10.1016/j.ces.2012.02.038
  • Jiang, L.; Fan, G. L.; Li, Z. Q.; Kai, X. Z.; Zhang, D.; Chen, Z. X.; Humphries, S.; Heness, G.; Yeung, W. Y. An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder. Carbon 2011, 49, 1965–1971. doi:10.1016/j.carbon.2011.01.021
  • Jiang, Y.; Tan, Z.; Fan, G.; Zhang, Z.; Xiong, D.-B.; Guo, Q.; Li, Z.; Zhang, D. Nucleation and Growth Mechanisms of Interfacial Carbide in Graphene Nanosheet/Al Composites. Carbon 2020, 161, 17–24. doi:10.1016/j.carbon.2020.01.032
  • Yoder, J. K.; Griffiths, R. J.; Yu, H. Z. Deformation-Based Additive Manufacturing of 7075 Aluminum with Wrought-like Mechanical Properties. Mater. Design 2021, 198, 109288. doi:10.1016/j.matdes.2020.109288
  • Parsons, E. M.; Shaik, S. Z. Additive Manufacturing of Aluminum Metal Matrix Composites: Mechanical Alloying of Composite Powders and Single Track Consolidation with Laser Powder Bed Fusion. Addit. Manuf. 2022, 50, 102450. doi:10.1016/j.addma.2021.102450
  • Mao, Z. N.; An, X. H.; Liao, X. Z.; Wang, J. T. Opposite Grain Size Dependence of Strain Rate Sensitivity of Copper at Low vs High Strain Rates. Mater. Sci. Eng. A 2018, 738, 430–438. doi:10.1016/j.msea.2018.09.018
  • Greer, J. R.; De Hosson, J. T. M. Plasticity in Small-Sized Metallic Systems: Intrinsic versus Extrinsic Size Effect. Prog. Mater. Sci. 2011, 56, 654–724. doi:10.1016/j.pmatsci.2011.01.005
  • Maaß, R.; Van Petegem, S.; Ma, D.; Zimmermann, J.; Grolimund, D.; Roters, F.; Van Swygenhoven, H.; Raabe, D. Smaller is Stronger: The Effect of Strain Hardening. Acta Mater. 2009, 57, 5996–6005. doi:10.1016/j.actamat.2009.08.024
  • Zhu, Y. T.; Liao, X. Z.; Wu, X. L.; Narayan, J. Grain Size Effect on Deformation Twinning and Detwinning. J. Mater. Sci. 2013, 48, 4467–4475. doi:10.1007/s10853-013-7140-0
  • Chang, F.; Gu, D. D.; Dai, D. H.; Yuan, P. P. Selective Laser Melting of in-Situ Al4SiC4 + SiC Hybrid Reinforced Al Matrix Composites: Influence of Starting SiC Particle Size. Surf. Coat. Technol. 2015, 272, 15–24. doi:10.1016/j.surfcoat.2015.04.029
  • Mussatto, A.; Ahad, I. U.; Mousavian, R. T.; Delaure, Y.; Brabazon, D. Advanced Production Routes for Metal Matrix Composites. Eng. Rep. 2021, 3, e12330. doi:10.1002/eng2.12330
  • Dadkhah, M.; Mosallanejad, M. H.; Iuliano, L.; Saboori, A. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 1173–1200. ). doi:10.1007/s40195-021-01249-7
  • Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive Manufacturing of 3D Nano-Architected Metals. Nat. Commun. 2018, 9, 1–8. doi:10.1038/s41467-018-03071-9
  • Chen, B.; Xi, X.; Tan, C.; Song, X. Recent Progress in Laser Additive Manufacturing of Aluminum Matrix Composites. Curr. Opin. Chem. Eng. 2020, 28, 28–35. doi:10.1016/j.coche.2020.01.005
  • Frazier, W. E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform 2014, 23, 1917–1928. doi:10.1007/s11665-014-0958-z
  • Gu, D.; Rao, X.; Dai, D.; Ma, C.; Xi, L.; Lin, K. Laser Additive Manufacturing of Carbon Nanotubes (CNTs) Reinforced Aluminum Matrix Nanocomposites: Processing Optimization, Microstructure Evolution and Mechanical Properties. Addit. Manuf. 2019, 29, 100801. doi:10.1016/j.addma.2019.100801
  • Jia, H.; Sun, H.; Wang, H.; Wu, Y.; Wang, H. Scanning Strategy in Selective Laser Melting (SLM): a Review. Int. J. Adv. Manuf. Technol. 2021, 113, 2413–2435. doi:10.1007/s00170-021-06810-3
  • Zhou, W.; Dong, M.; Zhou, Z.; Sun, X.; Kikuchi, K.; Nomura, N.; Kawasaki, A. In Situ Formation of Uniformly Dispersed Al4C3 Nanorods during Additive Manufacturing of Graphene Oxide/Al Mixed Powders. Carbon 2019, 141, 67–75. doi:10.1016/j.carbon.2018.09.057
  • Hu, Y. Recent Progress in Field-Assisted Additive Manufacturing: materials, Methodologies, and Applications. Mater. Horiz. 2021, 8, 885–911. doi:10.1039/D0MH01322F
  • Li, P.; Wang, Z.; Diao, M.; Guo, C.; Wang, J.; Zhao, C.; Jiang, F. Dynamic Recrystallization and Recovery in Very High‐Power Ultrasonic Additive Manufacturing. Adv. Eng. Mater. 2021, 23, 2000958. doi:10.1002/adem.202000958
  • Kong, C.; Soar, R. Fabrication of Metal–Matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process. Mater. Sci. Eng. A 2005, 412, 12–18. doi:10.1016/j.msea.2005.08.041
  • Hu, Y.; Ning, F.; Cong, W.; Li, Y.; Wang, X.; Wang, H. Ultrasonic Vibration-Assisted Laser Engineering Net Shaping of ZrO2-Al2O3 Bulk Parts: Effects on Crack Suppression, Microstructure, and Mechanical Properties. Ceram. Int. 2018, 44, 2752–2760. doi:10.1016/j.ceramint.2017.11.013
  • Ning, F.; Hu, Y.; Liu, Z.; Cong, W.; Li, Y.; Wang, X. Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: A Feasibility Study. Proc. Manuf. 2017, 10, 771–778. doi:10.1016/j.promfg.2017.07.074
  • Wang, B.; Tan, D.; Lee, T. L.; Khong, J. C.; Wang, F.; Eskin, D.; Connolley, T.; Fezzaa, K.; Mi, J. Ultrafast Synchrotron X-Ray Imaging Studies of Microstructure Fragmentation in Solidification under Ultrasound. Acta Mater. 2018, 144, 505–515. doi:10.1016/j.actamat.2017.10.067
  • Gunduz, I.; McClain, M.; Cattani, P.; Chiu, G.-C.; Rhoads, J.; Son, S. 3D Printing of Extremely Viscous Materials Using Ultrasonic Vibrations. Addit. Manuf. 2018, 22, 98–103. doi:10.1016/j.addma.2018.04.029
  • Rathee, S.; Srivastava, M.; Maheshwari, S.; Kundra, T.; Siddiquee, A. N. Friction Based Additive Manufacturing Technologies: Principles for Building in Solid State, Benefits, Limitations, and Applications; Boca Raton, Florida: CRC Press 2018.
  • Srivastava, M.; Rathee, S.; Maheshwari, S.; Noor Siddiquee, A.; Kundra, T. A Review on Recent Progress in Solid State Friction Based Metal Additive Manufacturing: Friction Stir Additive Techniques. Crit. Rev. Solid State Mater. Sci. 2019, 44, 345–377. doi:10.1080/10408436.2018.1490250
  • Dixit, S.; Mahata, A.; Mahapatra, D. R.; Kailas, S. V.; Chattopadhyay, K. Multi-Layer Graphene Reinforced Aluminum – Manufacturing of High Strength Composite by Friction Stir Alloying. Compos. Part B Eng. 2018, 136, 63–71. doi:10.1016/j.compositesb.2017.10.028
  • Huang, S. H.; Liu, P.; Mokasdar, A.; Hou, L. Additive Manufacturing and Its Societal Impact: A Literature Review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. doi:10.1007/s00170-012-4558-5
  • Kumar Srivastava, A.; Kumar, N.; Rai Dixit, A. Friction Stir Additive Manufacturing – An Innovative Tool to Enhance Mechanical and Microstructural Properties. Mater. Sci. Eng. B 2021, 263, 114832. doi:10.1016/j.mseb.2020.114832
  • Rathee, S.; Srivastava, M.; Pandey, P. M.; Mahawar, A.; Shukla, S. Metal Additive Manufacturing Using Friction Stir Engineering: A Review on Microstructural Evolution, Tooling and Design Strategies. CIRP J. Manuf. Sci. Technol. 2021, 35, 560–588. doi:10.1016/j.cirpj.2021.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.