754
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Recent development of graphene-based composite for multifunctional applications: energy, environmental and biomedical sciences

, ORCID Icon, & ORCID Icon

References

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. doi:10.1126/science.1102896
  • Aissa, B.; Memon, N. K.; Ali, A.; Khraisheh, M. K. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review. Front. Mater. 2015, 2, 58. doi:10.3389/fmats.2015.00058
  • Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491–495. doi:10.1038/nnano.2008.199
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. doi:10.1016/j.ssc.2008.02.024
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. doi:10.1021/nl0731872
  • Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. Nat. Chem. 2009, 1, 403–408. doi:10.1038/nchem.281
  • Goenka, S.; Sant, V.; Sant, S. Graphene-Based Nanomaterials for Drug Delivery and Tissue Engineering. J. Control. Release 2014, 173, 75–88. doi:10.1016/j.jconrel.2013.10.017
  • Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. doi:10.1126/science.1156965
  • Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. doi:10.1038/nnano.2010.132
  • Yang, M.; Liu, Y.; Fan, T.; Zhang, D. Metal-Graphene Interfaces in Epitaxial and Bulk Systems: A Review. Prog. Mater. Sci. 2020, 110, 100652. doi:10.1016/j.pmatsci.2020.100652
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. doi:10.1126/science.1157996
  • Güler, Ö.; Bağcı, N. A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites. J. Mater. Res. Technol. 2020, 9, 6808–6833. doi:10.1016/j.jmrt.2020.01.077
  • Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523–527. doi:10.1038/nature02311
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. doi:10.1021/nl802558y
  • Gusynin, V.; Sharapov, S. Unconventional Integer Quantum Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 146801. doi:10.1103/PhysRevLett.95.146801
  • Zhang, L. L.; Zhou, R.; Zhao, X. Graphene-Based Materials as Supercapacitor Electrodes. J. Mater. Chem. 2010, 20, 5983–5992. doi:10.1039/c000417k
  • Kumar, R.; Sahoo, S.; Tan, W. K.; Kawamura, G.; Matsuda, A. Microwave-Assisted Thin Reduced Graphene Oxide-Cobalt Oxide Nanoparticles as Hybrids for Electrode Materials in Supercapacitor. J. Energy Storage 2021, 40, 102724. doi:10.1016/j.est.2021.102724
  • Kumar, R.; Youssry, S. M.; Soe, H. M.; Abdel-Galeil, M. M.; Kawamura, G.; Matsuda, A. Honeycomb-like Open-Edged Reduced-Graphene-Oxide-Enclosed Transition Metal Oxides (NiO/Co3O4) as Improved Electrode Materials for High-Performance Supercapacitor. J. Energy Storage 2020, 30, 101539. doi:10.1016/j.est.2020.101539
  • Li, N.; Chen, Z.; Ren, W.; Li, F.; Cheng, H.-M. Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17360–17365. doi:10.1073/pnas.1210072109
  • Tan, W. K.; Asami, K.; Maegawa, K.; Kumar, R.; Kawamura, G.; Muto, H.; Matsuda, A. Fe3O4-Embedded rGO Composites as Anode for Rechargeable FeOx-Air Batteries. Mater. Today Commun. 2020, 25, 101540. doi:10.1016/j.mtcomm.2020.101540
  • Yin, Z.; Zhu, J.; He, Q.; Cao, X.; Tan, C.; Chen, H.; Yan, Q.; Zhang, H. Graphene‐Based Materials for Solar Cell Applications. Adv. Energy Mater. 2014, 4, 1300574. doi:10.1002/aenm.201300574
  • Abdel-Galeil, M. M.; Kumar, R.; Matsuda, A.; El-Shater, R. E. Investigation on Influence of Thickness Variation Effect of TiO2 Film, Spacer and Counter Electrode for Improved Dye-Sensitized Solar Cells Performance. Optik 2021, 227, 166108. doi:10.1016/j.ijleo.2020.166108
  • Kumar, R.; Singh, R. K.; Singh, A. K.; Vaz, A. R.; Rout, C. S.; Moshkalev, S. A. Facile and Single Step Synthesis of Three Dimensional Reduced Graphene Oxide-NiCoO2 Composite Using Microwave for Enhanced Electron Field Emission Properties. Appl. Surf. Sci. 2017, 416, 259–265. doi:10.1016/j.apsusc.2017.04.189
  • Chen, L.; He, H.; Yu, H.; Cao, Y.; Lei, D.; Menggen, Q.; Wu, C.; Hu, L. Electron Field Emission Characteristics of Graphene/Carbon Nanotubes Hybrid Field Emitter. J. Alloys Compd. 2014, 610, 659–664. doi:10.1016/j.jallcom.2014.04.202
  • Kumar, R.; Singh, R. K.; Singh, D. P.; Vaz, A. R.; Yadav, R. R.; Rout, C. S.; Moshkalev, S. A. Synthesis of Self-Assembled and Hierarchical Palladium-CNTs-Reduced Graphene Oxide Composites for Enhanced Field Emission Properties. Mater. Des. 2017, 122, 110–117. doi:10.1016/j.matdes.2017.02.089
  • Chen, L.; Yu, H.; Zhong, J.; Wu, J.; Su, W. Graphene Based Hybrid/Composite for Electron Field Emission: A Review. J. Alloys Compd. 2018, 749, 60–84. doi:10.1016/j.jallcom.2018.03.100
  • Kumar, R.; Singh, R. K.; Vaz, A. R.; Yadav, R. M.; Rout, C. S.; Moshkalev, S. A. Synthesis of Reduced Graphene Oxide Nanosheet-Supported Agglomerated Cobalt Oxide Nanoparticles and Their Enhanced Electron Field Emission Properties. New J. Chem. 2017, 41, 8431–8436. doi:10.1039/C7NJ02101A
  • Arief, I.; Biswas, S.; Bose, S. Graphene Analogues as Emerging Materials for Screening Electromagnetic Radiations. Nano-Struct. Nano-Objects 2017, 11, 94–101. doi:10.1016/j.nanoso.2017.07.004
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.;Matsuda, A. Recent Progress on Carbon-Based Composite Materials for Microwave Electromagnetic Interference Shielding. Carbon 2021, 177, 304–331. doi:10.1016/j.carbon.2021.02.091
  • Kumar, R.; Alaferdov, A. V.; Singh, R. K.; Singh, A. K.; Shah, J.; Kotnala, R. K.; Singh, K.; Suda, Y.; Moshkalev, S. A. Self-Assembled Nanostructures of 3D Hierarchical Faceted-Iron Oxide Containing Vertical Carbon Nanotubes on Reduced Graphene Oxide Hybrids for Enhanced Electromagnetic Interface Shielding. Compos. B: Eng. 2019, 168, 66–76. doi:10.1016/j.compositesb.2018.12.047
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Moshkalev, S. A.; Matsuda, A. Heteroatom Doping of 2D Graphene Materials for Electromagnetic Interference Shielding: A Review of Recent Progress. Crit. Rev. Solid State Mater. Sci. 2022, 47, 570–619. doi:10.1080/10408436.2021.1965954
  • Naghdi, S.; Jaleh, B.; Eslamipanah, M.; Moradi, A.; Abdollahi, M.; Einali, N.; Rhee, K. Y. Graphene Family, and Their Hybrid Structures for Electromagnetic Interference Shielding Applications: Recent Trends and Prospects. J. Alloys Compd. 2022, 900, 163176. doi:10.1016/j.jallcom.2021.163176
  • Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y. Graphene Based Materials for Biomedical Applications. Mater. Today 2013, 16, 365–373. doi:10.1016/j.mattod.2013.09.004
  • Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R. Graphene Oxide: An Efficient Material and Recent Approach for Biotechnological and Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86, 173–197. doi:10.1016/j.msec.2018.01.004
  • Muñoz, R.; Singh, D. P.; Kumar, R.; Matsuda, A. Graphene Oxide for Drug Delivery and Cancer Therapy. In Nanostructured Polymer Composites for Biomedical Applications; Swain, S. K., Jawaid, M., Eds. Elsevier, Amsterdam, Netherlands, 2019; pp. 447–488. doi:10.1016/B978-0-12-816771-7.00023-5
  • Perreault, F.; De Faria, A. F.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. doi:10.1039/c5cs00021a
  • Kumar, R.; Macedo, W. C.; Singh, R. K.; Tiwari, V. S.; Constantino, C. J. L.; Matsuda, A.; Moshkalev, S. A. Nitrogen–Sulfur Co-Doped Reduced Graphene Oxide-Nickel Oxide Nanoparticle Composites for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2019, 2, 4626–4636. doi:10.1021/acsanm.9b01002
  • Garcés, L.; Mendoza, R.; Oliva, A. I.; Garcia, C. R.; Medina-Velazquez, D. Y.; Oliva, J. A Sustainable and Foldable Supercapacitor Made with Electrodes of Recycled Soda-Label/Graphene/ZnO:Ca and Its Mechanism for the Charge Storage. J. Energy Storage 2022, 51, 104601. doi:10.1016/j.est.2022.104601
  • Li, W.; Yang, W.; Wu, M.; Zhao, M.; Lu, X. Polydopamine-Coated Graphene for Supercapacitors with Improved Electrochemical Performances and Reduced Self-Discharge. Electrochim. Acta 2022, 426, 140776. doi:10.1016/j.electacta.2022.140776
  • Banavath, R.; Nemala, S. S.; Kim, S.-H.; Bohm, S.; Ansari, M. Z.; Mohapatra, D.; Bhargava, P. Industrially Scalable Exfoliated Graphene Nanoplatelets by High-Pressure Airless Spray Technique for High-Performance Supercapacitors. FlatChem 2022, 33, 100373. doi:10.1016/j.flatc.2022.100373
  • Kumar, R.; Joanni, E.; Sahoo, S.; Shim, J.-J.; Tan, W. K.; Matsuda, A.; Singh, R. K. An Overview of Recent Progress in Nanostructured Carbon-Based Supercapacitor Electrodes: From Zero to Bi-Dimensional Materials. Carbon 2022, 193, 298–338. doi:10.1016/j.carbon.2022.03.023
  • Song, S.; Shen, H.; Wang, Y.; Chu, X.; Xie, J.; Zhou, N.; Shen, J. Biomedical Application of Graphene: From Drug Delivery, Tumor Therapy, to Theranostics. Colloids Surf. B Biointerfaces 2020, 185, 110596. doi:10.1016/j.colsurfb.2019.110596
  • Syama, S.; Mohanan, P. V. Safety and Biocompatibility of Graphene: A New Generation Nanomaterial for Biomedical Application. Int. J. Biol. Macromol. 2016, 86, 546–555. doi:10.1016/j.ijbiomac.2016.01.116
  • Zhang, B.; Wang, Y.; Zhai, G. Biomedical Applications of the Graphene-Based Materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 953–964. doi:10.1016/j.msec.2015.12.073
  • Reina, G.; González-Domínguez, J. M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, Facts and Challenges for Graphene in Biomedical Applications. Chem. Soc. Rev. 2017, 46, 4400–4416. doi:10.1039/c7cs00363c
  • Ma, L.; Zhou, M.; He, C.; Li, S.; Fan, X.; Nie, C.; Luo, H.; Qiu, L.; Cheng, C. Graphene-Based Advanced Nanoplatforms and Biocomposites from Environmentally Friendly and Biomimetic Approaches. Green Chem. 2019, 21, 4887–4918. doi:10.1039/C9GC02266J
  • Wu, X.; Ding, S.-J.; Lin, K.; Su, J. A Review on the Biocompatibility and Potential Applications of Graphene in Inducing Cell Differentiation and Tissue Regeneration. J. Mater. Chem. B 2017, 5, 3084–3102. doi:10.1039/c6tb03067j
  • Biswas, M. C.; Islam, M. T.; Nandy, P. K.; Hossain, M. M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3, 889–911. doi:10.1021/acsmaterialslett.0c00550
  • Ghosal, K.; Sarkar, K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703. doi:10.1021/acsbiomaterials.8b00376
  • Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. doi:10.1021/acsbiomaterials.1c00875
  • Lin, Y.; Tian, Y.; Sun, H.; Hagio, T. Progress in Modifications of 3D Graphene-Based Adsorbents for Environmental Applications. Chemosphere 2021, 270, 129420. doi:10.1016/j.chemosphere.2020.129420
  • Li, Y.; Jiao, J.; Wu, Q.; Song, Q.; Xie, W.; Liu, B. Environmental Applications of Graphene Oxide Composite Membranes. Chin. Chem. Lett. 2022, 33, 5001–5012. doi:10.1016/j.cclet.2022.01.034
  • Liu, G.; Xiong, Z.; Yang, L.; Shi, H.; Fang, D.; Wang, M.; Shao, P.; Luo, X. Electrochemical Approach toward Reduced Graphene Oxide-Based Electrodes for Environmental Applications: A Review. Sci. Total Environ. 2021, 778, 146301. doi:10.1016/j.scitotenv.2021.146301
  • Abu-Nada, A.; McKay, G.; Abdala, A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials 2020, 10, 595. doi:10.3390/nano10030595
  • Yang, W.; Pan, M.; Huang, C.; Zhao, Z.; Wang, J.; Zeng, H. Graphene Oxide‐Based Noble‐Metal Nanoparticles Composites for Environmental Application. Compos. Commun. 2021, 24, 100645. doi:10.1016/j.coco.2021.100645
  • Kumar, R.; Singh, R. K.; Kumar, V.; Moshkalev, S. A. Functionalized Nanosize Graphene and Its Derivatives for Removal of Contaminations and Water Treatment. In A New Generation Material Graphene: Applications in Water Technology; M. Naushad, Ed.; Springer International Publishing: Cham, 2019; pp 133–185. doi:10.1007/978-3-319-75484-0_6
  • Kumar, R.; Singh, R. K.; Moshkalev, S. A. Graphene/Graphene Oxide and Carbon Nanotube Based Sensors for the Determination and Removal of Bisphenols. In A New Generation Material Graphene: Applications in Water Technology; M. Naushad, Ed.; Springer International Publishing: Cham, 2019; pp 329–372. doi:10.1007/978-3-319-75484-0_14
  • Hajian, S.; Zhang, X.; Khakbaz, P.; Tabatabaei, S.-M.; Maddipatla, D.; Narakathu, B. B.; Blair, R. G.; Atashbar, M. Z. Development of a Fluorinated Graphene-Based Resistive Humidity Sensor. IEEE Sensors J. 2020, 20, 7517–7524. doi:10.1109/JSEN.2020.2985055
  • Fadlalla, M. I.; Kumar, P. S.; Selvam, V.; Babu, S. G. Emerging Energy and Environmental Application of Graphene and Their Composites: A Review. J. Mater. Sci. 2020, 55, 7156–7183. doi:10.1007/s10853-020-04474-0
  • Kumar, R.; Joanni, E.; Singh, R. K.; Singh, D. P.; Moshkalev, S. A. Recent Advances in the Synthesis and Modification of Carbon-Based 2D Materials for Application in Energy Conversion and Storage. Prog. Energy Combust. Sci. 2018, 67, 115–157. doi:10.1016/j.pecs.2018.03.001
  • Muñoz, R.; Gómez-Aleixandre, C. Review of CVD Synthesis of Graphene. Chem. Vap. Depos. 2013, 19, 297–322. doi:10.1002/cvde.201300051
  • Awasthi, K.; Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Large Scale Synthesis of Bundles of Aligned Carbon Nanotubes Using a Natural Precursor: Turpentine Oil. J. Exp. Nanosci. 2010, 5, 498–508. doi:10.1080/17458081003664159
  • Juvaid, M.; Kumar, D.; Rao, M. R. Realization of Good Quality Bilayer Graphene by Single Step Laser Ablation Process. Mater. Res. Bull. 2020, 126, 110840. doi:10.1016/j.materresbull.2020.110840
  • Kumar, R.; Joanni, E.; Savu, R.; Pereira, M. S.; Singh, R. K.; Constantino, C. J. L.; Kubota, L. T.; Matsuda, A.; Moshkalev, S. A. Fabrication and Electrochemical Evaluation of Micro-Supercapacitors Prepared by Direct Laser Writing on Free-Standing Graphite Oxide Paper. Energy 2019, 179, 676–684. doi:10.1016/j.energy.2019.05.032
  • Kumar, R.; Joanni, E.; Singh, R. K.; da Silva, E.; Savu, R.; Kubota, L. T.; Moshkalev, S. A. Direct Laser Writing of Micro-Supercapacitors on Thick Graphite Oxide Films and Their Electrochemical Properties in Different Liquid Inorganic Electrolytes. J. Colloid Interface Sci. 2017, 507, 271–278. doi:10.1016/j.jcis.2017.08.005
  • Kumar, R.; Savu, R.; Joanni, E.; Vaz, A. R.; Canesqui, M. A.; Singh, R. K.; Timm, R. A.; Kubota, L. T.; Moshkalev, S. A. Fabrication of Interdigitated Micro-Supercapacitor Devices by Direct Laser Writing onto Ultra-Thin, Flexible and Free-Standing Graphite Oxide Films. RSC Adv. 2016, 6, 84769–84776. doi:10.1039/C6RA17516C
  • Joanni, E.; Kumar, R.; Fernandes, W. P.; Savu, R.; Matsuda, A. In Situ Growth of Laser-Induced Graphene Micro-Patterns on Arbitrary Substrates. Nanoscale 2022, 14, 8914–8918. doi:10.1039/d2nr01948e
  • Wang, Z.; Li, N.; Shi, Z.; Gu, Z. Low-Cost and Large-Scale Synthesis of Graphene Nanosheets by Arc Discharge in Air. Nanotechnology 2010, 21, 175602. doi:10.1088/0957-4484/21/17/175602
  • James, D. K.; Tour, J. M. The Chemical Synthesis of Graphene Nanoribbons—A Tutorial Review. Macromol. Chem. Phys. 2012, 213, 1033–1050. doi:10.1002/macp.201200001
  • Kumar, R.; Singh, R. K.; Singh, J.; Tiwari, R. S.; Srivastava, O. N. Synthesis, Characterization and Optical Properties of Graphene Sheets-ZnO Multipod Nanocomposites. J. Alloys Compd. 2012, 526, 129–134. doi:10.1016/j.jallcom.2012.02.115
  • Tang, B.; Guoxin, H.; Gao, H. Raman Spectroscopic Characterization of Graphene. Appl. Spectrosc. Rev. 2010, 45, 369–407. doi:10.1080/05704928.2010.483886
  • Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat Graphene. Nature 2009, 462, 339–341. doi:10.1038/nature08569
  • Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195. doi:10.1021/jp710931h
  • Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257–317. doi:10.1080/10408436.2015.1127206
  • Pierson, H. O. Handbook of Chemical Vapor Deposition: Principles, Technology and Applications; Elsevier, New Jersey U.S.A., 1999. doi:10.1016/C2009-0-20448-X
  • Srivastava, A.; Galande, C.; Ci, L.; Song, L.; Rai, C.; Jariwala, D.; Kelly, K. F.; Ajayan, P. M. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chem. Mater. 2010, 22, 3457–3461. doi:10.1021/cm101027c
  • Nguyen, H. B.; Nguyen, V. C.; Nguyen, V. T.; Ngo, T. T. T.; Nguyen, N. T.; Dang, T. T. H.; Tran, D. L.; Do, P. Q.; Nguyen, X. N.; Nguyen, X. P.; et al. Graphene Patterned Polyaniline-Based Biosensor for Glucose Detection. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2012, 3, 025011. doi:10.1088/2043-6262/3/2/025011
  • Makhlouf, A. Current and Advanced Coating Technologies for Industrial Applications. In Nanocoatings and Ultra-Thin Films; Elsevier, Cambridge, U.K., 2011, pp 3–23. doi:10.1533/9780857094902.1.3
  • Carlsson, J.; Martin, P. M. Chemical Vapor Deposition. In Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology; Martin, P. M.; Elsevier, Oxford, U.K., 2010; pp. 314–363. doi:10.1016/B978-0-8155-2031-3.00007-7
  • Whitener, K. E., Jr.; Sheehan, P. E. Graphene Synthesis. Diamond Relat. Mater. 2014, 46, 25–34. doi:10.1016/j.diamond.2014.04.006
  • Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. doi:10.1126/science.1171245
  • De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. Synthesis, Transfer, and Devices of Single-and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans. Nanotechnol. 2009, 8, 135–138. doi:10.1109/TNANO.2009.2013620
  • Wang, X.; You, H.; Liu, F.; Li, M.; Wan, L.; Li, S.; Li, Q.; Xu, Y.; Tian, R.; Yu, Z.; et al. Large‐Scale Synthesis of Few‐Layered Graphene Using CVD. Chem. Vap. Deposit. 2009, 15, 53–56. doi:10.1002/cvde.200806737
  • Kondo, D.; Sato, S.; Yagi, K.; Harada, N.; Sato, M.; Nihei, M.; Yokoyama, N. Low-Temperature Synthesis of Graphene and Fabrication of Top-Gated Field Effect Transistors without Using Transfer Processes. Appl. Phys. Express 2010, 3, 025102. doi:10.1143/APEX.3.025102
  • Yamada, T.; Kim, J.; Ishihara, M.; Hasegawa, M. Low-Temperature Graphene Synthesis Using Microwave Plasma CVD. J. Phys. D: Appl. Phys. 2013, 46, 063001. doi:10.1088/0022-3727/46/6/063001
  • Wu, B.; Geng, D.; Guo, Y.; Huang, L.; Xue, Y.; Zheng, J.; Chen, J.; Yu, G.; Liu, Y.; Jiang, L.; Hu, W. Equiangular Hexagon‐Shape‐Controlled Synthesis of Graphene on Copper Surface. Adv. Mater. 2011, 23, 3522–3525. doi:10.1002/adma.201101746
  • Hu, B.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; Ikeda, K.-i.; Mizuno, S. Epitaxial Growth of Large-Area Single-Layer Graphene over Cu (1 1 1)/Sapphire by Atmospheric Pressure CVD. Carbon 2012, 50, 57–65. doi:10.1016/j.carbon.2011.08.002
  • Batzill, M. The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects. Surf. Sci. Rep. 2012, 67, 83–115. doi:10.1016/j.surfrep.2011.12.001
  • Somani, P. R.; Somani, S. P.; Umeno, M. Planer Nano-Graphenes from Camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59. doi:10.1016/j.cplett.2006.06.081
  • Luo, Z.; Lim, S.; Tian, Z.; Shang, J.; Lai, L.; MacDonald, B.; Fu, C.; Shen, Z.; Yu, T.; Lin, J. Pyridinic N Doped Graphene: Synthesis, Electronic Structure, and Electrocatalytic Property. J. Mater. Chem. 2011, 21, 8038–8044. doi:10.1039/c1jm10845j
  • Juang, Z.-Y.; Wu, C.-Y.; Lu, A.-Y.; Su, C.-Y.; Leou, K.-C.; Chen, F.-R.; Tsai, C.-H. Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-to-Roll Process. Carbon 2010, 48, 3169–3174. doi:10.1016/j.carbon.2010.05.001
  • Persichetti, L.; De Seta, M.; Scaparro, A. M.; Miseikis, V.; Notargiacomo, A.; Ruocco, A.; Sgarlata, A.; Fanfoni, M.; Fabbri, F.; Coletti, C.; Di Gaspare, L. Driving with Temperature the Synthesis of Graphene on Ge (110). Appl. Surf. Sci. 2020, 499, 143923. doi:10.1016/j.apsusc.2019.143923
  • Shi, Q.; Tokarska, K.; Ta, H. Q.; Yang, X.; Liu, Y.; Ullah, S.; Liu, L.; Trzebicka, B.; Bachmatiuk, A.; Sun, J.; et al. Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Adv. Mater. Interfaces 2020, 7, 1902024. doi:10.1002/admi.201902024
  • Arulmani, S.; Anandan, S.; Ashokkumar, M. Introduction to Advanced Nanomaterials. In: Nanomaterials for Green Energy; Elsevier, 2018; pp 1–53.
  • Feng, S.-H.; Li, G.-H. Hydrothermal and Solvothermal Syntheses. In Modern Inorganic Synthetic Chemistry; Elsevier, Amsterdam, Netherlands, 2017, pp 73–104. doi:10.1016/B978-0-444-63591-4.00004-5
  • Nunes, D.; Pimentel, A.; Santos, L.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R. Synthesis, Design, and Morphology of Metal Oxide Nanostructures. In Metal Oxide Nanostructures; Elsevier, Amsterdam, Netherlands, 2019, pp 21–57. doi:10.1016/B978-0-12-811512-1.00002-3
  • Parvez, K. Two-Dimensional Nanomaterials: Crystal Structure and Synthesis. In Biomedical Applications of Graphene and 2D Nanomaterials; Elsevier, Amsterdam, Netherlands, 2019, pp. 1–25. doi:10.1016/B978-0-12-815889-0.00001-5
  • Choucair, M.; Thordarson, P.; Stride, J. A. Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication. Nat. Nanotechnol. 2009, 4, 30–33. doi:10.1038/nnano.2008.365
  • Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano. 2010, 4, 3845–3852. doi:10.1021/nn100511a
  • Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911. doi:10.1021/ja904251p
  • Zhou, D.; Cheng, Q.-Y.; Han, B.-H. Solvothermal Synthesis of Homogeneous Graphene Dispersion with High Concentration. Carbon 2011, 49, 3920–3927. doi:10.1016/j.carbon.2011.05.030
  • Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X.; Xue, Q.; et al. Toward N-Doped Graphene via Solvothermal Synthesis. Chem. Mater. 2011, 23, 1188–1193. doi:10.1021/cm102666r
  • Sun, H.; Cao, L.; Lu, L. Magnetite/Reduced Graphene Oxide Nanocomposites: One Step Solvothermal Synthesis and Use as a Novel Platform for Removal of Dye Pollutants. Nano Res. 2011, 4, 550–562. doi:10.1007/s12274-011-0111-3
  • Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater. 2009, 21, 5004–5006. doi:10.1021/cm902413c
  • Dong, P.; Wang, Y.; Guo, L.; Liu, B.; Xin, S.; Zhang, J.; Shi, Y.; Zeng, W.; Yin, S. A Facile One-Step Solvothermal Synthesis of Graphene/Rod-Shaped TiO2 Nanocomposite and Its Improved Photocatalytic Activity. Nanoscale 2012, 4, 4641–4649. doi:10.1039/c2nr31231j
  • Wu, J.; Shen, X.; Jiang, L.; Wang, K.; Chen, K. Solvothermal Synthesis and Characterization of Sandwich-like Graphene/ZnO Nanocomposites. Appl. Surf. Sci. 2010, 256, 2826–2830. doi:10.1016/j.apsusc.2009.11.034
  • Gao, L.; Ma, J.; Zheng, J. Solvothermal Synthesis of Sb2S3-Graphene Oxide Nanocomposite for Electrochemical Detection of Dopamine. J. Electrochem. Soc. 2020, 167, 107503. doi:10.1149/1945-7111/ab82fc
  • Sethi, M.; Shenoy, U. S.; Bhat, D. K. Simple Solvothermal Synthesis of Porous graphene-NiO Nanocomposites with High Cyclic Stability for Supercapacitor Application. J. Alloys Compd. 2021, 854, 157190. doi:10.1016/j.jallcom.2020.157190
  • Kumar, R.; Singh, R. K.; Singh, D. P.; Joanni, E.; Yadav, R. M.; Moshkalev, S. A. Laser-Assisted Synthesis, Reduction and Micro-Patterning of Graphene: Recent Progress and Applications. Coord. Chem. Rev. 2017, 342, 34–79. doi:10.1016/j.ccr.2017.03.021
  • Kumar, P. Laser Flash Synthesis of Graphene and Its Inorganic Analogues: An Innovative Breakthrough with Immense Promise. RSC Adv. 2013, 3, 11987–12002. doi:10.1039/c3ra41149d
  • Zhang, Z.; Song, M.; Hao, J.; Wu, K.; Li, C.; Hu, C. Visible Light Laser-Induced Graphene from Phenolic Resin: A New Approach for Directly Writing Graphene-Based Electrochemical Devices on Various Substrates. Carbon 2018, 127, 287–296. doi:10.1016/j.carbon.2017.11.014
  • Ye, R.; James, D. K.; Tour, J. M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. doi:10.1021/acs.accounts.8b00084
  • Wei, D.; Mitchell, J. I.; Tansarawiput, C.; Nam, W.; Qi, M.; Peide, D. Y.; Xu, X. Laser Direct Synthesis of Graphene on Quartz. Carbon 2013, 53, 374–379. doi:10.1016/j.carbon.2012.11.026
  • Kazemizadeh, F.; Malekfar, R. One Step Synthesis of Porous Graphene by Laser Ablation: A New and Facile Approach. Physica B 2018, 530, 236–241. doi:10.1016/j.physb.2017.11.052
  • Russo, P.; Liang, R.; Jabari, E.; Marzbanrad, E.; Toyserkani, E.; Zhou, Y. N. Single-Step Synthesis of Graphene Quantum Dots by Femtosecond Laser Ablation of Graphene Oxide Dispersions. Nanoscale 2016, 8, 8863–8877. doi:10.1039/c6nr01148a
  • Shankar, P.; Ishak, M. H.; Padarti, J. K.; Mintcheva, N.; Iwamori, S.; Gurbatov, S. O.; Lee, J. H.; Kulinich, S. A. ZnO@ Graphene Oxide Core@ Shell Nanoparticles Prepared via One-Pot Approach Based on Laser Ablation in Water. Appl. Surf. Sci. 2020, 531, 147365. doi:10.1016/j.apsusc.2020.147365
  • Athanasiou, M.; Samartzis, N.; Sygellou, L.; Dracopoulos, V.; Ioannides, T.; Yannopoulos, S. N. High-Quality Laser-Assisted Biomass-Based Turbostratic Graphene for High-Performance Supercapacitors. Carbon 2021, 172, 750–761. doi:10.1016/j.carbon.2020.10.042
  • Kumar, R.; Pérez del Pino, A.; Sahoo, S.; Singh, R. K.; Tan, W. K.; Matsuda, A.; Joanni, E. Laser Processing of Graphene and Related Materials for Energy Storage: State of the Art and Future Prospects. Prog. Energy Combust. Sci. 2022, 91, 100981. doi:10.1016/j.pecs.2021.100981
  • Peng, Y.; Cao, J.; Yang, J.; Yang, W.; Zhang, C.; Li, X.; Dryfe, R. A.; Li, L.; Kinloch, I. A.; Liu, Z. Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts. Adv. Funct. Mater. 2020, 30, 2001756. doi:10.1002/adfm.202001756
  • Aparicio-Martínez, E.; Ibarra, A.; Estrada-Moreno, I. A.; Osuna, V.; Dominguez, R. B. Flexible Electrochemical Sensor Based on Laser Scribed Graphene/Ag Nanoparticles for Non-Enzymatic Hydrogen Peroxide Detection. Sens. Actuators, B 2019, 301, 127101. doi:10.1016/j.snb.2019.127101
  • Shi, Z.; Lian, Y.; Zhou, X.; Gu, Z.; Zhang, Y.; Iijima, S.; Zhou, L.; Yue, K. T.; Zhang, S. Mass-Production of Single-Wall Carbon Nanotubes by Arc Discharge Method. Carbon 1999, 37, 1449–1453. doi:10.1016/S0008-6223(99)00007-X
  • Lian, Y.; Shi, Z.; Zhou, X.; He, X.; Gu, Z. High-Yield Preparation of Endohedral Metallofullerenes by an Improved DC Arc-Discharge Method. Carbon 2000, 38, 2117–2121. doi:10.1016/S0008-6223(00)00070-1
  • Subrahmanyam, K.; Panchakarla, L.; Govindaraj, A.; Rao, C. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. J. Phys. Chem. C 2009, 113, 4257–4259. doi:10.1021/jp900791y
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Yadav, R. M.; Singh, D. P.; Tiwari, R. S.; Srivastava, O. N. Highly Zone-Dependent Synthesis of Different Carbon Nanostructures Using Plasma-Enhanced Arc Discharge Technique. J. Nanopart. Res. 2015, 17, 24. doi:10.1007/s11051-014-2837-9
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Kumar, P.; Tiwari, R. S.; Oh, I.-K. Pressure-Dependent Synthesis of High-Quality Few-Layer Graphene by Plasma-Enhanced Arc Discharge and Their Thermal Stability. J. Nanopart. Res. 2013, 15, 1847. doi:10.1007/s11051-013-1847-3
  • Ashkarran, A. Metal and Metal Oxide Nanostructures Prepared by Electrical Arc Discharge Method in Liquids. J. Clust. Sci. 2011, 22, 233–266. doi:10.1007/s10876-011-0376-4
  • Rafique, M. M. A.; Iqbal, J. Production of Carbon Nanotubes by Different Routes - A Review. JEAS 2011, 01, 29–34. doi:10.4236/jeas.2011.12004
  • Kelgenbaeva, Z.; Abdullaeva, Z.; Murzubraimov, B. 2018 Solvothermal Synthesis of Au@ Fe3O4 Nanoparticles for Antibacterial Applications. EPJ Web of Conferences, EDP Sciences, p. 01002. doi:10.1051/epjconf/201817701002
  • Ushio, M. Arc Discharge and Electrode Phenomena. Pure Appl. Chem. 1988, 60, 809–814. doi:10.1351/pac198860050809
  • Wuthrich, R.; Abou Ziki, J. Historical Overview of Electrochemical Discharges. In Micromachining Using Elechtrochemical Discharge Phenomenon; Elsevier, Oxford, U.K., 2015, pp 13–33. doi:10.1016/B978-0-323-24142-7.00002-0
  • Yang, L.; Zhang, L.; Webster, T. J. Carbon Nanostructures for Orthopedic Medical Applications. Nanomedicine (Lond.) 2011, 6, 1231–1244. doi:10.2217/nnm.11.107
  • Keidar, M.; Beilis, I. Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology; Elsevier, London, U.K., 2013. doi: 10.1016/C2010-0-67266-X
  • Hasnain, M. S.; Nayak, A. K. Carbon Nanotubes for Targeted Drug Delivery; Springer, Singapore, 2019.
  • Virji, M.; Stefaniak, A. A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures. Comprehensive Materials Processing, Elsevier, Amsterdam, Netherlands, 2014, 8, 103–125. doi:10.1016/B978-0-08-096532-1.00811-6.
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. doi:10.1080/10408430903505036
  • Fang, X.; Shashurin, A.; Keidar, M. Role of Substrate Temperature at Graphene Synthesis in an Arc Discharge. J. Appl. Phys. 2015, 118, 103304. doi:10.1063/1.4930177
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Maegawa, K.; Tan, W. K.; Kawamura, G.; Matsuda, A. Heteroatom Doped Graphene Engineering for Energy Storage and Conversion. Mater. Today 2020, 39, 47–65. doi:10.1016/j.mattod.2020.04.010
  • Li, D.; Wang, C.; Lu, Z.; Song, M.; Xia, W.; Xia, W. Synthesis of Graphene Flakes Using a Non-Thermal Plasma Based on Magnetically Stabilized Gliding Arc Discharge. Fullerenes, Nanotubes and Carbon Nanostructures 2020, 28, 846–856. doi:10.1080/1536383X.2020.1774559
  • Wu, Z.-S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.-M. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano. 2009, 3, 411–417. doi:10.1021/nn900020u
  • Huang, L.; Wu, B.; Chen, J.; Xue, Y.; Geng, D.; Guo, Y.; Yu, G.; Liu, Y. Gram‐Scale Synthesis of Graphene Sheets by a Catalytic Arc‐Discharge Method. Small 2013, 9, 1330–1335. doi:10.1002/smll.201202802
  • Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method. Carbon 2010, 48, 255–259. doi:10.1016/j.carbon.2009.09.013
  • Devi, N.; Sahoo, S.; Kumar, R.; Singh, R. K. A Review of the Microwave-Assisted Synthesis of Carbon Nanomaterials, Metal Oxides/Hydroxides and Their Composites for Energy Storage Applications. Nanoscale 2021, 13, 11679–11711. doi:10.1039/d1nr01134k
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K. A Review on the Current Research on Microwave Processing Techniques Applied to Graphene-Based Supercapacitor Electrodes: An Emerging Approach beyond Conventional Heating. Journal of Energy Chemistry 2022, 74, 252–282. doi:10.1016/j.jechem.2022.06.051
  • Kumar, R.; Matsuo, R.; Kishida, K.; Abdel-Galeil, M. M.; Suda, Y.; Matsuda, A. Homogeneous Reduced Graphene Oxide Supported NiO-MnO2 Ternary Hybrids for Electrode Material with Improved Capacitive Performance. Electrochim. Acta 2019, 303, 246–256. doi:10.1016/j.electacta.2019.02.084
  • Kumar, R.; da Silva, E.; Singh, R. K.; Savu, R.; Alaferdov, A. V.; Fonseca, L. C.; Carossi, L. C.; Singh, A.; Khandka, S.; et al. Microwave-Assisted Synthesis of Palladium Nanoparticles Intercalated Nitrogen Doped Reduced Graphene Oxide and Their Electrocatalytic Activity for Direct-Ethanol Fuel Cells. J. Colloid Interface Sci. 2018, 515, 160–171. doi:10.1016/j.jcis.2018.01.028
  • Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-Assembled and One-Step Synthesis of Interconnected 3D Network of Fe3O4/Reduced Graphene Oxide Nanosheets Hybrid for High-Performance Supercapacitor Electrode. ACS Appl. Mater. Interfaces. 2017, 9, 8880–8890. doi:10.1021/acsami.6b14704
  • Kumar, R.; Singh, R. K.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Microwave Heating Time Dependent Synthesis of Various Dimensional Graphene Oxide Supported Hierarchical ZnO Nanostructures and Its Photoluminescence Studies. Mater. Des. 2016, 111, 291–300. doi:10.1016/j.matdes.2016.09.018
  • Kumar, R.; Singh, R. K.; Tiwari, V. S.; Yadav, A.; Savu, R.; Vaz, A. R.; Moshkalev, S. A. Enhanced Magnetic Performance of Iron Oxide Nanoparticles Anchored Pristine/N-Doped Multi-Walled Carbon Nanotubes by Microwave-Assisted Approach. J. Alloys Compd. 2017, 695, 1793–1801. doi:10.1016/j.jallcom.2016.11.010
  • Grabowska, E.; Marchelek, M.; Paszkiewicz-Gawron, M.; Zaleska-Medynska, A. Metal Oxide Photocatalysts. In Metal Oxide-based Photocatalysis; Elsevier, Amsterdam, Netherlands, 2018, 51–209. doi:10.1016/B978-0-12-811634-0.00003-2
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K. Microwave as a Tool for Synthesis of Carbon-Based Electrodes for Energy Storage. ACS Appl. Mater. Interfaces. 2022, 14, 20306–20325. doi:10.1021/acsami.1c15934
  • Kumar, R.; Singh, R. K.; Savu, R.; Dubey, P. K.; Kumar, P.; Moshkalev, S. A. Microwave-Assisted Synthesis of Void-Induced Graphene-Wrapped Nickel Oxide Hybrids for Supercapacitor Applications. RSC Adv. 2016, 6, 26612–26620. doi:10.1039/C6RA00426A
  • Kumar, R.; Kim, H.-J.; Park, S.; Srivastava, A.; Oh, I.-K. Graphene-Wrapped and Cobalt Oxide-Intercalated Hybrid for Extremely Durable Super-Capacitor with Ultrahigh Energy and Power Densities. Carbon 2014, 79, 192–202. doi:10.1016/j.carbon.2014.07.059
  • Kumar, R.; Abdel-Galeil, M. M.; Ya, K. Z.; Fujita, K.; Tan, W. K.; Matsuda, A. Facile and Fast Microwave-Assisted Formation of Reduced Graphene Oxide-Wrapped Manganese Cobaltite Ternary Hybrids as Improved Supercapacitor Electrode Material. Appl. Surf. Sci. 2019, 481, 296–306. doi:10.1016/j.apsusc.2019.03.085
  • Kumar, R.; Oh, J.-H.; Kim, H.-J.; Jung, J.-H.; Jung, C.-H.; Hong, W. G.; Kim, H.-J.; Park, J.-Y.; Oh, I.-K. Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities. ACS Nano. 2015, 9, 7343–7351. doi:10.1021/acsnano.5b02337
  • Kumar, R.; Savu, R.; Singh, R. K.; Joanni, E.; Singh, D. P.; Tiwari, V. S.; Vaz, A. R.; da Silva, E.; Maluta, J. R.; Kubota, L. T.; Moshkalev, S. A. Controlled Density of Defects Assisted Perforated Structure in Reduced Graphene Oxide Nanosheets-Palladium Hybrids for Enhanced Ethanol Electro-Oxidation. Carbon 2017, 117, 137–146. doi:10.1016/j.carbon.2017.02.065
  • Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S. Synthesis of Graphene. Int. Nano Lett. 2016, 6, 65–83. doi:10.1007/s40089-015-0176-1
  • Zhang, L.; Liang, J.; Huang, Y.; Ma, Y.; Wang, Y.; Chen, Y. Size-Controlled Synthesis of Graphene Oxide Sheets on a Large Scale Using Chemical Exfoliation. Carbon 2009, 47, 3365–3368. doi:10.1016/j.carbon.2009.07.045
  • Shinde, D. B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V. K. Electrochemical Unzipping of Multi-Walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons. J. Am. Chem. Soc. 2011, 133, 4168–4171. doi:10.1021/ja1101739
  • Vadahanambi, S.; Jung, J.-H.; Kumar, R.; Kim, H.-J.; Oh, I.-K. An Ionic Liquid-Assisted Method for Splitting Carbon Nanotubes to Produce Graphene Nano-Ribbons by Microwave Radiation. Carbon 2013, 53, 391–398. doi:10.1016/j.carbon.2012.11.029
  • Brodie, B. C. XIII. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259.
  • Staudenmaier, L. Verfahren Zur Darstellung Der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487. doi:10.1002/cber.18980310237
  • Singh, R. K.; Kumar, R.; Singh, D. P. Graphene Oxide: Strategies for Synthesis, Reduction and Frontier Applications. RSC Adv. 2016, 6, 64993–65011. doi:10.1039/C6RA07626B
  • Hofmann, U.; König, E. Untersuchungen Über Graphitoxyd. Z Anorg. Allg. Chem. 1937, 234, 311–336. doi:10.1002/zaac.19372340405
  • Hofmann, U.; Holst, R. Über Die Säurenatur Und Die Methylierung Von Graphitoxyd. Ber. dtsch. Chem. Ges. A/B. 1939, 72, 754–771. doi:10.1002/cber.19390720417
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. doi:10.1021/ja01539a017
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4, 4806–4814. doi:10.1021/nn1006368
  • Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. doi:10.1016/j.carbon.2011.11.010
  • Naseem, T.; Waseem, M.; Hafeez, M.; Din, S. U.; Haq, S. Reduced Graphene Oxide/Zinc Oxide Nanocomposite: From Synthesis to Its Application for Wastewater Purification and Antibacterial Activity. J. Inorg. Organomet Polym 2020, 30, 3907–3919. doi:10.1007/s10904-020-01529-2
  • Menazea, A.; Ahmed, M. Synthesis and Antibacterial Activity of Graphene Oxide Decorated by Silver and Copper Oxide Nanoparticles. J. Mol. Struct. 2020, 1218, 128536. doi:10.1016/j.molstruc.2020.128536
  • Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile Synthesis of High-Quality Graphene Nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325. doi:10.1038/nnano.2010.54
  • Xiao, B.; Li, X.; Li, X.; Wang, B.; Langford, C.; Li, R.; Sun, X. Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. J. Phys. Chem. C 2014, 118, 881–890. doi:10.1021/jp410812v
  • Alazmi, A.; Rasul, S.; Patole, S. P.; Costa, P. M. Comparative Study of Synthesis and Reduction Methods for Graphene Oxide. Polyhedron 2016, 116, 153–161. doi:10.1016/j.poly.2016.04.044
  • Lee, X. J.; Hiew, B. Y. Z.; Lai, K. C.; Lee, L. Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on Graphene and Its Derivatives: Synthesis Methods and Potential Industrial Implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. doi:10.1016/j.jtice.2018.10.028
  • Calderon, H. A.; Okonkwo, A.; Estrada-Guel, I.; Hadjiev, V. G.; Alvarez-Ramírez, F.; Robles Hernández, F. C. HRTEM Low Dose: The Unfold of the Morphed Graphene, from Amorphous Carbon to Morphed Graphenes. Adv. Struct. Chem. Imag. 2016, 2, 10. doi:10.1186/s40679-016-0024-z
  • Lehtinen, O.; Tsai, I. L.; Jalil, R.; Nair, R. R.; Keinonen, J.; Kaiser, U.; Grigorieva, I. V. Non-Invasive Transmission Electron Microscopy of Vacancy Defects in Graphene Produced by Ion Irradiation. Nanoscale 2014, 6, 6569–6576. doi:10.1039/c4nr01918k
  • Robertson, A. W.; Warner, J. H. Atomic Resolution Imaging of Graphene by Transmission Electron Microscopy. Nanoscale 2013, 5, 4079–4093. doi:10.1039/c3nr00934c
  • Peng, Z.; Somodi, F.; Helveg, S.; Kisielowski, C.; Specht, P.; Bell, A. T. High-Resolution In Situ and Ex Situ TEM Studies on Graphene Formation and Growth on Pt Nanoparticles. J. Catal. 2012, 286, 22–29. doi:10.1016/j.jcat.2011.10.008
  • Dave, S. H.; Gong, C.; Robertson, A. W.; Warner, J. H.; Grossman, J. C. Chemistry and Structure of Graphene Oxide via Direct Imaging. ACS Nano. 2016, 10, 7515–7522. doi:10.1021/acsnano.6b02391
  • Li, W. D.; Ma, T. G.; Mao, Z. P. Detection of Graphene Materials in Fibers. MSF. 2020, 976, 90–95. doi:10.4028/www.scientific.net/MSF.976.90
  • Safardoust-Hojaghan, H.; Amiri, O.; Hassanpour, M.; Panahi-Kalamuei, M.; Moayedi, H.; Salavati-Niasari, M. S,N Co-Doped Graphene Quantum Dots-Induced Ascorbic Acid Fluorescent Sensor: Design, Characterization and Performance. Food Chem. 2019, 295, 530–536. doi:10.1016/j.foodchem.2019.05.169
  • Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. doi:10.1016/j.elspec.2014.07.003
  • Gascho, J. L.; Costa, S. F.; Recco, A. A.; Pezzin, S. H. Graphene Oxide Films Obtained by Vacuum Filtration: X-Ray Diffraction Evidence of Crystalline Reorganization. J. Nanomater. 2019, 2019, 1–12. doi:10.1155/2019/5963148
  • Selvam, M.; Sakthipandi, K.; Suriyaprabha, R.; Saminathan, K.; Rajendran, V. Synthesis and Characterization of Electrochemically-Reduced Graphene. Bull. Mater. Sci. 2013, 36, 1315–1321. doi:10.1007/s12034-013-0581-x
  • Yadav, N.; Lochab, B. A Comparative Study of Graphene Oxide: Hummers, Intermediate and Improved Method. FlatChem 2019, 13, 40–49. doi:10.1016/j.flatc.2019.02.001
  • Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials 2018, 11, 1050. doi:10.3390/ma11071050
  • Musumeci, C. Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials. Crystals 2017, 7, 216. doi:10.3390/cryst7070216
  • Zhou, L.; Fox, L.; Włodek, M.; Islas, L.; Slastanova, A.; Robles, E.; Bikondoa, O.; Harniman, R.; Fox, N.; Cattelan, M.; Briscoe, W. H. Surface Structure of Few Layer Graphene. Carbon 2018, 136, 255–261. doi:10.1016/j.carbon.2018.04.089
  • Hauquier, F.; Alamarguy, D.; Viel, P.; Noël, S.; Filoramo, A.; Huc, V.; Houzé, F.; Palacin, S. Conductive-Probe AFM Characterization of Graphene Sheets Bonded to Gold Surfaces. Appl. Surf. Sci. 2012, 258, 2920–2926. doi:10.1016/j.apsusc.2011.10.152
  • Pérez, L. A.; Bajales, N.; Lacconi, G. I. Raman Spectroscopy Coupled with AFM Scan Head: A Versatile Combination for Tailoring Graphene Oxide/Reduced Graphene Oxide Hybrid Materials. Appl. Surf. Sci. 2019, 495, 143539. doi:10.1016/j.apsusc.2019.143539
  • Teklu, A.; Barry, C.; Palumbo, M.; Weiwadel, C.; Kuthirummal, N.; Flagg, J. Mechanical Characterization of Reduced Graphene Oxide Using AFM. Adv. Condens. Matter Phys. 2019, 2019, 1–13. doi:10.1155/2019/8713965
  • Prakash, G.; Capano, M. A.; Bolen, M. L.; Zemlyanov, D.; Reifenberger, R. G. AFM Study of Ridges in Few-Layer Epitaxial Graphene Grown on the Carbon-Face of 4H–SiC. Carbon 2010, 48, 2383–2393. doi:10.1016/j.carbon.2010.02.026
  • Shearer, C. J.; Slattery, A. D.; Stapleton, A. J.; Shapter, J. G.; Gibson, C. T. Accurate Thickness Measurement of Graphene. Nanotechnology 2016, 27, 125704. doi:10.1088/0957-4484/27/12/125704
  • Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh (111): Scanning Tunneling and Atomic Force Microscopies Studies. Appl. Phys. Lett. 2012, 100, 241606. doi:10.1063/1.4729549
  • Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F. Impact of the Electron-Electron Correlation on Phonon Dispersion: Failure of LDA and GGA DFT Functionals in Graphene and Graphite. Phys. Rev. B 2008, 78, 081406. doi:10.1103/PhysRevB.78.081406
  • Hu, M.; Yao, Z.; Wang, X. Characterization Techniques for Graphene-Based Materials in Catalysis. AIMS Mater. Sci. 2017, 4, 755–788. doi:10.3934/matersci.2017.3.755
  • Malard, L.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. doi:10.1016/j.physrep.2009.02.003
  • Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. doi:10.1016/j.physrep.2009.02.003
  • Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. doi:10.1038/nnano.2013.46
  • Heller, E. J.; Yang, Y.; Kocia, L.; Chen, W.; Fang, S.; Borunda, M.; Kaxiras, E. Theory of Graphene Raman Scattering. ACS Nano. 2016, 10, 2803–2818. doi:10.1021/acsnano.5b07676
  • Chen, Y.; Meng, L.; Zhao, W.; Liang, Z.; Wu, X.; Nan, H.; Wu, Z.; Huang, S.; Sun, L.; Wang, J.; Ni, Z. Raman Mapping Investigation of Chemical Vapor Deposition-Fabricated Twisted Bilayer Graphene with Irregular Grains. Phys. Chem. Chem. Phys. 2014, 16, 21682–21687. doi:10.1039/c4cp03386h
  • Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. doi:10.1021/cr900070d
  • Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. doi:10.1103/RevModPhys.81.109
  • Roberts, M. W.; Clemons, C. B.; Wilber, J. P.; Young, G. W.; Buldum, A.; Quinn, d D. Continuum Plate Theory and Atomistic Modeling to Find the Flexural Rigidity of a Graphene Sheet Interacting with a Substrate. J. Nanotechnol. 2010, 2010, 1–8. doi:10.1155/2010/868492
  • Wilson, M. Electrons in Atomically Thin Carbon Sheets Behave like Massless Particles. Phys. Today 2006, 59, 21–23. doi:10.1063/1.2180163
  • Birowska, M.; Milowska, K.; Majewski, J. Van Der Waals Density Functionals for Graphene Layers and Graphite. Acta Phys. Pol. A 2011, 120, 845–848. doi:10.12693/APhysPolA.120.845
  • Rutter, G. M.; Jung, S.; Klimov, N. N.; Newell, D. B.; Zhitenev, N. B.; Stroscio, J. A. Microscopic Polarization in Bilayer Graphene. Nature Phys. 2011, 7, 649–655. doi:10.1038/nphys1988
  • Sabir, Y.; Shams, A.; Sabir, M.; Ahmed, M. Modeling of Bilayer Graphene Based Field Effect Transistors for Digital Electronics. 2014.
  • Mostaani, E.; Drummond, N. D.; Fal’ko, V. I. Quantum Monte Carlo Calculation of the Binding Energy of Bilayer Graphene. Phys. Rev. Lett. 2015, 115, 115501. doi:10.1103/PhysRevLett.115.115501
  • Peres, N. The Electronic Properties of Graphene and Its Bilayer. Vacuum 2009, 83, 1248–1252. doi:10.1016/j.vacuum.2009.03.018
  • Park, J.; Jo, S. B.; Yu, Y.-J.; Kim, Y.; Yang, J. W.; Lee, W. H.; Kim, H. H.; Hong, B. H.; Kim, P.; Cho, K.; Kim, K. S. Single‐Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Adv. Mater. 2012, 24, 407–411. doi:10.1002/adma.201103411
  • Avetisyan, A.; Partoens, B.; Peeters, F. Electric-Field Control of the Band Gap and Fermi Energy in Graphene Multilayers by Top and Back Gates. Phys. Rev. B 2009, 80, 195401. doi:10.1103/PhysRevB.80.195401
  • Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature 2009, 459, 820–823. doi:10.1038/nature08105
  • Castro, E. V.; Novoselov, K.; Morozov, S.; Peres, N.; Dos Santos, J. L.; Nilsson, J.; Guinea, F.; Geim, A.; Neto, A. C. Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Phys. Rev. Lett. 2007, 99, 216802. doi:10.1103/PhysRevLett.99.216802
  • Zhang, W.; Lin, C.-T.; Liu, K.-K.; Tite, T.; Su, C.-Y.; Chang, C.-H.; Lee, Y.-H.; Chu, C.-W.; Wei, K.-H.; Kuo, J.-L.; Li, L.-J. Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano. 2011, 5, 7517–7524. doi:10.1021/nn202463g
  • Craciun, M.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable Electronic Properties in Graphene. Nano Today 2011, 6, 42–60. doi:10.1016/j.nantod.2010.12.001
  • Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. doi:10.1038/nmat3064
  • Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S.; Suh, K. S. High-Performance Supercapacitors Based on Poly (Ionic Liquid)-Modified Graphene Electrodes. ACS Nano. 2011, 5, 436–442. doi:10.1021/nn101968p
  • Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A 2013, 1, 10078–10091. doi:10.1039/c3ta11774j
  • Pumera, M. Graphene-Based Nanomaterials for Energy Storage. Energy & Environmental Science 2011, 4, 668–674. doi:10.1039/C0EE00295J
  • Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths. Nano Lett. 2014, 14, 6109–6114. doi:10.1021/nl502059f
  • Pop, E.; Varshney, V.; Roy, A. K. Thermal Properties of Graphene: Fundamentals and Applications. MRS Bull. 2012, 37, 1273–1281. doi:10.1557/mrs.2012.203
  • Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. doi:10.1016/j.pmatsci.2017.07.004
  • Ovid’Ko, I. Mechanical Properties of Graphene. Rev. Adv. Mater. Sci 2013, 34, 1–11.
  • Kong, B. D.; Paul, S.; Nardelli, M. B.; Kim, K. W. First-Principles Analysis of Lattice Thermal Conductivity in Monolayer and Bilayer Graphene. Phys. Rev. B 2009, 80, 033406. doi:10.1103/PhysRevB.80.033406
  • Renteria, J. D.; Nika, D. L.; Balandin, A. A. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Appl. Sci. 2014, 4, 525–547. doi:10.3390/app4040525
  • Sang, M.; Shin, J.; Kim, K.; Yu, K. J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. doi:10.3390/nano9030374
  • Shahil, K. M.; Balandin, A. A. Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 2012, 152, 1331–1340. doi:10.1016/j.ssc.2012.04.034
  • Zhao, Y.-H.; Wu, Z.-K.; Bai, S.-L. Study on Thermal Properties of Graphene Foam/Graphene Sheets Filled Polymer Composites. Compos. A: Appl. Sci. Manuf. 2015, 72, 200–206. doi:10.1016/j.compositesa.2015.02.011
  • Ni, Z.; Wang, H.; Kasim, J.; Fan, H.; Yu, T.; Wu, Y.; Feng, Y.; Shen, Z. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758–2763. doi:10.1021/nl071254m
  • Cho, E.-C.; Huang, J.-H.; Li, C.-P.; Chang-Jian, C.-W.; Lee, K.-C.; Hsiao, Y.-S.; Huang, J.-H. Graphene-Based Thermoplastic Composites and Their Application for LED Thermal Management. Carbon 2016, 102, 66–73. doi:10.1016/j.carbon.2016.01.097
  • Zhang, H.; Bao, Q.; Tang, D.; Zhao, L.; Loh, K. Large Energy Soliton Erbium-Doped Fiber Laser with a Graphene-Polymer Composite Mode Locker. Appl. Phys. Lett. 2009, 95, 141103. doi:10.1063/1.3244206
  • Lu, C. L.; Chang, C. P.; Huang, Y. C.; Chen, R. B.; Lin, M. L. Influence of an Electric Field on the Optical Properties of Few-Layer Graphene with AB Stacking. Phys. Rev. B 2006, 73, 144427. doi:10.1103/PhysRevB.73.144427
  • Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Hight Walker, A. R.; Gundlach, D. J.; Nguyen, N. V. Broadband Optical Properties of Graphene by Spectroscopic Ellipsometry. Carbon 2016, 99, 348–353. doi:10.1016/j.carbon.2015.12.007
  • Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. M. One-Step and High Yield Simultaneous Preparation of Single- and Multi-Layer Graphene Quantum Dots from CX-72 Carbon Black. J. Mater. Chem. 2012, 22, 8764–8766. doi:10.1039/c2jm30658a
  • Shen, Y.; Yang, S.; Zhou, P.; Sun, Q.; Wang, P.; Wan, L.; Li, J.; Chen, L.; Wang, X.; Ding, S.; Zhang, D. W. Evolution of the Band-Gap and Optical Properties of Graphene Oxide with Controllable Reduction Level. Carbon 2013, 62, 157–164. doi:10.1016/j.carbon.2013.06.007
  • Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J. Softened Elastic Response and Unzipping in Chemical Vapor Deposition Graphene Membranes. Nano Lett. 2011, 11, 2259–2263. doi:10.1021/nl200429f
  • Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. The Effect of Intrinsic Crumpling on the Mechanics of Free-Standing Graphene. Nat. Commun. 2015, 6, 8789. doi:10.1038/ncomms9789
  • Liu, F.; Ming, P.; Li, J. Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension. Phys. Rev. B 2007, 76, 064120. doi:10.1103/PhysRevB.76.064120
  • Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Effect of Defects on the Intrinsic Strength and Stiffness of Graphene. Nat. Commun. 2014, 5, 1–9. doi:10.1038/ncomms4186
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. doi:10.1038/nature04969
  • Sur, U. K. Graphene: A Rising Star on the Horizon of Materials Science. Int. J. Electrochem. 2012, 2012, 237689. doi:10.1155/2012/237689
  • Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science 2015, 347, 1246501. doi:10.1126/science.1246501
  • Chee, W. K.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Harrison, I.; Andou, Y. Flexible Graphene-Based Supercapacitors: A Review. J. Phys. Chem. C 2016, 120, 4153–4172. doi:10.1021/acs.jpcc.5b10187
  • Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of. Electroanalysis 2010, 22, 1027–1036. doi:10.1002/elan.200900571
  • Hashtroudi, H.; Kumar, R.; Savu, R.; Moshkalev, S.; Kawamura, G.; Matsuda, A.; Shafiei, M. Hydrogen Gas Sensing Properties of Microwave-Assisted 2D Hybrid Pd/rGO: Effect of Temperature, Humidity and UV Illumination. Int. J. Hydrogen Energy 2021, 46, 7653–7665. doi:10.1016/j.ijhydene.2020.11.268
  • Kumar, R.; Dias, W.; Rubira, R. J. G.; Alaferdov, A. V.; Vaz, A. R.; Singh, R. K.; Teixeira, S. R.; Constantino, C. J. L.; Moshkalev, S. A. Simple and Fast Approach for Synthesis of Reduced Graphene Oxide–MoS2 Hybrids for Room Temperature Gas Detection. IEEE Trans. Electron Devices 2018, 65, 3943–3949. doi:10.1109/TED.2018.2851955
  • Kalia, S.; Rana, D. S.; Thakur, N.; Singh, D.; Kumar, R.; Singh, R. K. Two-Dimensional Layered Molybdenum Disulfide (MoS2)-Reduced Graphene Oxide (rGO) Heterostructures Modified with Fe3O4 for Electrochemical Sensing of Epinephrine. Mater. Chem. Phys. 2022, 287, 126274. doi:10.1016/j.matchemphys.2022.126274
  • Rana, D. S.; Kalia, S.; Kumar, R.; Thakur, N.; Singh, D.; Singh, R. K. Microwave-Assisted Facile Synthesis of Layered Reduced Graphene Oxide-Tungsten Disulfide Sandwiched Fe3O4 Nanocomposite as Effective and Sensitive Sensor for Detection of Dopamine. Mater. Chem. Phys. 2022, 287, 126283. doi:10.1016/j.matchemphys.2022.126283
  • Rana, D. S.; Kalia, S.; Kumar, R.; Thakur, N.; Singh, R. K.; Singh, D. Two-Dimensional Layered Reduced Graphene Oxide-Tungsten Disulphide Nanocomposite for Highly Sensitive and Selective Determination of Para Nitrophenol. Environ. Nanotechnol. Monitor. Manag. 2022, 18, 100724. doi:10.1016/j.enmm.2022.100724
  • Seresht, R. J.; Jahanshahi, M.; Rashidi, A.; Ghoreyshi, A. A. Synthesize and Characterization of Graphene Nanosheets with High Surface Area and Nano-Porous Structure. Appl. Surf. Sci. 2013, 276, 672–681. doi:10.1016/j.apsusc.2013.03.152
  • Ning, G.; Fan, Z.; Wang, G.; Gao, J.; Qian, W.; Wei, F. Gram-Scale Synthesis of Nanomesh Graphene with High Surface Area and Its Application in Supercapacitor Electrodes. Chem. Commun. (Camb.) 2011, 47, 5976–5978. doi:10.1039/c1cc11159k
  • Yang, Z. Y.; Jin, L. J.; Lu, G. Q.; Xiao, Q. Q.; Zhang, Y. X.; Jing, L.; Zhang, X. X.; Yan, Y. M.; Sun, K. N. Sponge‐Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance. Adv. Funct. Mater. 2014, 24, 3917–3925. doi:10.1002/adfm.201304091
  • Wang, S.; Tristan, F.; Minami, D.; Fujimori, T.; Cruz-Silva, R.; Terrones, M.; Takeuchi, K.; Teshima, K.; Rodríguez-Reinoso, F.; Endo, M.; Kaneko, K. Activation Routes for High Surface Area Graphene Monoliths from Graphene Oxide Colloids. Carbon 2014, 76, 220–231. doi:10.1016/j.carbon.2014.04.071
  • Wang, M.-x.; Liu, Q.; Sun, H.-f.; Stach, E. A.; Xie, J. Preparation of High Surface Area Nano-Structured Graphene Composites. ECS Trans. 2012, 41, 95–105. doi:10.1149/1.3693066
  • Zhang, L.; Zhang, F.; Yang, X.; Long, G.; Wu, Y.; Zhang, T.; Leng, K.; Huang, Y.; Ma, Y.; Yu, A.; Chen, Y. Porous 3D Graphene-Based Bulk Materials with Exceptional High Surface Area and Excellent Conductivity for Supercapacitors. Sci. Rep. 2013, 3, 9. doi:10.1038/srep01408
  • Berry, V. Impermeability of Graphene and Its Applications. Carbon 2013, 62, 1–10. doi:10.1016/j.carbon.2013.05.052
  • Aneja, K. S.; Böhm, H. M.; Khanna, A.; Böhm, S. Functionalised Graphene as a Barrier against Corrosion. FlatChem 2017, 1, 11–19. doi:10.1016/j.flatc.2016.08.003
  • Chauhan, D. S.; Quraishi, M.; Ansari, K.; Saleh, T. A. Graphene and Graphene Oxide as New Class of Materials for Corrosion Control and Protection: Present Status and Future Scenario. Prog. Org. Coat. 2020, 147, 105741. doi:10.1016/j.porgcoat.2020.105741
  • Othman, N. H.; Ismail, M. C.; Mustapha, M.; Sallih, N.; Kee, K. E.; Jaal, R. A. Graphene-Based Polymer Nanocomposites as Barrier Coatings for Corrosion Protection. Prog. Org. Coat. 2019, 135, 82–99. doi:10.1016/j.porgcoat.2019.05.030
  • Ramirez-Soria, E. H.; León-Silva, U.; Rejón-García, L.; Lara-Ceniceros, T. E.; Advíncula, R. C.; Bonilla-Cruz, J. Super-Anticorrosive Materials Based on Bifunctionalized Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2020, 12, 45254–45265. doi:10.1021/acsami.0c11004
  • Sun, W.; Wang, L.; Yang, Z.; Wang, J.; Liu, G. Self-Unfolded Graphene for Corrosion Protection. Mater. Lett. 2021, 284, 128963. doi:10.1016/j.matlet.2020.128963
  • Berean, K. J.; Ou, J. Z.; Nour, M.; Field, M. R.; Alsaif, M. M.; Wang, Y.; Ramanathan, R.; Bansal, V.; Kentish, S.; Doherty, C. M.; et al. Enhanced Gas Permeation through Graphene Nanocomposites. J. Phys. Chem. C 2015, 119, 13700–13712. doi:10.1021/acs.jpcc.5b02995
  • Kim, H. W.; Yoon, H. W.; Yoon, S.-M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; et al. Selective Gas Transport through Few-Layered Graphene and Graphene Oxide Membranes. Science 2013, 342, 91–95. doi:10.1126/science.1236098
  • Liu, J.; Jin, L.; Allen, F. I.; Gao, Y.; Ci, P.; Kang, F.; Wu, J. Selective Gas Permeation in Defect-Engineered Bilayer Graphene. Nano Lett. 2021, 21, 2183–2190. doi:10.1021/acs.nanolett.0c04989
  • Pierleoni, D.; Minelli, M.; Ligi, S.; Christian, M.; Funke, S.; Reineking, N.; Morandi, V.; Doghieri, F.; Palermo, V. Selective Gas Permeation in Graphene Oxide–Polymer Self-Assembled Multilayers. ACS Appl. Mater. Interfaces 2018, 10, 11242–11250. doi:10.1021/acsami.8b01103
  • Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K. R.; Xu, N. Membranes with Fast and Selective Gas‐Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture. Angew. Chem. 2015, 127, 588–592. doi:10.1002/ange.201409563
  • Jiao, S.; Xu, Z. Selective Gas Diffusion in Graphene Oxides Membranes: A Molecular Dynamics Simulations Study. ACS Appl. Mater. Interfaces 2015, 7, 9052–9059. doi:10.1021/am509048k
  • Scherillo, G.; Lavorgna, M.; Buonocore, G. G.; Zhan, Y. H.; Xia, H. S.; Mensitieri, G.; Ambrosio, L. Tailoring Assembly of Reduced Graphene Oxide Nanosheets to Control Gas Barrier Properties of Natural Rubber Nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 2230–2234. doi:10.1021/am405768m
  • Munz, M.; Giusca, C. E.; Myers-Ward, R. L.; Gaskill, D. K.; Kazakova, O. Thickness-Dependent Hydrophobicity of Epitaxial Graphene. ACS Nano 2015, 9, 8401–8411. doi:10.1021/acsnano.5b03220
  • Ostrowski, J. H.; Eaves, J. D. The Tunable Hydrophobic Effect on Electrically Doped Graphene. J. Phys. Chem. B 2014, 118, 530–536. doi:10.1021/jp409342n
  • De Nicola, F.; Viola, I.; Tenuzzo, L. D.; Rasch, F.; Lohe, M. R.; Nia, A. S.; Schütt, F.; Feng, X.; Adelung, R.; Lupi, S. Wetting Properties of Graphene Aerogels. Sci. Rep. 2020, 10, 1916. doi:10.1038/s41598-020-58860-4
  • Leenaerts, O.; Partoens, B.; Peeters, F. Water on Graphene: Hydrophobicity and Dipole Moment Using Density Functional Theory. Phys. Rev. B 2009, 79, 235440. doi:10.1103/PhysRevB.79.235440
  • Zhang, X.; Wan, S.; Pu, J.; Wang, L.; Liu, X. Highly Hydrophobic and Adhesive Performance of Graphene Films. J. Mater. Chem. 2011, 21, 12251–12258. doi:10.1039/c1jm12087e
  • Liu, Z.; Duan, X.; Qian, G.; Zhou, X.; Yuan, W. Eco-Friendly One-Pot Synthesis of Highly Dispersible Functionalized Graphene Nanosheets with Free Amino Groups. Nanotechnology 2013, 24, 045609. doi:10.1088/0957-4484/24/4/045609
  • Guo, J.; Ren, L.; Wang, R.; Zhang, C.; Yang, Y.; Liu, T. Water Dispersible Graphene Noncovalently Functionalized with Tryptophan and Its Poly (Vinyl Alcohol) Nanocomposite. Composites Part B: Engineering 2011, 42, 2130–2135. doi:10.1016/j.compositesb.2011.05.008
  • Mhamane, D.; Ramadan, W.; Fawzy, M.; Rana, A.; Dubey, M.; Rode, C.; Lefez, B.; Hannoyer, B.; Ogale, S. From Graphite Oxide to Highly Water Dispersible Functionalized Graphene by Single Step Plant Extract-Induced Deoxygenation. Green Chem. 2011, 13, 1990–1996. doi:10.1039/c1gc15393e
  • Mohanty, N.; Moore, D.; Xu, Z.; Sreeprasad, T.; Nagaraja, A.; Rodriguez, A. A.; Berry, V. Nanotomy-Based Production of Transferable and Dispersible Graphene Nanostructures of Controlled Shape and Size. Nat. Commun. 2012, 3, 1–8. doi:10.1038/ncomms1834
  • Pham, V. H.; Dang, T. T.; Cuong, T. V.; Hur, S. H.; Kong, B.-S.; Kim, E. J.; Chung, J. S. Synthesis of Highly Concentrated Suspension of Chemically Converted Graphene in Organic Solvents: Effect of Temperature on the Extent of Reduction and Dispersibility. Korean J. Chem. Eng. 2012, 29, 680–685. doi:10.1007/s11814-011-0232-0
  • Jang, S.-Y.; Kim, Y.-G.; Kim, D. Y.; Kim, H.-G.; Jo, S. M. Electrodynamically Sprayed Thin Films of Aqueous Dispersible Graphene Nanosheets: Highly Efficient Cathodes for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 3500–3507. doi:10.1021/am3005913
  • Chouhan, A.; Sarkar, T. K.; Kumari, S.; Sivakumar, K.; Sugimura, H.; Khatri, O. P. Mechano-Adaptive Thin Film of Graphene-Based Polymeric Nanocomposite for Enhancement of Lubrication Properties. Appl. Surf. Sci. 2021, 538, 148041. doi:10.1016/j.apsusc.2020.148041
  • Eda, G.; Chhowalla, M. Graphene-Based Composite Thin Films for Electronics. Nano Lett. 2009, 9, 814–818. doi:10.1021/nl8035367
  • Eda, G.; Emrah Unalan, H.; Rupesinghe, N.; Amaratunga, G. A.; Chhowalla, M. Field Emission from Graphene Based Composite Thin Films. Appl. Phys. Lett. 2008, 93, 233502. doi:10.1063/1.3028339
  • Fonsaca, J. E.; Hostert, L.; Orth, E. S.; Zarbin, A. J. Tailoring Multifunctional Graphene-Based Thin Films: From Nanocatalysts to SERS Substrates. J. Mater. Chem. A 2017, 5, 9591–9603. doi:10.1039/C7TA01967J
  • Lee, J. S.; Shin, K.-Y.; Kim, C.; Jang, J. Enhanced Frequency Response of a Highly Transparent PVDF–Graphene Based Thin Film Acoustic Actuator. Chem. Commun. (Camb.) 2013, 49, 11047–11049. doi:10.1039/c3cc46807k
  • Lee, S.-K.; Jang, H. Y.; Jang, S.; Choi, E.; Hong, B. H.; Lee, J.; Park, S.; Ahn, J.-H. All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Lett. 2012, 12, 3472–3476. doi:10.1021/nl300948c
  • Liu, L.; Liu, Y.; Duan, X. Graphene-Based Vertical Thin Film Transistors. Sci. China Inf. Sci. 2020, 63, 1–12. doi:10.1007/s11432-020-2806-8
  • El-Hallag, I. S.; El-Nahass, M. N.; Youssry, S. M.; Kumar, R.; Abdel-Galeil, M. M.; Matsuda, A. Facile in-Situ Simultaneous Electrochemical Reduction and Deposition of Reduced Graphene Oxide Embedded Palladium Nanoparticles as High Performance Electrode Materials for Supercapacitor with Excellent Rate Capability. Electrochim. Acta 2019, 314, 124–134. doi:10.1016/j.electacta.2019.05.065
  • Kumar, R.; Singh, R. K.; Alaferdov, A. V.; Moshkalev, S. A. Rapid and Controllable Synthesis of Fe3O4 Octahedral Nanocrystals Embedded-Reduced Graphene Oxide Using Microwave Irradiation for High Performance Lithium-Ion Batteries. Electrochim. Acta 2018, 281, 78–87. doi:10.1016/j.electacta.2018.05.157
  • Youssry, S. M.; El-Hallag, I. S.; Kumar, R.; Kawamura, G.; Tan, W. K.; Matsuda, A.; El-Nahass, M. N. Electrochemical Deposition of Uniform and Porous Co–Ni Layered Double Hydroxide Nanosheets on Nickel Foam for Supercapacitor Electrode with Improved Electrochemical Efficiency. J. Energy Storage 2022, 50, 104638. doi:10.1016/j.est.2022.104638
  • Sahoo, S.; Kumar, R.; Joanni, E.; Singh, R. K.; Shim, J.-J. Advances in Pseudocapacitive and Battery-like Electrode Materials for High Performance Supercapacitors. J. Mater. Chem. A 2022, 10, 13190–13240. doi:10.1039/D2TA02357A
  • Youssry, S. M.; El-Hallag, I. S.; Kumar, R.; Kawamura, G.; Matsuda, A.; El-Nahass, M. N. Synthesis of Mesoporous Co(OH)2 Nanostructure Film via Electrochemical Deposition Using Lyotropic Liquid Crystal Template as Improved Electrode Materials for Supercapacitors Application. Electroanal. Chem. 2020, 857, 113728. doi:10.1016/j.jelechem.2019.113728
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Pérez del Pino, A.; Moshkalev, S. A.; Matsuda, A. A Review on Synthesis of Graphene, h-BN and MoS2 for Energy Storage Applications: Recent Progress and Perspectives. Nano Res. 2019, 12, 2655–2694. doi:10.1007/s12274-019-2467-8
  • Zhou, Q.; Zhao, Z.; Chen, Y.; Hu, H.; Qiu, J. Low Temperature Plasma-Mediated Synthesis of Graphene Nanosheets for Supercapacitor Electrodes. J. Mater. Chem. 2012, 22, 6061–6066. doi:10.1039/c2jm15572a
  • Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 2012, 12, 1806–1812. doi:10.1021/nl203903z
  • Bose, S.; Kim, N. H.; Kuila, T.; Lau, K.-t.; Lee, J. H. Electrochemical Performance of a Graphene–Polypyrrole Nanocomposite as a Supercapacitor Electrode. Nanotechnology 2011, 22, 295202. doi:10.1088/0957-4484/22/29/295202
  • Yan, J.; Wei, T.; Shao, B.; Ma, F.; Fan, Z.; Zhang, M.; Zheng, C.; Shang, Y.; Qian, W.; Wei, F. Electrochemical Properties of Graphene Nanosheet/Carbon Black Composites as Electrodes for Supercapacitors. Carbon 2010, 48, 1731–1737. doi:10.1016/j.carbon.2010.01.014
  • Jeong, J. H.; Lee, G.-W.; Kim, Y. H.; Choi, Y. J.; Roh, K. C.; Kim, K.-B. A Holey Graphene-Based Hybrid Supercapacitor. Chem. Eng. J. 2019, 378, 122126. doi:10.1016/j.cej.2019.122126
  • Zhou, C.; Gao, T.; Liu, Q.; Wang, Y.; Xiao, D. Preparation of Quinone Modified Graphene-Based Fiber Electrodes and Its Application in Flexible Asymmetrical Supercapacitor. Electrochim. Acta 2020, 336, 135628. doi:10.1016/j.electacta.2020.135628
  • Cui, F.; Zhao, J.; Zhang, D.; Fang, Y.; Hu, F.; Zhu, K. VO2 (B) nanobelts and Reduced Graphene Oxides Composites as Cathode Materials for Low-Cost Rechargeable Aqueous Zinc Ion Batteries. Chem. Eng. J. 2020, 390, 124118. doi:10.1016/j.cej.2020.124118
  • Zhao, Y.; Du, J.; Li, Y.; Li, X.; Zhang, C.; Zhang, X.; Zhang, Z.; Zhou, J.; Pan, X.; Xie, E. Facile Fabrication of Flexible Graphene-Based Micro-Supercapacitors with Ultra-High Areal Performance. ACS Appl. Energy Mater. 2020, 3, 8415–8422. doi:10.1021/acsaem.0c01036
  • Li, X.; Liu, D.; Yin, X.; Zhang, C.; Cheng, P.; Guo, H.; Song, W.; Wang, J. Hydrated Ruthenium Dioxides@ Graphene Based Fiber Supercapacitor for Wearable Electronics. J. Power Sources 2019, 440, 227143. doi:10.1016/j.jpowsour.2019.227143
  • Wang, B.; Park, J.; Wang, C.; Ahn, H.; Wang, G. Mn3O4 Nanoparticles Embedded into Graphene Nanosheets: Preparation, Characterization, and Electrochemical Properties for Supercapacitors. Electrochim. Acta 2010, 55, 6812–6817. doi:10.1016/j.electacta.2010.05.086
  • Hamra, A.; Lim, H.; Huang, N.; Gowthaman, N.; Nakajima, H.; Rahman, M. M. Microwave Exfoliated Graphene-Based Materials for Flexible Solid-State Supercapacitor. J. Mol. Struct. 2020, 1220, 128710. doi:10.1016/j.molstruc.2020.128710
  • Garakani, M. A.; Bellani, S.; Pellegrini, V.; Oropesa-Nuñez, R.; Castillo, A. E. D. R.; Abouali, S.; Najafi, L.; Martín-García, B.; Ansaldo, A.; Bondavalli, P.; et al. Scalable Spray-Coated Graphene-Based Electrodes for High-Power Electrochemical Double-Layer Capacitors Operating over a Wide Range of Temperature. Energy Storage Mater. 2021, 34, 1–11. doi:10.1016/j.ensm.2020.08.036
  • Barakzehi, M.; Montazer, M.; Sharif, F.; Norby, T.; Chatzitakis, A. A Textile-Based Wearable Supercapacitor Using Reduced Graphene Oxide/Polypyrrole Composite. Electrochim. Acta 2019, 305, 187–196. doi:10.1016/j.electacta.2019.03.058
  • Shao, F.; Hu, N.; Su, Y.; Yao, L.; Li, B.; Zou, C.; Li, G.; Zhang, C.; Li, H.; Yang, Z.; Zhang, Y. Non-Woven Fabric Electrodes Based on Graphene-Based Fibers for Areal-Energy-Dense Flexible Solid-State Supercapacitors. Chem. Eng. J. 2020, 392, 123692. doi:10.1016/j.cej.2019.123692
  • Wei, D.; Zhu, J.; Luo, L.; Huang, H.; Li, L.; Yu, X. Fabrication of Poly (Vinyl Alcohol)–Graphene Oxide–Polypyrrole Composite Hydrogel for Elastic Supercapacitors. J. Mater. Sci. 2020, 55, 11779–11791. doi:10.1007/s10853-020-04833-x
  • Selvamani, P. S.; Vijaya, J. J.; Kennedy, L. J.; Saravanakumar, B.; Bououdina, M. High-Performance Supercapacitor Based on Cu2O/MoS2/rGO Nanocomposite. Mater. Lett. 2020, 275, 128095. doi:10.1016/j.matlet.2020.128095
  • Zhang, L.; Tian, Y.; Song, C.; Qiu, H.; Xue, H. Study on Preparation and Performance of Flexible All-Solid-State Supercapacitor Based on Nitrogen-Doped RGO/CNT/MnO2 Composite Fibers. J. Alloys Compd. 2021, 859, 157816. doi:10.1016/j.jallcom.2020.157816
  • Ganguly, A.; Karakassides, A.; Benson, J.; Hussain, S.; Papakonstantinou, P. Multifunctional Structural Supercapacitor Based on Urea-Activated Graphene Nanoflakes Directly Grown on Carbon Fiber Electrodes. ACS Appl. Energy Mater. 2020, 3, 4245–4254. doi:10.1021/acsaem.9b02469
  • Yoruk, O.; Bayrak, Y.; Ates, M. Design and Assembly of Supercapacitor Based on Reduced Graphene Oxide/TiO2/Polyaniline Ternary Nanocomposite and Its Application in Electrical Circuit. Polym. Bull. 2022, 79, 2969–2993. doi:10.1007/s00289-021-03649-2
  • Gorshkov, N.; Yakovleva, E.; Krasnov, V.; Kiselev, N.; Artyukhov, D.; Artyukhov, I.; Yakovlev, A. Electrode for a Supercapacitor Based on Electrochemically Synthesized Multilayer Graphene Oxide. Russ. J. Appl. Chem. 2021, 94, 370–378. doi:10.1134/S1070427221030149
  • Kavinkumar, T.; Lee, H. H.; Kim, D.-H. Design of All-Solid-State Hybrid Supercapacitor Based on Mesoporous CoSnO3@ RGO Nanorods and B-Doped RGO Nanosheets Grown on Ni Foam for Energy Storage Devices of High Energy Density. Appl. Surf. Sci. 2021, 541, 148354. doi:10.1016/j.apsusc.2020.148354
  • Zhao, Z.; Wang, H.; Huang, H.; Li, L.; Yu, X. Graphene Oxide/Polypyrrole/Polyaniline Composite Hydrogel Synthesized by Vapor-Liquid Interfacial Method for Supercapacitors. Colloids Surf. A 2021, 626, 127125. doi:10.1016/j.colsurfa.2021.127125
  • Liu, Q.; Ning, J.; Guo, H.; Xia, M.; Wang, B.; Feng, X.; Wang, D.; Zhang, J.; Hao, Y. Tungsten-Modulated Molybdenum Selenide/Graphene Heterostructure as an Advanced Electrode for All-Solid-State Supercapacitors. Nanomaterials 2021, 11, 1477. doi:10.3390/nano11061477
  • Wu, Z.-S.; Ren, W.; Wang, D.-W.; Li, F.; Liu, B.; Cheng, H.-M. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano 2010, 4, 5835–5842. doi:10.1021/nn101754k
  • Guo, C. X.; Wang, M.; Chen, T.; Lou, X. W.; Li, C. M. A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High‐Performance Lithium Ion Batteries. Adv. Energy Mater. 2011, 1, 736–741. doi:10.1002/aenm.201100223
  • Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980. doi:10.1021/ja105296a
  • Guo, C. X.; Li, C. M. A Self-Assembled Hierarchical Nanostructure Comprising Carbon Spheres and Graphene Nanosheets for Enhanced Supercapacitor Performance. Energy Environ. Sci. 2011, 4, 4504–4507. doi:10.1039/c1ee01676h
  • Khakpour, I.; Rabiei Baboukani, A.; Allagui, A.; Wang, C. Bipolar Exfoliation and In Situ Deposition of High-Quality Graphene for Supercapacitor Application. ACS Appl. Energy Mater. 2019, 2, 4813–4820. doi:10.1021/acsaem.9b00479
  • Du, Q.; Zheng, M.; Zhang, L.; Wang, Y.; Chen, J.; Xue, L.; Dai, W.; Ji, G.; Cao, J. Preparation of Functionalized Graphene Sheets by a Low-Temperature Thermal Exfoliation Approach and Their Electrochemical Supercapacitive Behaviors. Electrochim. Acta 2010, 55, 3897–3903. doi:10.1016/j.electacta.2010.01.089
  • Myung, Y.; Jung, S.; Tung, T. T.; Tripathi, K. M.; Kim, T. Graphene-Based Aerogels Derived from Biomass for Energy Storage and Environmental Remediation. ACS Sustainable Chem. Eng. 2019, 7, 3772–3782. doi:10.1021/acssuschemeng.8b04202
  • Tang, X.-N.; Liu, C.-Z.; Chen, X.-R.; Deng, Y.-Q.; Chen, X.-H.; Shao, J.-J.; Yang, Q.-H. Graphene Aerogel Derived by Purification-Free Graphite Oxide for High Performance Supercapacitor Electrodes. Carbon 2019, 146, 147–154. doi:10.1016/j.carbon.2019.01.096
  • He, D.; Marsden, A. J.; Li, Z.; Zhao, R.; Xue, W.; Bissett, M. A. A Single Step Strategy to Fabricate Graphene Fibres via Electrochemical Exfoliation for Micro-Supercapacitor Applications. Electrochim. Acta 2019, 299, 645–653. doi:10.1016/j.electacta.2019.01.034
  • Fan, Z.; Yan, J.; Zhi, L.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M.; Qian, W.; Wei, F. A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 2010, 22, 3723–3728. doi:10.1002/adma.201001029
  • Yi, X.; Zhang, F.; Wang, J.; Wang, S.; Tong, H.; An, T.; Yu, W.-J. Facile Synthesis of NC/Si@ G Nanocomposite as a High-Performance Anode Material for Li-Ion Batteries. J. Alloys Compd. 2021, 872, 159716. doi:10.1016/j.jallcom.2021.159716
  • Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M. Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602. doi:10.1002/adfm.201001054
  • Yan, J.; Wei, T.; Qiao, W.; Shao, B.; Zhao, Q.; Zhang, L.; Fan, Z. Rapid Microwave-Assisted Synthesis of Graphene Nanosheet/Co3O4 Composite for Supercapacitors. Electrochim. Acta 2010, 55, 6973–6978. doi:10.1016/j.electacta.2010.06.081
  • Wang, C.; Hu, K.; Liu, Y.; Zhang, M.-R.; Wang, Z.; Li, Z. Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEIGel Electrolytes. Materials 2021, 14, 1955. doi:10.3390/ma14081955
  • Wu, Y.; Meng, Z.; Yang, J.; Xue, Y. Flexible Fiber-Shaped Supercapacitors Based on Graphene/Polyaniline Hybrid Fibers with High Energy Density and Capacitance. Nanotechnology 2021, 32, 295401. doi:10.1088/1361-6528/abf5fe
  • Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano. 2010, 4, 1963–1970. doi:10.1021/nn1000035
  • Elessawy, N. A.; Nady, J. E.; Wazeer, W.; Kashyout, A. Development of High-Performance Supercapacitor Based on a Novel Controllable Green Synthesis for 3D Nitrogen Doped Graphene. Sci. Rep. 2019, 9, 1–10. doi:10.1038/s41598-018-37369-x
  • Gorenskaia, E. N.; Kholkhoev, B. C.; Makotchenko, V. G.; Ivanova, M. N.; Fedorov, V. E.; Burdukovskii, V. F. Hydrothermal Synthesis of N-Doped Graphene for Supercapacitor Electrodes. J. Nanosci. Nanotechnol. 2020, 20, 3258–3264. doi:10.1166/jnn.2020.17388
  • Cui, L.; Li, Y.; Jia, M.; Cheng, C.; Jin, X. A Self-Assembled and Flexible Supercapacitor Based on Redox-Active Lignin-Based Nitrogen-Doped Activated Carbon Functionalized Graphene Hydrogels. J. Electrochem. Soc. 2021, 168, 053504. doi:10.1149/1945-7111/ac00f6
  • Guo, M.; Wei, C.; Liu, C.; Zhang, K.; Su, H.; Xie, K.; Zhai, P.; Zhang, J.; Liu, L. Composite Electrode Based on Single-Atom Ni Doped Graphene for Planar Carbon-Based Perovskite Solar Cells. Mater. Des. 2021, 209, 109972. doi:10.1016/j.matdes.2021.109972
  • Wang, R.; Zhao, Q.; Zheng, W.; Ren, Z.; Hu, X.; Li, J.; Lu, L.; Hu, N.; Molenda, J.; Liu, X.; Xu, C. Achieving High Energy Density in a 4.5 V All Nitrogen-Doped Graphene Based Lithium-Ion Capacitor. J. Mater. Chem. A 2019, 7, 19909–19921. doi:10.1039/C9TA06316A
  • Yadav, K. K.; Wadhwa, R.; Khan, N.; Jha, M. Efficient Metal-Free Supercapacitor Based on Graphene Oxide Derived from Waste Rice. Curr. Opin. Green Sustain. Chem. 2021, 4, 100075. doi:10.1016/j.crgsc.2021.100075
  • Yan, K.; Wu, J.; Wang, Y.-Y.; Liu, N.-N.; Li, J.-T.; Gao, Y.-P.; Hou, Z.-Q. An Asymmetric Supercapacitor Based on NiCo2O4 Nanosheets as Anode and Partially Reduced Graphene Oxides/Carbon Nanotubes as Cathode. Chem. Pap. 2020, 74, 591–599. doi:10.1007/s11696-019-00899-3
  • Atta, M.; Maksoud, M. A.; Sallam, O.; Awed, A. Gamma Irradiation Synthesis of Wearable Supercapacitor Based on Reduced Graphene Oxide/Cotton Yarn Electrode. J. Mater. Sci.: Mater. Electron. 2021, 32, 3688–3698. doi:10.1007/s10854-020-05114-8
  • Okhay, O.; Tkach, A.; Staiti, P.; Lufrano, F. Long Term Durability of Solid-State Supercapacitor Based on Reduced Graphene Oxide Aerogel and Carbon Nanotubes Composite Electrodes. Electrochim. Acta 2020, 353, 136540. doi:10.1016/j.electacta.2020.136540
  • Lo, H.-J.; Huang, M.-C.; Lai, Y.-H.; Chen, H.-Y. Towards Bi-Functional All-Solid-State Supercapacitor Based on Nickel Hydroxide-Reduced Graphene Oxide Composite Electrodes. Mater. Chem. Phys. 2021, 262, 124306. doi:10.1016/j.matchemphys.2021.124306
  • Youssry, S. M.; El-Nahass, M. N.; Kumar, R.; El-Hallag, I. S.; Tan, W. K.; Matsuda, A. Superior Performance of Ni(OH)2-ErGO@ NF Electrode Materials as Pseudocapacitance Using Electrochemical Deposition via Two Simple Successive Steps. J. Energy Storage 2020, 30, 101485. doi:10.1016/j.est.2020.101485
  • Kumar, R.; Youssry, S. M.; Ya, K. Z.; Tan, W. K.; Kawamura, G.; Matsuda, A. Microwave-Assisted Synthesis of Mn3O4-Fe2O3/Fe3O4@rGO Ternary Hybrids and Electrochemical Performance for Supercapacitor Electrode. Diamond Relat. Mater. 2020, 101, 107622. doi:10.1016/j.diamond.2019.107622
  • Kumar, R.; Singh, R. K.; Vaz, A. R.; Moshkalev, S. A. Microwave-Assisted Synthesis and Deposition of a Thin ZnO Layer on Microwave-Exfoliated Graphene: Optical and Electrochemical Evaluations. RSC Adv. 2015, 5, 67988–67995. doi:10.1039/C5RA09936F
  • Kumar, R.; Youssry, S. M.; Abdel-Galeil, M. M.; Matsuda, A. One-Pot Synthesis of Reduced Graphene Oxide Nanosheets Anchored ZnO Nanoparticles via Microwave Approach for Electrochemical Performance as Supercapacitor Electrode. J. Mater. Sci: Mater. Electron. 2020, 31, 15456–15465. doi:10.1007/s10854-020-04108-w
  • Roy, A.; Majumdar, P.; Sengupta, P.; Kundu, S.; Shinde, S.; Jha, A.; Pramanik, K.; Saha, H. A Photoelectrochemical Supercapacitor Based on a Single BiVO4-RGO Bilayer Photocapacitive Electrode. Electrochim. Acta 2020, 329, 135170. doi:10.1016/j.electacta.2019.135170
  • Chen, T.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. All-Solid High-Performance Asymmetric Supercapacitor Based on Yolk–Shell NiMoO4/V2CT x@ Reduced Graphene Oxide and Hierarchical Bamboo-Shaped MoO2@ Fe2O3/N-Doped Carbon. Energy Fuels 2021, 35, 10250–10261. doi:10.1021/acs.energyfuels.1c00913
  • Chen, Y.; Bai, J.; Yang, D.; Sun, P.; Li, X. Excellent Performance of Flexible Supercapacitor Based on the Ternary Composites of Reduced Graphene Oxide/Molybdenum Disulfide/Poly (3, 4-Ethylenedioxythiophene). Electrochim. Acta 2020, 330, 135205. doi:10.1016/j.electacta.2019.135205
  • Azizi, E.; Arjomandi, J.; Salimi, A.; Lee, J. Y. Fabrication of an Asymmetric Supercapacitor Based on Reduced Graphene Oxide/Polyindole/γ − Al2O3 Ternary Nanocomposite with High-Performance Capacitive Behavior. Polymer 2020, 195, 122429. doi:10.1016/j.polymer.2020.122429
  • Chen, J.; Liu, R.; Zhu, L.; Chen, W.; Dong, C.; Wan, Z.; Cao, W.; Zhang, X.; Peng, R.; Wang, M. Sb2S3-Based Bulk/Nano Planar Heterojunction Film Solar Cells with Graphene/Polymer Composite Layer as Hole Extracting Interface. Mater. Lett. 2021, 300, 130190. doi:10.1016/j.matlet.2021.130190
  • Rahimpour, K.; Teimuri-Mofrad, R. Novel Hybrid Supercapacitor Based on Ferrocenyl Modified Graphene Quantum Dot and Polypyrrole Nanocomposite. Electrochim. Acta 2020, 345, 136207. doi:10.1016/j.electacta.2020.136207
  • Huang, X.; Zhou, X.; Zhou, L.; Qian, K.; Wang, Y.; Liu, Z.; Yu, C. A Facile One‐Step Solvothermal Synthesis of SnO2/Graphene Nanocomposite and Its Application as an Anode Material for Lithium‐Ion Batteries. Chemphyschem 2011, 12, 278–281. doi:10.1002/cphc.201000376
  • He, Y.-S.; Bai, D.-W.; Yang, X.; Chen, J.; Liao, X.-Z.; Ma, Z.-F. A Co(OH)2− Graphene Nanosheets Composite as a High Performance Anode Material for Rechargeable Lithium Batteries. Electrochem. Commun. 2010, 12, 570–573. doi:10.1016/j.elecom.2010.02.002
  • Huang, G.; Han, J.; Yang, C.; Wang, Z.; Fujita, T.; Hirata, A.; Chen, A. Graphene-based Quasi-solid-state Lithium–oxygen Batteries with High Energy Efficiency and a Long Cycling Lifetime. PG Asia Mater. 2018, 10, 1037–1045. doi:10.1038/s41427-018-0095-5
  • Lavoie, N.; Malenfant, P. R.; Courtel, F. M.; Abu-Lebdeh, Y.; Davidson, I. J. High Gravimetric Capacity and Long Cycle Life in Mn3O4/Graphene Platelet/LiCMC Composite Lithium-Ion Battery Anodes. J. Power Sources 2012, 213, 249–254. doi:10.1016/j.jpowsour.2012.03.055
  • Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Saraf, L. V.; Hu, D.; Zhang, J.; Graff, G. L.; et al. Ternary Self-Assembly of Ordered Metal Oxide − Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano 2010, 4, 1587–1595. doi:10.1021/nn901819n
  • Sui, D.; Xu, L.; Zhang, H.; Sun, Z.; Kan, B.; Ma, Y.; Chen, Y. A 3D Cross-Linked Graphene-Based Honeycomb Carbon Composite with Excellent Confinement Effect of Organic Cathode Material for Lithium-Ion Batteries. Carbon 2020, 157, 656–662. doi:10.1016/j.carbon.2019.10.106
  • Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277–2282. doi:10.1021/nl800957b
  • Mussa, Y.; Bayhan, Z.; Althubaiti, N.; Arsalan, M.; Alsharaeh, E. Hexagonal Boron Nitride Effect on the Performance of Graphene-Based Lithium–Sulfur Batteries and Its Stability at Elevated Temperatures. Mater. Chem. Phys. 2021, 257, 123807. doi:10.1016/j.matchemphys.2020.123807
  • Bin, D.-S.; Duan, S.-Y.; Lin, X.-J.; Liu, L.; Liu, Y.; Xu, Y.-S.; Sun, Y.-G.; Tao, X.-S.; Cao, A.-M.; Wan, L.-J. Structural Engineering of SnS2/Graphene Nanocomposite for High-Performance K-Ion Battery Anode. Nano Energy 2019, 60, 912–918. doi:10.1016/j.nanoen.2019.04.032
  • Asif, M.; Rashad, M.; Shah, J. H.; Zaidi, S. D. A. Surface Modification of Tin Oxide through Reduced Graphene Oxide as a Highly Efficient Cathode Material for Magnesium-Ion Batteries. J. Colloid Interface Sci. 2020, 561, 818–828. doi:10.1016/j.jcis.2019.11.064
  • Mo, Runwei, Tan, Xinyi, Li, Fan, Tao, Ran, Xu, Jinhui, Kong, Dejia, Wang, Zhiyong, Xu, Bin, Wang, Xiang, Wang, Chongmin, Li, Jinlai, Peng, Yiting, Tin-Graphene Tubes as Anodes for Lithium-Ion Batteries with High Volumetric and Gravimetric Energy Densities, Nat. Commun. 2020, 11, 1374. doi:10.1038/s41467-020-14859-z
  • Yi, G.; Li, P.; Xing, B.; Tian, Q.; Zhang, X.; Xu, B.; Huang, G.; Chen, L.; Zhang, Y. Nitrogen-Rich Graphene Aerogel with Interconnected Thousand-Layer Pancake Structure as Anode for High Performance of Lithium-Ion Batteries. J. Solid State Chem. 2021, 294, 121859. doi:10.1016/j.jssc.2020.121859
  • Qin, Y.; Li, J.; Jin, X.; Jiao, S.; Chen, Y.; Cai, W.; Cao, R. Anthraquinone-Functionalized Graphene Framework for Supercapacitors and Lithium Batteries. Ceram. Int. 2020, 46, 15379–15384. doi:10.1016/j.ceramint.2020.03.082
  • Duan, W.; Zhao, M.; Li, Y.; Lashari, N. U. R.; Xu, T.; Wang, F.; Song, X. Excellent Rate Capability and Cycling Stability of Novel H2V3O8 Doped with Graphene Materials Used in New Aqueous Zinc-Ion Batteries. Energy Fuels 2020, 34, 3877–3886. doi:10.1021/acs.energyfuels.9b03736
  • Koroteev, V.; Stolyarova, S.; Kotsun, A.; Modin, E.; Makarova, A.; Shubin, Y.; Plyusnin, P.; Okotrub, A.; Bulusheva, L. Nanoscale Coupling of MoS2 and Graphene via Rapid Thermal Decomposition of Ammonium Tetrathiomolybdate and Graphite Oxide for Boosting Capacity of Li-Ion Batteries. Carbon 2021, 173, 194–204. doi:10.1016/j.carbon.2020.10.097
  • Wu, Y.-Q.; Zhao, Y.-S.; Meng, W.-J.; Xie, Y.; Zhang, J.; He, C.-J.; Zhao, D.-L. Nanoplates-Assembled SnS2 Nanoflowers with Carbon Coating Anchored on Reduced Graphene Oxide for High Performance Li-Ion Batteries. Appl. Surf. Sci. 2021, 539, 148283. doi:10.1016/j.apsusc.2020.148283
  • Deping, W.; Wenming, H.; Wufeng, F.; Xiaohong, X.; Junqiang, L.; Hongbo, L. Shape-Assisted Spherical MOFs/Amine Functionalized Graphene Hybrids for High-Performance Lithium-Ion Batteries. Microporous Mesoporous Mater. 2021, 323, 111240. doi:10.1016/j.micromeso.2021.111240
  • Kim, J.; Jang, W.; Kim, J. H.; Yang, C.-M. Synthesis of Graphene Quantum Dots-Coated Hierarchical CuO Microspheres Composite for Use as Binder-Free Anode for Lithium-Ion Batteries. Compos. B: Eng. 2021, 222, 109083. doi:10.1016/j.compositesb.2021.109083
  • Rish, S. K.; Tahmasebi, A.; Wang, R.; Dou, J.; Yu, J. Novel Composite Nano-Materials with 3D Multilayer-Graphene Structures from Biomass-Based Activated-Carbon for Ultrahigh Li-Ion Battery Performance. Electrochim. Acta 2021, 390, 138839. doi:10.1016/j.electacta.2021.138839
  • Liao, W.; Gao, Y.; Wang, W.; Zuo, X.; Yang, Q.; Lin, Y.; Tang, H.; Jin, S.; Li, G. Boosted Reactivity of Low-Cost Solar Cells over a CuO/Co3O4 Interfacial Structure Integrated with Graphene Oxide. ACS Sustainable Chem. Eng. 2020, 8, 7308–7315. doi:10.1021/acssuschemeng.0c00282
  • Chen, Z.; An, X.; Dai, L.; Xu, Y. Holey Graphene-Based Nanocomposites for Efficient Electrochemical Energy Storage. Nano Energy 2020, 73, 104762. doi:10.1016/j.nanoen.2020.104762
  • Sun, D.; Tan, Z.; Tian, X.; Ke, F.; Wu, Y.; Zhang, J. Graphene: A Promising Candidate for Charge Regulation in High-Performance Lithium-Ion Batteries. Nano Res. 2021, 14, 4370–4385. doi:10.1007/s12274-021-3405-0
  • Liu, Y.; Yu, J.; Guo, D.; Li, Z.; Su, Y. Ti3C2Tx MXene/Graphene Nanocomposites: Synthesis and Application in Electrochemical Energy Storage. J. Alloys Compd. 2020, 815, 152403. doi:10.1016/j.jallcom.2019.152403
  • Li, G.; Huang, B.; Pan, Z.; Su, X.; Shao, Z.; An, L. Advances in Three-Dimensional Graphene-Based Materials: Configurations, Preparation and Application in Secondary Metal (Li, Na, K, Mg, Al)-Ion Batteries. Energy Environ. Sci. 2019, 12, 2030–2053. doi:10.1039/C8EE03014F
  • Aghamohammadi, H.; Hassanzadeh, N.; Eslami-Farsani, R. A Review Study on the Recent Advances in Developing the Heteroatom-Doped Graphene and Porous Graphene as Superior Anode Materials for Li-Ion Batteries. Ceram. Int. 2021, 47, 22269–22301. doi:10.1016/j.ceramint.2021.05.048
  • Zhang, C.; Dong, L.; Zheng, N.; Zhu, H.; Wu, C.; Zhao, F.; Liu, W. Aligned Graphene Array Anodes with Dendrite-Free Behavior for High-Performance Li-Ion Batteries. Energy Storage Mater. 2021, 37, 296–305. doi:10.1016/j.ensm.2021.02.014
  • Feng, Q.; Li, T.; Sui, Y.; Xiao, B.; Wang, T.; Sun, Z.; Qi, J.; Wei, F.; Meng, Q.; Ren, Y.; Xue, X. Scalable Synthesis and First-Principles Study of Nitrogen and Sulfur Dual-Doped Porous Graphene Aerogels/Natural Graphite as Anode Materials for Li-Ion Batteries. J. Alloys Compd. 2021, 884, 160923. doi:10.1016/j.jallcom.2021.160923
  • Doñoro, Á.; Muñoz-Mauricio, Á.; Etacheri, V. High-Performance Lithium Sulfur Batteries Based on Multidimensional Graphene-CNT-Nanosulfur Hybrid Cathodes. Batteries 2021, 7, 26. doi:10.3390/batteries7020026
  • Chong, W. G.; Ng, Z. I.; Yap, S. L.; Foo, C. Y.; Jiang, H.; Guo, H.; Lim, H. N.; Huang, N. M. Facile Fabrication of Freestanding Graphene Nanoplatelets Composite Electrodes for Multi Battery Storage. Mater. Today Commun. 2022, 31, 103782. doi:10.1016/j.mtcomm.2022.103782
  • Paek, S.-M.; Yoo, E.; Honma, I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett. 2009, 9, 72–75. doi:10.1021/nl802484w
  • Shao, F.; Li, H.; Yao, L.; Xu, S.; Li, G.; Li, B.; Zou, C.; Yang, Z.; Su, Y.; Hu, N.; Zhang, Y. Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 27270–27277. doi:10.1021/acsami.1c04277
  • Zhang, Y.; Cheng, Y.; Song, J.; Zhang, Y.; Shi, Q.; Wang, J.; Tian, F.; Yuan, S.; Su, Z.; Zhou, C.; et al. Functionalization-Assistant Ball Milling towards Si/Graphene Anodes in High Performance Li-Ion Batteries. Carbon 2021, 181, 300–309. doi:10.1016/j.carbon.2021.05.024
  • Khanna, S.; Marathey, P.; Vanpariya, A.; Paneliya, S.; Mukhopadhyay, I. In-Situ Preparation of Titania/Graphene Nanocomposite via a Facile Sol-Gel Strategy: A Promising Anodic Material for Li-Ion Batteries. Mater. Lett. 2021, 300, 130143. doi:10.1016/j.matlet.2021.130143
  • Yao, Z.; Cai, D.; Cui, Z.; Wang, Q.; Zhan, H. Strongly Coupled Zinc Manganate Nanodots and Graphene Composite as an Advanced Cathode Material for Aqueous Zinc Ion Batteries. Ceram. Int. 2020, 46, 11237–11245. doi:10.1016/j.ceramint.2020.01.148
  • Zhang, K.; Han, P.; Gu, L.; Zhang, L.; Liu, Z.; Kong, Q.; Zhang, C.; Dong, S.; Zhang, Z.; Yao, J.; et al. Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 658–664. doi:10.1021/am201173z
  • Zhang, W.; Liang, S.; Fang, G.; Yang, Y.; Zhou, J. Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Lett. 2019, 11, 12. doi:10.1007/s40820-019-0300-2
  • Ma, J.; Zhang, Y.; Qin, C.; Ren, F.; Wang, G. Effects of Polystyrene Sulfonate/Graphene and Mn3O4/Graphene on Property of Aluminum (Zinc)-Air Batteries. Int. J. Hydrogen Energy 2020, 45, 13025–13034. doi:10.1016/j.ijhydene.2020.02.222
  • Chong, W. G.; Xiao, F.; Yao, S.; Cui, J.; Sadighi, Z.; Wu, J.; Ihsan-Ul-Haq, M.; Shao, M.; Kim, J.-K. Nitrogen-Doped Graphene Fiber Webs for Multi-Battery Energy Storage. Nanoscale 2019, 11, 6334–6342. doi:10.1039/c8nr10025j
  • Yang, J.; Jia, K.; Wang, M.; Liu, S.; Hu, C.; Zhang, K.; Zhang, Y.; Qiu, J. Fabrication of Nitrogen-Doped Porous Graphene Hybrid Nanosheets from Metal–Organic Frameworks for Lithium-Ion Batteries. Nanotechnology 2020, 31, 145402. doi:10.1088/1361-6528/ab6475
  • Gao, M.; Xu, Y.; Chang, X.; Dong, Y.; Song, Z. Effects of Foliar Application of Graphene Oxide on Cadmium Uptake by Lettuce. J. Hazard. Mater. 2020, 398, 122859. doi:10.1016/j.jhazmat.2020.122859
  • Xu, Y.; Yi, R.; Yuan, B.; Wu, X.; Dunwell, M.; Lin, Q.; Fei, L.; Deng, S.; Andersen, P.; Wang, D.; Luo, H. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries. J. Phys. Chem. Lett. 2012, 3, 309–314. doi:10.1021/jz201619r
  • Zhao, X.; Wang, W.; Hou, Z.; Wei, G.; Yu, Y.; Zhang, J.; Quan, Z. SnP0.94 Nanoplates/Graphene Oxide Composite for Novel Potassium-Ion Battery Anode. Chem. Eng. J. 2019, 370, 677–683. doi:10.1016/j.cej.2019.03.250
  • Du, W.; Xiao, J.; Geng, H.; Yang, Y.; Zhang, Y.; Ang, E. H.; Ye, M.; Li, C. C. Rational-Design of Polyaniline Cathode Using Proton Doping Strategy by Graphene Oxide for Enhanced Aqueous Zinc-Ion Batteries. J. Power Sources 2020, 450, 227716. doi:10.1016/j.jpowsour.2020.227716
  • Fouladvand, M.; Naji, L.; Javanbakht, M.; Rahmanian, A. Electrochemical Characterization of Li-Ion Conducting Polyvinylidene Fluoride/Sulfonated Graphene Oxide Nanocomposite Polymer Electrolyte Membranes for Lithium Ion Batteries. J. Membr. Sci. 2021, 636, 119563. doi:10.1016/j.memsci.2021.119563
  • Tang, F.; Gao, J.; Ruan, Q.; Wu, X.; Wu, X.; Zhang, T.; Liu, Z.; Xiang, Y.; He, Z.; Wu, X. Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc Ion Batteries. Electrochim. Acta 2020, 353, 136570. doi:10.1016/j.electacta.2020.136570
  • Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Takemoto, K.; Kanamura, K.; Abe, H. Li-Ion Conducting Glass Ceramic (LICGC)/Reduced Graphene Oxide Sandwich-like Structure Composite for High-Performance Lithium-Ion Batteries. J. Power Sources 2021, 500, 229976. doi:10.1016/j.jpowsour.2021.229976
  • Oh, J.; Jang, J.; Lim, E.; Jo, C.; Chun, J. Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries. Materials 2021, 14, 547. doi:10.3390/ma14030547
  • Zhang, Y.; Liu, W.; Zhu, Y.; Zhang, Y.; Zhang, R.; Li, K.; Liu, G. Facile Self-Assembly Solvothermal Preparation of CuO/Cu2O/Coal-Based Reduced Graphene Oxide Nanosheet Composites as an Anode for High-Performance Lithium-Ion Batteries. Energy Fuels 2021, 35, 8961–8969. doi:10.1021/acs.energyfuels.1c00473
  • Sun, W.; Xu, Y.; Chen, X.; Xu, Y.; Wu, F.; Wang, Y. Reduced Graphene Oxide Modified with Naphthoquinone for Effective Immobilization of Polysulfides in High-Performance Li-S Batteries. Chem. Eng. J. 2020, 383, 123111. doi:10.1016/j.cej.2019.123111
  • Lei, J.; Fan, X.-X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R.-M.; Zheng, M.-S.; Dong, Q.-F.; Chen, J.-J. Single-Dispersed Polyoxometalate Clusters Embedded on Multilayer Graphene as a Bifunctional Electrocatalyst for Efficient Li-S Batteries. Nat. Commun. 2022, 13, 202. doi:10.1038/s41467-021-27866-5
  • Khan, F.; Oh, M.; Kim, J. H. N-Functionalized Graphene Quantum Dots: Charge Transporting Layer for High-Rate and Durable Li4Ti5O12-Based Li-Ion Battery. Chem. Eng. J. 2019, 369, 1024–1033. doi:10.1016/j.cej.2019.03.161
  • Guo, C. X.; Guai, G. H.; Li, C. M. Graphene Based Materials: Enhancing Solar Energy Harvesting; Adv. Energy Mater. 2011, 1, 448–452. doi:10.1002/aenm.201100119
  • Liu, M.; Chen, C.; Hu, J.; Wu, X.; Wang, X. Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt (II) Removal. J. Phys. Chem. C 2011, 115, 25234–25240. doi:10.1021/jp208575m
  • Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-Layered Graphene Oxide Nanosheets as Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454–10462. doi:10.1021/es203439v
  • Lin, X.; Su, H.; He, S.; Song, Y.; Wang, Y.; Qin, Z.; Wu, Y.; Yang, X.; Han, Q.; Fang, J.; et al. In Situ Growth of Graphene on Both Sides of a Cu–Ni Alloy Electrode for Perovskite Solar Cells with Improved Stability. Nat. Energy 2022, 7, 520–527. doi:10.1038/s41560-022-01038-1
  • Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nature Photon. 2010, 4, 611–622. doi:10.1038/nphoton.2010.186
  • Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. doi:10.1021/nn901587x
  • Zhang, D.; Xie, F.; Lin, P.; Choy, W. C. H. Al-TiO2 Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for Organic Solar Cells. ACS Nano. 2013, 7, 1740–1747. doi:10.1021/nn3058399
  • Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Adv. Mater. 2008, 20, 3924–3930. doi:10.1002/adma.200800366
  • Miao, X.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High Efficiency Graphene Solar Cells by Chemical Doping. Nano Lett. 2012, 12, 2745–2750. doi:10.1021/nl204414u
  • Park, N.-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology. Mater. Today 2015, 18, 65–72. doi:10.1016/j.mattod.2014.07.007
  • Bouclé, J.; Herlin-Boime, N. The Benefits of Graphene for Hybrid Perovskite Solar Cells. Synth. Met. 2016, 222, 3–16. doi:10.1016/j.synthmet.2016.03.030
  • Lang, F.; Gluba, M. A.; Albrecht, S.; Rappich, J.; Korte, L.; Rech, B.; Nickel, N. H. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. J. Phys. Chem. Lett. 2015, 6, 2745–2750. doi:10.1021/acs.jpclett.5b01177
  • Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent Conductive Oxide‐Free Graphene‐Based Perovskite Solar Cells with over 17% Efficiency. Adv. Energy Mater. 2016, 6, 1501873. doi:10.1002/aenm.201501873
  • Park, H.; Rowehl, J. A.; Kim, K. K.; Bulovic, V.; Kong, J. Doped Graphene Electrodes for Organic Solar Cells. Nanotechnology 2010, 21, 505204. doi:10.1088/0957-4484/21/50/505204
  • Jaramillo-Quintero, O. A.; Alarcón-Altamirano, Y. A.; Miranda-Gamboa, R. A.; Rincón, M. E. Interfacial Engineering by Non-Toxic Graphene-Based Nanoribbons for Improved Performance of Planar Sb2S3 Solar Cells. Appl. Surf. Sci. 2020, 526, 146705. doi:10.1016/j.apsusc.2020.146705
  • Koo, D.; Jung, S.; Seo, J.; Jeong, G.; Choi, Y.; Lee, J.; Lee, S. M.; Cho, Y.; Jeong, M.; Lee, J.; et al. Flexible Organic Solar Cells over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule 2020, 4, 1021–1034. doi:10.1016/j.joule.2020.02.012
  • Fallahazad, P.; Naderi, N.; Eshraghi, M. J. Improved Photovoltaic Performance of Graphene-Based Solar Cells on Textured Silicon Substrate. J. Alloys Compd. 2020, 834, 155123. doi:10.1016/j.jallcom.2020.155123
  • Jin, J.; Li, J.; Tai, Q.; Chen, Y.; Mishra, D.; Deng, W.; Xin, J.; Guo, S.; Xiao, B.; Wang, X. Efficient and Stable Flexible Perovskite Solar Cells based on Graphene-AgNWs Substrate and Carbon Electrode without Hole Transport Materials. J Power Sources 2021, 482, 228953. doi:10.1016/j.jpowsour.2020.228953
  • Krishnamoorthy, D.; Prakasam, A. Preparation of MoS2/Graphene Nanocomposite-Based Photoanode for Dye-Sensitized Solar Cells (DSSCs). Inorg. Chem. Commun. 2020, 118, 108016. doi:10.1016/j.inoche.2020.108016
  • Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.; Zhang, J.; Hao, Y. Boosting Performance of Perovskite Solar Cells with Graphene Quantum Dots Decorated SnO2 Electron Transport Layers. Appl. Surf. Sci. 2020, 507, 145099. doi:10.1016/j.apsusc.2019.145099
  • Kang, A. K.; Zandi, M. H.; Gorji, N. E. Fabrication and Degradation Analysis of Perovskite Solar Cells with Graphene Reduced Oxide as Hole Transporting Layer. J. Electron. Mater. 2020, 49, 2289–2295. doi:10.1007/s11664-019-07893-1
  • Chang, Y.-C.; Tseng, C.-A.; Lee, C.-P.; Ann, S.-B.; Huang, Y.-J.; Ho, K.-C.; Chen, Y.-T. N-and S-Codoped Graphene Hollow Nanoballs as an Efficient Pt-Free Electrocatalyst for Dye-Sensitized Solar Cells. J. Power Sources 2020, 449, 227470. doi:10.1016/j.jpowsour.2019.227470
  • Wang, S.; Xie, Y.; Shi, K.; Zhou, W.; Xing, Z.; Pan, K.; Cabot, A. Monodispersed Nickel Phosphide Nanocrystals In Situ Grown on Reduced Graphene Oxide with Controllable Size and Composition as a Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chem. Eng. 2020, 8, 5920–5926. doi:10.1021/acssuschemeng.0c00005
  • Merazga, A.; Al-Zahrani, J.; Al-Baradi, A.; Omer, B.; Badawi, A.; Al-Omairy, S. Optical Band-Gap of Reduced Graphene Oxide/TiO2 Composite and Performance of Associated Dye-Sensitized Solar Cells. Mater. Sci. Eng.: B 2020, 259, 114581. doi:10.1016/j.mseb.2020.114581
  • Amollo, T. A.; Mola, G. T.; Nyamori, V. O. Improved Short-Circuit Current Density in Bulk Heterojunction Solar Cells with Reduced Graphene Oxide-Germanium Dioxide Nanocomposite in the Photoactive Layer. Mater. Chem. Phys. 2020, 254, 123448. doi:10.1016/j.matchemphys.2020.123448
  • Porfarzollah, A.; Mohammad-Rezaei, R.; Bagheri, M. Ionic Liquid-Functionalized Graphene Quantum Dots as an Efficient Quasi-Solid-State Electrolyte for Dye-Sensitized Solar Cells. J. Mater. Sci: Mater. Electron. 2020, 31, 2288–2297. doi:10.1007/s10854-019-02761-4
  • Kadhim, A. K.; Mohammad, M. R.; Abd Ali, A. I.; Mohammed, M. K. Reduced Graphene Oxide/Bi2O3 Composite as a Desirable Candidate to Modify the Electron Transport Layer of Mesoscopic Perovskite Solar Cells. Energy Fuels 2021, 35, 8944–8952. doi:10.1021/acs.energyfuels.1c00848
  • Koo, D.; Kim, U.; Cho, Y.; Lee, J.; Seo, J.; Choi, Y.; Choi, K. J.; Baik, J. M.; Yang, C.; Park, H. Graphene-Assisted Zwitterionic Conjugated Polycyclic Molecular Interfacial Layer Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Chem. Mater. 2021, 33, 5563–5571. doi:10.1021/acs.chemmater.1c00662
  • Jang, C. W.; Shin, D. H.; Choi, S.-H. Porous Silicon Solar Cells with 13.66% Efficiency Achieved by Employing Graphene-Quantum-Dots Interfacial Layer, Doped-Graphene Electrode, and Bathocuproine Back-Surface Passivation Layer. J. Alloys Compd. 2021, 877, 160311. doi:10.1016/j.jallcom.2021.160311
  • Dhonde, M.; Sahu, K.; Murty, V. Cu-Doped TiO2 Nanoparticles/Graphene Composites for Efficient Dye-Sensitized Solar Cells. Sol. Energy 2021, 220, 418–424. doi:10.1016/j.solener.2021.03.072
  • Kamarulzaman, U.; Rahman, M.; Su’ait, M.; Umar, A. NickelPalladium Alloy–Reduced Graphene Oxide as Counter Electrode for Dye-Sensitized Solar Cells. J. Mol. Liq. 2021, 326, 115289. doi:10.1016/j.molliq.2021.115289
  • Tamilselvi, C.; Duraisamy, P.; Subathra, N. Graphene Wrapped NiSe2 Nanocomposite-Based Counter Electrode for Dye-Sensitized Solar Cells (DSSCs). Diamond Relat. Mater. 2021, 116, 108396. doi:10.1016/j.diamond.2021.108396
  • Fakharan, Z.; Naji, L.; Madanipour, K.; Dabirian, A. Complex Electrochemical Study of Reduced Graphene Oxide/Pt Produced by Nd: YAG Pulsed Laser Reduction as Photo-Anode in Polymer Solar Cells. Electroanal. Chem. 2021, 880, 114927. doi:10.1016/j.jelechem.2020.114927
  • Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. Highly Stable Perovskite Solar Cells Based on Perovskite/NiO-Graphene Composites and NiO Interface with 25.9 mA/cm2 Photocurrent Density and 20.8% Efficiency. Nano Energy 2021, 79, 105452. doi:10.1016/j.nanoen.2020.105452
  • Xu, Y.; Long, G.; Huang, L.; Huang, Y.; Wan, X.; Ma, Y.; Chen, Y. Polymer Photovoltaic Devices with Transparent Graphene Electrodes Produced by Spin-Casting. Carbon 2010, 48, 3308–3311. doi:10.1016/j.carbon.2010.05.017
  • Tran, V.-D.; Pammi, S.; Park, B.-J.; Han, Y.; Jeon, C.; Yoon, S.-G. Transfer-Free Graphene Electrodes for Super-Flexible and Semi-Transparent Perovskite Solar Cells Fabricated under Ambient Air. Nano Energy 2019, 65, 104018. doi:10.1016/j.nanoen.2019.104018
  • Rehman, M. A.; Roy, S. B.; Akhtar, I.; Bhopal, M. F.; Choi, W.; Nazir, G.; Khan, M. F.; Kumar, S.; Eom, J.; Chun, S.-H.; Seo, Y. Thickness-Dependent Efficiency of Directly Grown Graphene Based Solar Cells. Carbon 2019, 148, 187–195. doi:10.1016/j.carbon.2019.03.079
  • Lancellotti, L.; Bobeico, E.; Della Noce, M.; Mercaldo, L. V.; Usatii, I.; Veneri, P. D.; Bianco, G. V.; Sacchetti, A.; Bruno, G. Graphene as Non Conventional Transparent Conductive Electrode in Silicon Heterojunction Solar Cells. Appl. Surf. Sci. 2020, 525, 146443. doi:10.1016/j.apsusc.2020.146443
  • Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327. doi:10.1021/nl072838r
  • Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S.-E.; Chen, S.-F.; Liu, C.-P.; et al. Graphene − Silica Composite Thin Films as Transparent Conductors. Nano Lett. 2007, 7, 1888–1892. doi:10.1021/nl070477+
  • Dadashbeik, M.; Fathi, D.; Eskandari, M. Design and Simulation of Perovskite Solar Cells Based on Graphene and TiO2/Graphene Nanocomposite as Electron Transport Layer. Sol. Energy 2020, 207, 917–924. doi:10.1016/j.solener.2020.06.102
  • Chang, C.-H.; Chuang, C.-H.; Zhong, D.-Y.; Lin, J.-C.; Sung, C.-C.; Hsu, C.-Y. Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells. Coatings 2021, 11, 796. doi:10.3390/coatings11070796
  • Mnasri, G.; Mansouri, S.; Yalçin, M.; El Mir, L.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Characterization and Study of CdS Quantum Dots Solar Cells Based on Graphene-TiO2 Nanocomposite Photoanode. Results Phys. 2020, 18, 103253. doi:10.1016/j.rinp.2020.103253
  • Pang, B.; Zhang, M.; Zhou, C.; Dong, H.; Ma, S.; Feng, J.; Chen, Y.; Yu, L.; Dong, L. Heterogeneous FeNi3/NiFe2O4 Nanoparticles with Modified Graphene as Electrocatalysts for High Performance Dye-Sensitized Solar Cells. Chem. Eng. J. 2021, 405, 126944. doi:10.1016/j.cej.2020.126944
  • Chu, M.; Du, Z.; Zhang, Y.; Li, L.; Jiao, S.; Azad, F.; Su, S. Enhanced Photovoltaic Performance of Quantum-Dot-Sensitized Solar Cells Using Graphene/Cu2-xSe Composite Counter Electrode. J. Alloys Compd. 2021, 851, 156869. doi:10.1016/j.jallcom.2020.156869
  • Oh, W.C.; Cho, K.Y.; Jung, C.H.; Areerob, Y. Hybrid of Graphene Based on Quaternary Cu2 ZnNiSe4–WO3 Nanorods for Counter Electrode in Dye-Sensitized Solar Cell Application, Sci. Rep. 2020, 10, 4738. doi:10.1038/s41598-020-61363-x
  • Mahmoudi, T.; Wang, Y.; Hahn, Y. B. SrTiO3/Al2O3‐Graphene Electron Transport Layer for Highly Stable and Efficient Composites‐Based Perovskite Solar Cells with 20.6% Efficiency. Adv. Energy Mater. 2020, 10, 1903369. doi:10.1002/aenm.201903369
  • ur Rehman, S.; Noman, M.; Khan, A. D.; Saboor, A.; Ahmad, M. S.; Khan, H. U. Synthesis of Polyvinyl Acetate/Graphene Nanocomposite and Its Application as an Electrolyte in Dye Sensitized Solar Cells. Optik 2020, 202, 163591. doi:10.1016/j.ijleo.2019.163591
  • Park, H.; Brown, P. R.; Bulović, V.; Kong, J. Graphene as Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes. Nano Lett. 2012, 12, 133–140. doi:10.1021/nl2029859
  • Chandrasekhar, P.; Dubey, A.; Qiao, Q. High Efficiency Perovskite Solar Cells Using Nitrogen-Doped Graphene/ZnO Nanorod Composite as an Electron Transport Layer. Sol. Energy 2020, 197, 78–83. doi:10.1016/j.solener.2019.12.062
  • Redondo-Obispo, C.; Ripolles, T. S.; Cortijo-Campos, S.; Alvarez, A. L.; Climent-Pascual, E.; de Andrés, A.; Coya, C. Enhanced Stability and Efficiency in Inverted Perovskite Solar Cells through Graphene Doping of PEDOT: PSS Hole Transport Layer. Mater. Des. 2020, 191, 108587. doi:10.1016/j.matdes.2020.108587
  • Şahin, Ç.; Diker, H.; Sygkridou, D.; Varlikli, C.; Stathatos, E. Enhancing the Efficiency of Mixed Halide Mesoporous Perovskite Solar Cells by Introducing Amine Modified Graphene Oxide Buffer Layer. Renew. Energy 2020, 146, 1659–1666. doi:10.1016/j.renene.2019.07.162
  • Carreira, D.; Ribeiro, P. A.; Raposo, M.; Sério, S. Engineering of TiO2 or ZnO—Graphene Oxide Nanoheterojunctions for Hybrid Solar Cells Devices. Photonics 2021, 8, 75. doi:10.3390/photonics8030075
  • Zou, C.; Chen, M.; Zhou, Z.; Yang, S.; Hou, Y.; Yang, H. Highly Ordered Mesoporous Co3O4 Cubes/Graphene Oxide Heterostructure as Efficient Counter Electrodes in Dye-Sensitized Solar Cells. J. Mater. Sci.: Mater. Electron. 2021, 32, 16519–16527. ). doi:10.1007/s10854-021-06208-7
  • Lemos, H. G.; Barba, D.; Selopal, G. S.; Wang, C.; Wang, Z. M.; Duong, A.; Rosei, F.; Santos, S. F.; Venancio, E. C. Water-Dispersible Polyaniline/Graphene Oxide Counter Electrodes for Dye-Sensitized Solar Cells: Influence of Synthesis Route on the Device Performance. Sol. Energy 2020, 207, 1202–1213. doi:10.1016/j.solener.2020.07.021
  • Balis, N.; Zaky, A. A.; Athanasekou, C.; Silva, A. M.; Sakellis, E.; Vasilopoulou, M.; Stergiopoulos, T.; Kontos, A. G.; Falaras, P. Investigating the Role of Reduced Graphene Oxide as a Universal Additive in Planar Perovskite Solar Cells. J. Photochem. Photobiol., A 2020, 386, 112141. doi:10.1016/j.jphotochem.2019.112141
  • Suragtkhuu, S.; Tserendavag, O.; Vandandoo, U.; Bati, A. S.; Bat-Erdene, M.; Shapter, J. G.; Batmunkh, M.; Davaasambuu, S. Efficiency and Stability Enhancement of Perovskite Solar Cells Using Reduced Graphene Oxide Derived from Earth-Abundant Natural Graphite. RSC Adv. 2020, 10, 9133–9139. doi:10.1039/d0ra01423k
  • Park, J.-J.; Lee, M.; Kim, Y.; Kim, D.-Y. Nonpolar Solvent‐Dispersible Alkylated Reduced Graphene Oxide for Hole Transport Material in n‐i‐p Perovskite Solar Cells. Solar RRL 2021, 5, 2100087. doi:10.1002/solr.202100087
  • Cuong, L. V.; Thinh, N. D.; Nghia, L. T. T.; Khoa, N. D.; Hung, L. K.; Dat, H. H.; Khang, P. T.; Hoang, N. T.; Chau, P. T. L.; Phong, M. T.; Hieu, N. H. Synthesis of Platinum/Reduced Graphene Oxide Composite Pastes for Fabrication of Cathodes in Dye-Sensitized Solar Cells with Screen-Printing Technology. Inorg. Chem. Commun. 2020, 118, 108033. doi:10.1016/j.inoche.2020.108033
  • Shoyiga, H. O.; Martincigh, B. S.; Nyamori, V. O. Hydrothermal Synthesis of Reduced Graphene Oxide‐Anatase Titania Nanocomposites for Dual Application in Organic Solar Cells. Int. J. Energy Res. 2021, 45, 7293–7314. doi:10.1002/er.6313
  • Meng, W.; Dong, C.; Shao, J.; Wang, Q.; Cheng, H.; Gong, H. Reduced Graphene oxide-Mn3O4 Composites as Effective Electron Acceptors for Hybrid Polymer-Based Solar Cells. Mater. Sci. Semicond. Process. 2022, 145, 106638. doi:10.1016/j.mssp.2022.106638
  • Makal, P.; Das, D. Reduced Graphene Oxide-Laminated One-Dimensional TiO2–Bronze Nanowire Composite: An Efficient Photoanode Material for Dye-Sensitized Solar Cells. ACS Omega. 2021, 6, 4362–4373. doi:10.1021/acsomega.0c05707
  • Mann, D. S.; Seo, Y.-H.; Kwon, S.-N.; Na, S.-I. Efficient and Stable Planar Perovskite Solar Cells with a PEDOT: PSS/SrGO Hole Interfacial Layer. J. Alloys Compd. 2020, 812, 152091. doi:10.1016/j.jallcom.2019.152091
  • Wen, J.; Sun, Z.; Qiao, Y.; Zhou, Y.; Liu, Y.; Zhang, Q.; Liu, Y.; Jiao, S. Ti3C2 MXene-Reduced Graphene Oxide Composite Polymer-Based Printable Electrolyte for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3329–3338. doi:10.1021/acsaem.1c03928
  • Demirkan, B.; Bozkurt, S., Cellat, K.; Arıkan, K.; Yılmaz, M.; Şavk, A.; Çalımlı, M. H.; Nas, M. S.; Atalar, M. N.; Alma, M. H.; Sen, F. Palladium Supported on Polypyrrole/Reduced Graphene Oxide Nanoparticles for Simultaneous Biosensing Application of Ascorbic Acid, Dopamine, and Uric Acid, Sci. Rep., 2020, 10, 2946. doi:10.1038/s41598-020-59935-y
  • Abd Elkodous, M.; El-Sayyad, G. S.; Abdel Maksoud, M. I. A.; Kumar, R.; Maegawa, K.; Kawamura, G.; Tan, W. K.; Matsuda, A. Nanocomposite Matrix Conjugated with Carbon Nanomaterials for Photocatalytic Wastewater Treatment. J. Hazard. Mater. 2021, 410, 124657. doi:10.1016/j.jhazmat.2020.124657
  • Deng, X.; Lü, L.; Li, H.; Luo, F. The Adsorption Properties of Pb (II) and Cd (II) on Functionalized Graphene Prepared by Electrolysis Method. J. Hazard. Mater. 2010, 183, 923–930. doi:10.1016/j.jhazmat.2010.07.117
  • Ramesha, G.; Kumara, A. V.; Muralidhara, H.; Sampath, S. Graphene and Graphene Oxide as Effective Adsorbents toward Anionic and Cationic Dyes. J. Colloid Interface Sci. 2011, 361, 270–277. doi:10.1016/j.jcis.2011.05.050
  • Wang, C.; Feng, C.; Gao, Y.; Ma, X.; Wu, Q.; Wang, Z. Preparation of a Graphene-Based Magnetic Nanocomposite for the Removal of an Organic Dye from Aqueous Solution. Chem. Eng. J. 2011, 173, 92–97. doi:10.1016/j.cej.2011.07.041
  • Xie, G.; Xi, P.; Liu, H.; Chen, F.; Huang, L.; Shi, Y.; Hou, F.; Zeng, Z.; Shao, C.; Wang, J. A Facile Chemical Method to Produce Superparamagnetic Graphene Oxide–Fe3O4 Hybrid Composite and Its Application in the Removal of Dyes from Aqueous Solution. J. Mater. Chem. 2012, 22, 1033–1039. doi:10.1039/C1JM13433G
  • Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U (VI) Ions on Few-Layered Graphene Oxide Nanosheets from Aqueous Solutions. Dalton Trans. 2012, 41, 6182–6188. doi:10.1039/c2dt00054g
  • Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb (II) Ions from Aqueous Solutions on Few-Layered Graphene Oxide Nanosheets. Dalton Trans. 2011, 40, 10945–10952. doi:10.1039/c1dt11005e
  • Yang, M.-Q.; Zhang, N.; Wang, Y.; Xu, Y.-J. Metal-Free, Robust, and Regenerable 3D Graphene–Organics Aerogel with High and Stable Photosensitization Efficiency. J. Catal. 2017, 346, 21–29. doi:10.1016/j.jcat.2016.11.012
  • Zhang, F.; Li, Y.-H.; Li, J.-Y.; Tang, Z.-R.; Xu, Y.-J. 3D Graphene-Based Gel Photocatalysts for Environmental Pollutants Degradation. Environ. Pollut. 2019, 253, 365–376. doi:10.1016/j.envpol.2019.06.089
  • Kim, C.; Cho, K. M.; Park, K.; Kim, K. H.; Gereige, I.; Jung, H. T. Ternary Hybrid Aerogels of g‐C3N4/α‐Fe2O3 on a 3D Graphene Network: An Efficient and Recyclable Z‐Scheme Photocatalyst. ChemPlusChem 2020, 85, 169–175. doi:10.1002/cplu.201900688
  • Yousefi, N.; Lu, X.; Elimelech, M.; Tufenkji, N. Environmental Performance of Graphene-Based 3D Macrostructures. Nat. Nanotechnol. 2019, 14, 107–119. doi:10.1038/s41565-018-0325-6
  • Krebsz, M.; Pasinszki, T.; Tung, T. T.; Nine, M. J.; Losic, D. Multiple Applications of Bio-Graphene Foam for Efficient Chromate Ion Removal and Oil-Water Separation. Chemosphere 2021, 263, 127790. doi:10.1016/j.chemosphere.2020.127790
  • Sreeprasad, T. S.; Maliyekkal, S. M.; Lisha, K. P.; Pradeep, T. Reduced Graphene Oxide–Metal/Metal Oxide Composites: Facile Synthesis and Application in Water Purification. J. Hazard. Mater. 2011, 186, 921–931. doi:10.1016/j.jhazmat.2010.11.100
  • Liu, X.; Pan, L.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Microwave-Assisted Synthesis of CdS–Reduced Graphene Oxide Composites for Photocatalytic Reduction of Cr (VI). Chem. Commun. (Camb.) 2011, 47, 11984–11986. doi:10.1039/c1cc14875c
  • Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano. 2010, 4, 3959–3968. doi:10.1021/nn100852h
  • Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Appl. Catal., B 2011, 101, 382–387. doi:10.1016/j.apcatb.2010.10.007
  • Wafi, M. A.; Ahmed, M. A., Abdel-Samad, H. S.; Medien, A. Exceptional Removal of Methylene Blue and p-Aminophenol Dye over Novel TiO2/rGO Nanocomposites by Tandem Adsorption-photocatalytic Processes. Mater. Sci. Energy Technol. 2022, 5, 217–231. doi:10.1016/j.mset.2022.02.003
  • Li, B.; Cao, H. ZnO@ Graphene Composite with Enhanced Performance for the Removal of Dye from Water. J. Mater. Chem. 2011, 21, 3346–3349. doi:10.1039/C0JM03253K
  • Li, G.; Wang, S.; Zeng, J.; Yu, J. In-Situ Formation of 3D Vertical Graphene by Carbonizing Organic Precursor in Ammonia. Carbon 2021, 171, 111–118. doi:10.1016/j.carbon.2020.09.013
  • Tobaldi, D.; Dvoranová, D.; Lajaunie, L.; Rozman, N.; Figueiredo, B.; Seabra, M.; Škapin, A. S.; Calvino, J.; Brezová, V.; Labrincha, J. Graphene-TiO2 Hybrids for Photocatalytic Aided Removal of VOCs and Nitrogen Oxides from Outdoor Environment. Chem. Eng. J. 2021, 405, 126651. doi:10.1016/j.cej.2020.126651
  • Sun, P.; Liu, H.; Feng, M.; Zhai, Z.; Fang, Y.; Zhang, X.; Sharma, V. K. Strategic Combination of N-Doped Graphene and g-C3N4: Efficient Catalytic Peroxymonosulfate-Based Oxidation of Organic Pollutants by Non-Radical-Dominated Processes. Appl. Catal., B 2020, 272, 119005. doi:10.1016/j.apcatb.2020.119005
  • Zhang, X.; Zhou, J.; Zheng, Y.; Wei, H.; Su, Z. Graphene-Based Hybrid Aerogels for Energy and Environmental Applications. Chem. Eng. J. 2021, 420, 129700. doi:10.1016/j.cej.2021.129700
  • Baig, N.; Waheed, A.; Sajid, M.; Khan, I.; Kawde, A.-N.; Sohail, M. Porous Graphene-Based Electrodes: Advances in Electrochemical Sensing of Environmental Contaminants. Trends Environ. Anal. Chem. 2021, 30, e00120. doi:10.1016/j.teac.2021.e00120
  • Feng, L.; Qin, Z.; Huang, Y.; Peng, K.; Wang, F.; Yan, Y.; Chen, Y. Boron-, Sulfur-, and Phosphorus-Doped Graphene for Environmental Applications. Sci. Total Environ. 2020, 698, 134239. doi:10.1016/j.scitotenv.2019.134239
  • Baig, N.; Sajid, M.; Saleh, T. A. Graphene-Based Adsorbents for the Removal of Toxic Organic Pollutants: A Review. J. Environ. Manage. 2019, 244, 370–382. doi:10.1016/j.jenvman.2019.05.047
  • Kumar, V.; Lee, Y.-S.; Shin, J.-W.; Kim, K.-H.; Kukkar, D.; Tsang, Y. F. Potential Applications of Graphene-Based Nanomaterials as Adsorbent for Removal of Volatile Organic Compounds. Environ. Int. 2020, 135, 105356. doi:10.1016/j.envint.2019.105356
  • Yan, Y.; Shin, W. I.; Chen, H.; Lee, S.-M.; Manickam, S.; Hanson, S.; Zhao, H.; Lester, E.; Wu, T.; Pang, C. H. A Recent Trend: Application of Graphene in Catalysis. Carbon Lett 2021, 31, 177–199. doi:10.1007/s42823-020-00200-7
  • Thamaraiselvan, C.; Wang, J.; James, D. K.; Narkhede, P.; Singh, S. P.; Jassby, D.; Tour, J. M.; Arnusch, C. J. Laser-Induced Graphene and Carbon Nanotubes as Conductive Carbon-Based Materials in Environmental Technology. Mater. Today 2020, 34, 115–131. doi:10.1016/j.mattod.2019.08.014
  • Singla, S.; Sharma, S.; Basu, S.; Shetti, N. P.; Reddy, K. R. Graphene/Graphitic Carbon Nitride-Based Ternary Nanohybrids: Synthesis Methods, Properties, and Applications for Photocatalytic Hydrogen Production. FlatChem 2020, 24, 100200. doi:10.1016/j.flatc.2020.100200
  • Rautela, R.; Scarfe, S.; Guay, J.-M.; Lazar, P.; Pykal, M.; Azimi, S.; Grenapin, C.; Boddison-Chouinard, J.; Halpin, A.; Wang, W.; et al. Mechanistic Insight into the Limiting Factors of Graphene-Based Environmental Sensors. ACS Appl. Mater. Interfaces 2020, 12, 39764–39771. doi:10.1021/acsami.0c09051
  • Singh, A.; Bhati, A.; Khare, P.; Tripathi, K. M.; Sonkar, S. K. Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and Its Environmental Assessment. Sci. Rep. 2019, 9, 1–12. doi:10.1038/s41598-019-38717-1
  • Hsu, H.; Kuo, C.; Jehng, J.; Wei, C.; Wen, C.; Chen, J.; Chen, L. Application of Graphene Oxide Aerogel to the Adsorption of Polycyclic Aromatic Hydrocarbons Emitted from the Diesel Vehicular Exhaust. J. Environ. Chem. Eng. 2019, 7, 103414. doi:10.1016/j.jece.2019.103414
  • Hadki, A. E.; Ulucan-Altuntas, K.; Hadki, H. E.; Ustundag, C. B.; Kabbaj, O. K.; Dahchour, A.; Komiha, N.; Zrineh, A.; Debik, E. Removal of Oxytetracycline by Graphene Oxide and Boron-Doped Reduced Graphene Oxide: A Combined Density Function Theory, Molecular Dynamics Simulation and Experimental Study. FlatChem 2021, 27, 100238. doi:10.1016/j.flatc.2021.100238
  • Fan, Y.-Y.; Tu, H.-L.; Pang, Y.; Wei, F.; Zhao, H.-B.; Yang, Y.; Ren, T.-L. Au-Decorated Porous Structure Graphene with Enhanced Sensing Performance for Low-Concentration NO2 Detection. Rare Met. 2020, 39, 651–658. doi:10.1007/s12598-020-01397-2
  • Rouzafzay, F.; Shidpour, R.; Al-Abri, M. Z.; Qaderi, F.; Ahmadi, A.; Myint, M. T. Z. Graphene@ ZnO Nanocompound for Short-Time Water Treatment under Sun-Simulated Irradiation: Effect of Shear Exfoliation of Graphene Using Kitchen Blender on Photocatalytic Degradation. J. Alloys Compd. 2020, 829, 154614. doi:10.1016/j.jallcom.2020.154614
  • Baghayeri, M.; Ghanei-Motlagh, M.; Tayebee, R.; Fayazi, M.; Narenji, F. Application of Graphene/Zinc-Based Metal-Organic Framework Nanocomposite for Electrochemical Sensing of as (III) in Water Resources. Anal. Chim. Acta 2020, 1099, 60–67. doi:10.1016/j.aca.2019.11.045
  • Naik, S. S.; Lee, S. J.; Begildayeva, T.; Yu, Y.; Lee, H.; Choi, M. Y. Pulsed Laser Synthesis of Reduced Graphene Oxide Supported ZnO/Au Nanostructures in Liquid with Enhanced Solar Light Photocatalytic Activity. Environ. Pollut. 2020, 266, 115247. doi:10.1016/j.envpol.2020.115247
  • Rajivgandhi, G.; Vimala, R.; Nandhakumar, R.; Murugan, S.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Alanzi, K. F.; Li, W.-J. Adsorption of Nickel Ions from Electroplating Effluent by Graphene Oxide and Reduced Graphene Oxide. Environ. Res. 2021, 199, 111322. doi:10.1016/j.envres.2021.111322
  • Nehru, R.; Gopi, P. K.; Chen, S.-M. Enhanced Sensing of Hazardous 4-Nitrophenol by a Graphene Oxide–TiO2 Composite: Environmental Pollutant Monitoring Applications. New J. Chem. 2020, 44, 4590–4603. doi:10.1039/C9NJ06176B
  • Xiong, T.; Ye, Y.; Luo, B.; Shen, L.; Wang, D.; Fan, M.; Gong, Z. Facile Fabrication of 3D TiO2-Graphene Aerogel Composite with Enhanced Adsorption and Solar Light-Driven Photocatalytic Activity. Ceram. Int. 2021, 47, 14290–14300. doi:10.1016/j.ceramint.2021.02.011
  • Zhao, Q.; Xu, X.; Xu, Y.; Gongsun, K.; Hu, L.; Yan, S.; Yao, W.; Yan, Z. Synergistically Improved Electrochemical Performance and Its Practical Application of Graphene Oxide Stabilized Nano Ag2S by One-Pot Homogeneous Precipitation. Appl. Surf. Sci. 2020, 501, 144208. doi:10.1016/j.apsusc.2019.144208
  • Zhu, C.; Liu, F.; Ling, C.; Jiang, H.; Wu, H.; Li, A. Growth of Graphene-Supported Hollow Cobalt Sulfide Nanocrystals via MOF-Templated Ligand Exchange as Surface-Bound Radical Sinks for Highly Efficient Bisphenol a Degradation. Appl. Catal, B 2019, 242, 238–248. doi:10.1016/j.apcatb.2018.09.088
  • Bashir, B.; Khalid, M. U.; Aadil, M.; Zulfiqar, S.; Warsi, M. F.; Agboola, P. O.; Shakir, I. CuxNi1-xO Nanostructures and Their Nanocomposites with Reduced Graphene Oxide: Synthesis, Characterization, and Photocatalytic Applications. Ceram. Int. 2021, 47, 3603–3613. doi:10.1016/j.ceramint.2020.09.209
  • Liu, F.-Y.; Dai, Y.-M.; Chen, F.-H.; Chen, C.-C. Lead Bismuth Oxybromide/Graphene Oxide: Synthesis, Characterization, and Photocatalytic Activity for Removal of Carbon Dioxide, Crystal Violet Dye, and 2-Hydroxybenzoic Acid. J. Colloid Interface Sci. 2020, 562, 112–124. doi:10.1016/j.jcis.2019.12.006
  • Wei, P.; Zhu, Z.; Song, R.; Li, Z.; Chen, C. An Ion-Imprinted Sensor Based on Chitosan-Graphene Oxide Composite Polymer Modified Glassy Carbon Electrode for Environmental Sensing Application. Electrochim. Acta 2019, 317, 93–101. doi:10.1016/j.electacta.2019.05.136
  • Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Meenakshi, S. Effective Removal of Organic Pollutants by Adsorption onto Chitosan Supported Graphene Oxide-Hydroxyapatite Composite: A Novel Reusable Adsorbent. J. Mol. Liq. 2020, 318, 114200. doi:10.1016/j.molliq.2020.114200
  • Croitoru, A.-M.; Ficai, A.; Ficai, D.; Trusca, R.; Dolete, G.; Andronescu, E.; Turculet, S. C. Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials 2020, 13, 1687. doi:10.3390/ma13071687
  • Anchique, L.; Alcázar, J. J.; Ramos-Hernandez, A.; Méndez-López, M.; Mora, J. R.; Rangel, N.; Paz, J. L.; Márquez, E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers 2021, 13, 1620. doi:10.3390/polym13101620
  • Pal, K.; Si, A.; El-Sayyad, G. S.; Elkodous, M. A.; Kumar, R.; El-Batal, A. I.; Kralj, S.; Thomas, S. Cutting Edge Development on Graphene Derivatives Modified by Liquid Crystal and CdS/TiO2 Hybrid Matrix: Optoelectronics and Biotechnological Aspects. Crit. Rev. Solid State Mater. Sci. 2021, 46, 385–449. doi:10.1080/10408436.2020.1805295
  • Jafari, A.; Khanmohammadi Chenab, K.; Malektaj, H.; Farshchi, F.; Ghorbani, S.; Ghasemiamineh, A.; Khoshakhlagh, M.; Ashtari, B.; Zamani-Meymian, M.-R. An Attempt of Stimuli-Responsive Drug Delivery of Graphene-Based Nanomaterial through Biological Obstacles of Tumor. FlatChem 2022, 34, 100381. doi:10.1016/j.flatc.2022.100381
  • Singh, R. K.; Kumar, R.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Progress in Microwave-Assisted Synthesis of Quantum Dots (Graphene/Carbon/Semiconducting) for Bioapplications: A Review. Mater. Today Chem. 2019, 12, 282–314. doi:10.1016/j.mtchem.2019.03.001
  • Tian, Y.; Wang, F.; Liu, Y.; Pang, F.; Zhang, X. Green Synthesis of Silver Nanoparticles on Nitrogen-Doped Graphene for Hydrogen Peroxide Detection. Electrochim. Acta 2014, 146, 646–653. doi:10.1016/j.electacta.2014.08.133
  • Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C. Direct Electrochemistry of Glucose Oxidase Assembled on Graphene and Application to Glucose Detection. Electrochim. Acta 2010, 55, 8606–8614. doi:10.1016/j.electacta.2010.07.079
  • Wu, P.; Qian, Y.; Du, P.; Zhang, H.; Cai, C. Facile Synthesis of Nitrogen-Doped Graphene for Measuring the Releasing Process of Hydrogen Peroxide from Living Cells. J. Mater. Chem. 2012, 22, 6402–6412. doi:10.1039/c2jm16929k
  • Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Glucose Oxidase–Graphene–Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing. Biosens. Bioelectron. 2009, 25, 901–905. doi:10.1016/j.bios.2009.09.004
  • Wu, X.; Mu, F.; Wang, Y.; Zhao, H. Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review. Molecules 2018, 23, 2050. doi:10.3390/molecules23082050
  • Feng, L.; Wu, L.; Wang, J.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X. Detection of a Prognostic Indicator in Early-Stage Cancer Using Functionalized Graphene-Based Peptide Sensors. Adv. Mater. 2012, 24, 125–131. doi:10.1002/adma.201103205
  • Zhu, C.; Du, D.; Lin, Y. Graphene and Graphene-like 2D Materials for Optical Biosensing and Bioimaging: A Review. 2D Materials 2015, 2, 032004.
  • Wang, Y.; Li, Z.; Weber, T. J.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets. Anal. Chem. 2013, 85, 6775–6782. doi:10.1021/ac400858g
  • Lu, Y.; Wu, P.; Yin, Y.; Zhang, H.; Cai, C. Aptamer-Functionalized Graphene Oxide for Highly Efficient Loading and Cancer Cell-Specific Delivery of Antitumor Drug. J. Mater. Chem. B 2014, 2, 3849–3859. doi:10.1039/c4tb00521j
  • Liu, J.; Cui, L.; Losic, D. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomater. 2013, 9, 9243–9257. doi:10.1016/j.actbio.2013.08.016
  • Foo, M. E.; Gopinath, S. C. B. Feasibility of Graphene in Biomedical Applications. Biomed. Pharmacother. 2017, 94, 354–361. doi:10.1016/j.biopha.2017.07.122
  • Islam, A. E.; Kim, S. S.; Rao, R.; Ngo, Y.; Jiang, J.; Nikolaev, P.; Naik, R.; Pachter, R.; Boeckl, J.; Maruyama, B. Photo-Thermal Oxidation of Single Layer Graphene. RSC Adv. 2016, 6, 42545–42553. doi:10.1039/C6RA05399H
  • Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide. Small 2011, 7, 460–464. doi:10.1002/smll.201001522
  • Mbeh, D. A.; Akhavan, O.; Javanbakht, T.; Mahmoudi, M.; Yahia, L. H. Cytotoxicity of Protein Corona-Graphene Oxide Nanoribbons on Human Epithelial Cells. Appl. Surf. Sci. 2014, 320, 596–601. doi:10.1016/j.apsusc.2014.09.155
  • Solanki, A.; Shah, S.; Yin, P. T.; Lee, K.-B. Nanotopography-Mediated Reverse Uptake for siRNA Delivery into Neural Stem Cells to Enhance Neuronal Differentiation. Sci. Rep. 2013, 3, 1553. doi:10.1038/srep01553
  • Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z. Graphene-Based Magnetic Plasmonic Nanocomposite for Dual Bioimaging and Photothermal Therapy. Biomaterials 2013, 34, 4786–4793. doi:10.1016/j.biomaterials.2013.03.023
  • Mudgal, N.; Saharia, A.; Agarwal, A.; Singh, G. ZnO and Bi-Metallic (Ag–Au) Layers Based Surface Plasmon Resonance (SPR) Biosensor with BaTiO3 and Graphene for Biosensing Applications. IETE J. Res. 2020, 1–8. doi:10.1080/03772063.2020.1844074
  • Singh, Y.; Paswan, M. K.; Raghuwanshi, S. K. Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-Layer of Gold for Chemical Sensing. Plasmonics, 2021, 16, 1781–1790. doi:10.1007/s11468-020-01315-3
  • Hossain, M.; Slaughter, G. PtNPs Decorated Chemically Derived Graphene and Carbon Nanotubes for Sensitive and Selective Glucose Biosensing. Electroanal. Chem. 2020, 861, 113990. doi:10.1016/j.jelechem.2020.113990
  • Mei, L.; Zhang, Q.; Du, M.; Zeng, Z. Electrochemical Biosensing Platforms on the Basis of Reduced Graphene Oxide and Its Composites with Au Nanodots. Analyst 2020, 145, 3749–3756. doi:10.1039/c9an02592h
  • Abdel-Bary, A. S.; Tolan, D. A.; Nassar, M. Y.; Taketsugu, T.; El-Nahas, A. M. Chitosan, Magnetite, Silicon Dioxide, and Graphene Oxide Nanocomposites: Synthesis, Characterization, Efficiency as Cisplatin Drug Delivery, and DFT Calculations. Int. J. Biol. Macromol. 2020, 154, 621–633. doi:10.1016/j.ijbiomac.2020.03.106
  • Rahman, M. S.; Rikta, K.; Abdulrazak, L. F.; Anower, M. Enhanced Performance of SnSe-Graphene Hybrid Photonic Surface Plasmon Refractive Sensor for Biosensing Applications. Photonics and Nanostruct. – Fundam. Appl. 2020, 39, 100779. doi:10.1016/j.photonics.2020.100779
  • Cardoso, R. M.; Silva, P. R.; Lima, A. P.; Rocha, D. P.; Oliveira, T. C.; do Prado, T. M.; Fava, E. L.; Fatibello-Filho, O.; Richter, E. M.; Munoz, R. A. 3D-Printed Graphene/Polylactic Acid Electrode for Bioanalysis: Biosensing of Glucose and Simultaneous Determination of Uric Acid and Nitrite in Biological Fluids. Sens. Actuators, B 2020, 307, 127621. doi:10.1016/j.snb.2019.127621
  • Pramanik, N.; Ranganathan, S.; Rao, S.; Suneet, K.; Jain, S.; Rangarajan, A.; Jhunjhunwala, S. A Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy. ACS Omega 2019, 4, 9284–9293. doi:10.1021/acsomega.9b00870
  • Mobed, A.; Hasanzadeh, M.; Shadjou, N.; Hassanpour, S.; Saadati, A.; Agazadeh, M. Immobilization of ssDNA on the Surface of Silver Nanoparticles-Graphene Quantum Dots Modified by Gold Nanoparticles towards Biosensing of Microorganism. Microchem. J. 2020, 152, 104286. doi:10.1016/j.microc.2019.104286
  • Kovalska, E.; Lesongeur, P.; Hogan, B.; Baldycheva, A. Multi-Layer Graphene as a Selective Detector for Future Lung Cancer Biosensing Platforms. Nanoscale 2019, 11, 2476–2483. doi:10.1039/c8nr08405j
  • Jia, Q.; Li, Z.; Guo, C.; Huang, X.; Song, Y.; Zhou, N.; Wang, M.; Zhang, Z.; He, L.; Du, M. A γ-Cyclodextrin-Based Metal–Organic Framework Embedded with Graphene Quantum Dots and Modified with PEGMA via SI-ATRP for Anticancer Drug Delivery and Therapy. Nanoscale 2019, 11, 20956–20967. doi:10.1039/c9nr06195a
  • Nayak, T. R.; Andersen, H.; Makam, V. S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.-L. R.; Ahn, J.-H.; Hong, B. H.; Pastorin, G.; Özyilmaz, B. Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Nano. 2011, 5, 4670–4678. doi:10.1021/nn200500h
  • Zhang, Y.; Li, N.; Xiang, Y.; Wang, D.; Zhang, P.; Wang, Y.; Lu, S.; Xu, R.; Zhao, J. A Flexible Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Anchored on Laser-Induced Graphene. Carbon 2020, 156, 506–513. doi:10.1016/j.carbon.2019.10.006
  • Wang, D.; Zhang, Y.; Zhai, M.; Huang, Y.; Li, H.; Liu, X.; Gong, P.; Liu, Z.; You, J. Fluorescence Turn‐off Magnetic Fluorinated Graphene Composite with High NIR Absorption for Targeted Drug Delivery. ChemNanoMat 2021, 7, 71–77. doi:10.1002/cnma.202000539
  • Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.-T.; Ying, Y. Terahertz Biosensing with a Graphene-Metamaterial Heterostructure Platform. Carbon 2019, 141, 247–252. doi:10.1016/j.carbon.2018.09.050
  • Đurđić, S.; Vukojević, V.; Vlahović, F.; Ognjanović, M.; Švorc, Ľ.; Kalcher, K.; Mutić, J.; Stanković, D. M. Application of Bismuth (III) Oxide Decorated Graphene Nanoribbons for Enzymatic Glucose Biosensing. Electroanal. Chem. 2019, 850, 113400. doi:10.1016/j.jelechem.2019.113400
  • Woo, S.; Kim, Y.-R.; Chung, T. D.; Piao, Y.; Kim, H. Synthesis of a Graphene–Carbon Nanotube Composite and Its Electrochemical Sensing of Hydrogen Peroxide. Electrochim. Acta 2012, 59, 509–514. doi:10.1016/j.electacta.2011.11.012
  • Zaboli, M.; Raissi, H.; Moghaddam, N. R.; Farzad, F. Probing the Adsorption and Release Mechanisms of Cytarabine Anticancer Drug on/from Dopamine Functionalized Graphene Oxide as a Highly Efficient Drug Delivery System. J. Mol. Liq. 2020, 301, 112458. doi:10.1016/j.molliq.2020.112458
  • Sapner, V. S.; Sathe, B. R. Metal-Free Graphene-Based Nanoelectrodes for the Electrochemical Determination of Ascorbic Acid (AA) and p-Nitrophenol (p-NP): Implication towards Biosensing and Environmental Monitoring. New J. Chem. 2021, 45, 4666–4674. doi:10.1039/D0NJ05806H
  • Xing, X.-J.; Liu, X.-G.; He, Y.; Lin, Y.; Zhang, C.-L.; Tang, H.-W.; Pang, D.-W. Amplified Fluorescent Sensing of DNA Using Graphene Oxide and a Conjugated Cationic Polymer. Biomacromolecules 2013, 14, 117–123. doi:10.1021/bm301469q
  • Wu, H.; Shi, H.; Wang, Y.; Jia, X.; Tang, C.; Zhang, J.; Yang, S. Hyaluronic Acid Conjugated Graphene Oxide for Targeted Drug Delivery. Carbon 2014, 69, 379–389. doi:10.1016/j.carbon.2013.12.039
  • Jafari, Z.; Rad, A. S.; Baharfar, R.; Asghari, S.; Esfahani, M. R. Synthesis and Application of Chitosan/Tripolyphosphate/Graphene Oxide Hydrogel as a New Drug Delivery System for Sumatriptan Succinate. J. Mol. Liq. 2020, 315, 113835. doi:10.1016/j.molliq.2020.113835
  • Anirudhan, T. S.; Chithra Sekhar, V.; Athira, V. S. Graphene Oxide Based Functionalized Chitosan Polyelectrolyte Nanocomposite for Targeted and pH Responsive Drug Delivery. Int. J. Biol. Macromol. 2020, 150, 468–479. doi:10.1016/j.ijbiomac.2020.02.053
  • Ray Chowdhuri, A.; Tripathy, S.; Chandra, S.; Roy, S.; Sahu, S. K. A ZnO Decorated Chitosan–Graphene Oxide Nanocomposite Shows Significantly Enhanced Antimicrobial Activity with ROS Generation. RSC Adv. 2015, 5, 49420–49428. doi:10.1039/C5RA05393E
  • Wong, X. Y.; Quesada-González, D.; Manickam, S.; New, S. Y.; Muthoosamy, K.; Merkoçi, A. Integrating Gold Nanoclusters, Folic Acid and Reduced Graphene Oxide for Nanosensing of Glutathione Based on “Turn-off” Fluorescence. Sci. Rep. 2021, 11, 2375. doi:10.1038/s41598-021-81677-8
  • Maji, S. K.; Sreejith, S.; Mandal, A. K.; Ma, X.; Zhao, Y. Immobilizing Gold Nanoparticles in Mesoporous Silica Covered Reduced Graphene Oxide: A Hybrid Material for Cancer Cell Detection through Hydrogen Peroxide Sensing. ACS Appl. Mater. Interfaces. 2014, 6, 13648–13656. doi:10.1021/am503110s
  • Rajaura, R. S.; Sharma, V.; Ronin, R. S.; Gupta, D. K.; Srivastava, S.; Agrawal, K.; Vijay, Y. K. Synthesis, Characterization and Enhanced Antimicrobial Activity of Reduced Graphene Oxide–Zinc Oxide Nanocomposite. Mater. Res. Express 2017, 4, 025401. doi:10.1088/2053-1591/aa5bff
  • Yu, B.; Kuang, D.; Liu, S.; Liu, C.; Zhang, T. Template-Assisted Self-Assembly Method to Prepare Three-Dimensional Reduced Graphene Oxide for Dopamine Sensing. Sens. Actuators, B 2014, 205, 120–126. doi:10.1016/j.snb.2014.08.038
  • Hasan, M. T.; Lee, B. H.; Lin, C.-W.; McDonald-Boyer, A.; Gonzalez-Rodriguez, R.; Vasireddy, S.; Tsedev, U.; Coffer, J.; Belcher, A. M.; Naumov, A. V. Near-Infrared Emitting Graphene Quantum Dots Synthesized from Reduced Graphene Oxide for In Vitro/In Vivo/Ex Vivo Bioimaging Applications. 2D Materials 2021, 8, 035013. doi:10.1088/2053-1583/abe4e3
  • Tabish, T. A.; Hayat, H.; Abbas, A.; Narayan, R. J. Graphene Quantum Dot-Based Electrochemical Biosensing for Early Cancer Detection. Curr. Opin. Electrochem. 2021, 30, 100786. doi:10.1016/j.coelec.2021.100786
  • Xin, Q.; Shah, H.; Xie, W.; Wang, Y.; Jia, X.; Nawaz, A.; Song, M.; Gong, J. R. Preparation of Blue- and Green-Emissive Nitrogen-Doped Graphene Quantum Dots from Graphite and Their Application in Bioimaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111642. doi:10.1016/j.msec.2020.111642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.