428
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Steels for rail axles - an overview

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Robinson, M.; Kapoor, A. Fatigue in Railway Infrastructure; Woodhead Publishing Limited, CRC Press, Great Abington, Cambridge, UK, 2009.
  • Molemaker, R.; Pauer, A. The Economic Footprint of Railway Transport in Europe, Community of European Railway, ECORYS Brussels, Belgium, 2014.
  • Human Development Report. Sustaining Human Progress: Reducing Vulnerabilities and Building Resilience, United Nations Development Program, New York, USA, 2014.
  • Luke, M.; Varfolomeev, I.; Lütkepohl, K.; Esderts, A. Fatigue Crack Growth in Railway Axles: Assessment Concept and Validation Tests. Eng. Fract. Mech. 2011, 78, 714–730. doi:10.1016/j.engfracmech.2010.11.024
  • Smith, R. A.; Hillmansen, S. A Brief Historical Overview of the Fatigue of Railway Axles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, 267–277. doi:10.1243/0954409043125932
  • Zerbst, U.; Beretta, S.; Köhler, G.; Lawton, A.; Vormwald, M.; Beier, H.; Klinger, C.; Černý, I.; Rudlin, J.; Heckel, T.; et al. Safe Life and Damage Tolerance Aspects of Railway axles - A Review. Eng. Fract. Mech. 2013, 98, 214–271. doi:10.1016/j.engfracmech.2012.09.029
  • Hillmansen, S. Editorial to the Special Issue on Railway Axles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, I–II. doi:10.1177/095440970421800401
  • European Standard. EN 13103. Railway Applications - Wheelsets and Bogies - Non Powered Axles - Design Method. European Committee for Standardization (CEN), Brussels, Belgium, 2001.
  • European Standard. EN 13261. Railway applications - Wheelsets and bogies - Axles - Product Requirement, Annex A. European Committee for Standardization (CEN), Brussels, Belgium, 2003.
  • Yao, Z.; Dai, W.; Cai, B.; Li, C.; Zhang, H.; Zhang, Y. Effect of Quenching Temperature on Tensile Strength and Fatigue Behavior of an EA4T Steel. J. Mater. Eng. Perform. 2021, 30, 9015–9028. doi:10.1007/s11665-021-06117-0
  • Nwe, T.; Pimsarn, M. Railway Axle and Wheel Assembly Press-Fitting Force Characteristics and Holding Torque Capacity. Appl. Sci. 2021, 11, 1–16.
  • Pourheidar, A.; Patriarca, L.; Beretta, S.; Regazzi, D. Investigation of Fatigue Crack Growth in Full-Scale Railway Axles Subjected to Service Load Spectra: Experiments and Predictive Models. Metals (Basel) 2021, 11, 1427. doi:10.3390/met11091427
  • Gao, J.-W.; Yu, M.-H.; Liao, D.; Zhu, S.-P.; Zhu, Z.-Y.; Han, J. Foreign Object Damage Tolerance and Fatigue Analysis of Induction Hardened S38C Axles. Mater. Des. 2021, 202, 109488. doi:10.1016/j.matdes.2021.109488
  • Asngali, B.; et al. Static Analysis of Railway Axle Using Finite Element Method and Monitoring of Railway Bearing Based on Vibration Analysis. J. Phys. Conf. Ser. 2021, 1845, 012037.
  • Lonsdale, C.; Stone, D. North American Axle Failure Experience. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, 293–298. doi:10.1243/0954409043125941
  • Lonsdale, C.; Dedmon, S.; Galbraith, J.; Pilch, J. 2007 Recent Research to Improve Wheel and Axle Composition, Properties and Designs. In ASME 2007 Rail Transportation Division Fall Technical Conference. ASME; pp 13–20. doi:10.1115/RTDF2007-46008
  • Association of American Railroads. Manual of Standards and Recommended Practices - Section G, Wheels and Axles, Specification M107/208, "Wheels, Carbon Steels. The Association of American Railroads, Washington DC, USA, 2007.
  • Japanese Standards Association. Axles for Railway Rolling Stock, Japanese Industrial Standard E, 4502, Tokyo, Japan, 1989, 1–4.
  • Novosad, M.; Fajkoš, R.; Řeha, B.; Řezníček, R. Fatigue Tests of Railway Axles. Proc. Eng. 2010, 2, 2259–2268. doi:10.1016/j.proeng.2010.03.242
  • Hirakawa, K.; Toyama, K.; Kubota, M. The Analysis and Prevention of Failure in Railway Axles. Int. J. Fatigue 1998, 20, 135–144. doi:10.1016/S0142-1123(97)00096-0
  • Cantini, S.; Beretta, S. Structural Reliability Assessment of Railway Axles. Series LRS-Techno Lucchini RS, Lucchini RS Publishers, Italy, 2011, 4, 1–207.
  • Japanese Industrial Standards. Standard E4501. Railway Rolling Stock - Design Method for Strength of Axles, 1995.
  • Lundén, R.; Vernersson, T.; Ekberg, A. Railway Axle Design: To Be Based on Fatigue Initiation or Crack Propagation? Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2010, 224, 445–453. doi:10.1243/09544097JRRT384
  • Zerbst, U.; Schödel, M.; Beier, H. T. Parameters Affecting the Damage Tolerance Behaviour of Railway Axles. Eng. Fract. Mech. 2011, 78, 793–809. doi:10.1016/j.engfracmech.2010.03.013
  • Zerbst, U.; Klinger, C.; Klingbeil, D. Structural Assessment of Railway Axles – a Critical Review. Eng. Fail. Anal. 2013, 35, 54–65. doi:10.1016/j.engfailanal.2012.11.007
  • Grubisic, V.; Fischer, G. Procedure for Reliable Durability Validation of Train Axles. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe. 2006, 37, 973–982. doi:10.1002/mawe.200600086
  • PRC Rail Consulting Ltd. Bogies and locomotive axle specifications. http://www.railway-technical.com/trains/rolling-stock-index-l/bogies.html.
  • Costa, P. J. F. Fatigue Reliability Analysis of a Rail Vehicle Axle; MSc Dissertation, Faculty of Engineering, Universidade of Porto, Portugal, 2020.
  • Zerbst, U.; Mädler, K.; Hintze, H. Fracture Mechanics in Railway Applications––An Overview. Eng. Fract. Mech. 2005, 72, 163–194. doi:10.1016/j.engfracmech.2003.11.010
  • Klingbeil, D.; Zerbst, U.; Klinger, C. 2013 Safe and Damage Tolerance Concepts of Railway Axles. In 13th International Conference on Fracture.
  • Zerbst, U.; Klinger, C.; Clegg, R. Fracture Mechanics as a Tool in Failure Analysis — Prospects and Limitations. Eng. Fail. Anal. 2015, 55, 376–410. doi:10.1016/j.engfailanal.2015.07.001
  • Zerbst, U.; Lundén, R.; Edel, K.-O. O.; Smith, R. A. A. Introduction to the Damage Tolerance Behaviour of Railway Rails - a Review. Eng. Fract. Mech. 2009, 76, 2563–2601. doi:10.1016/j.engfracmech.2009.09.003
  • Zerbst, U.; Beretta, S. Failure and Damage Tolerance Aspects of Railway Components. Eng. Fail. Anal. 2011, 18, 534–542. doi:10.1016/j.engfailanal.2010.06.001
  • Gao, S.; Budde, L. Mechanism of Mechanical Press Joining. Int. J. Mach. Tools Manuf. 1994, 34, 641–657. doi:10.1016/0890-6955(94)90049-3
  • Liu, W.; Xia, H.; Liu, Y.; Song, Z.; Xu, X. The Performances of a Thermally Sprayed Fe/Ni Composite Coating to Resist Fretting Fatigue under Rotational Bending Loads. Surf. Coatings Technol. 2013, 217, 58–63. doi:10.1016/j.surfcoat.2012.11.072
  • Fec, M. C.; Moyar, G. J. Railroad Journal Roller Bearing Failure and Detection: Past, Present and Future. In The American Society of Mechanical Engineers’ Winter Annual Meeting, 1988, pp 3–16.
  • Williams, S.; Ahlbeck, D.; Harrison, H. Railroad Bearing Performance under the Wheel Impact Load Environment. In The American Society of Mechanical Engineers’ Winter Annual Meeting, 1988, pp 63–71.
  • Symonds, N.; Corni, I.; Wood, R. J. K.; Wasenczuk, A.; Vincent, D. Observing Early Stage Rail Axle Bearing Damage. Eng. Fail. Anal. 2015, 56, 216–232.
  • Corni, I.; Symonds, N.; Birrell, C. E.; Katsamenis, O. L.; Wasenczuk, A.; Vincent, D. Characterization and Mapping of Rolling Contact Fatigue in Rail-Axle Bearings. Eng. Fail. Anal. 2017, 82, 617–630. doi:10.1016/j.engfailanal.2017.04.012
  • Locovei, C.; Rǎduţǎ, A.; Nicoarǎ, M.; Cucuruz, L. R. Analysis of Fatigue Fracture of Tank Wagon Railway Axles. In Proceedings of the 3rd WSEAS International Conference on Finite Differences - Finite Elements - Finite Volumes - Boundary Elements, 2010, pp 219–223.
  • Raduta, A.; Locovei, C.; Nicoara, M.; Cucuruz, L. R. On the Influence of Residual Stresses on Fatigue Fracture of Railway Axles. WSEAS Trans. Appl. Theor. Mech. 2010, 3, 198–207.
  • Grubisic, V.; Fischer, G. (2006). Procedure for reliable durability validation of train axles. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 37(12), 973–982.
  • European Railway Agency. Railway Safety Performance in the European Union. http://www.era.europa.eu/Document-Register/Pages/Railway-Safety-Performance-in-the-European-Union-2011.aspx. 2011.
  • Orringer, O.; Morris, J. M.; Steele, R. K. Applied Research on Rail Fatigue and Fracture in the United States. Theor. Appl. Fract. Mech. 1984, 1, 23–49. doi:10.1016/0167-8442(84)90019-3
  • Transportation Safety Board of Canada. Railway Investigation Report R01Q0010. Main track derailment. Trudel, Quebec, February 15, 2001. http://www.tsb.gc.ca/eng/rapports-reports/rail/2001/r01q001/r01q0010.asp.
  • Grubisic, V.; Fischer, G. Railway Axle Failures and Durability Validation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2012, 226, 518–529. doi:10.1177/0954409712442325
  • Hirakawa, K. Fatigue Design Method of Railway Axle in the High-Speed Railway. Jpn. Railway Eng. Assoc. 1996, 39, 4–12.
  • Linhart, V.; Černý, I. An Effect of Strength of Railway Axle Steels on Fatigue Resistance under Press Fit. Eng. Fract. Mech. 2011, 78, 731–741. doi:10.1016/j.engfracmech.2010.11.023
  • Hirakawa, K.; Kubota, M. On the Fatigue Design Method for High-Speed Railway Axles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2001, 215, 73–82. doi:10.1243/0954409011531413
  • Makino, T.; Kato, T.; Hirakawa, K. Review of the Fatigue Damage Tolerance of High-Speed Railway Axles in Japan. Eng. Fract. Mech. 2011, 78, 810–825. doi:10.1016/j.engfracmech.2009.12.013
  • Clyne, T. W.; Gill, S. C. Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work. J. Therm. Spray Technol. 1996, 5, 401–418. doi:10.1007/BF02645271
  • Ekberg, A. Fretting Fatigue of Railway Axles - a Review of Predictive Methods and an Outline of a Finite Element Model. IMechE J. Rail Rapid Transit. 2004, 218, 299–316. doi:10.1243/0954409043125905
  • Brister, S. E.; Dahlman, G. E.; Stecyk, N. J. Improving Axle Reliability in North American Freight Service. In Proceedings of the 2006 ASME/IEEE Joint Rail Conference, 2006.
  • Beretta, S.; Carboni, M.; Fiore, G.; Lo Conte, A. Corrosion–Fatigue of A1N Railway Axle Steel Exposed to Rainwater. Int. J. Fatigue 2010, 32, 952–961. doi:10.1016/j.ijfatigue.2009.08.003
  • Gravier, N.; Viet, J. J.; Leluan, A. Predicting the Life of Railway Vehicle Axles. In Proceedings of the 12th International Wheelset Congress, 1998; pp 133–146.
  • Beretta, S.; Ghidini, A.; Lombardo, F. Fracture Mechanics and Scale Effects in the Fatigue of Railway Axles. Eng. Fract. Mech. 2005, 72, 195–208. doi:10.1016/j.engfracmech.2003.12.011
  • Broek, D. The Practice of Damage Tolerance Analysis. ASM International, Materials Park, OH 44073-0002, USA, 1996, 420–426.
  • Schijve, J. Fatigue of Structures and Materials. Kluwer Academic Publishers, Springer, Amsterdam, Netherlands; 2004.
  • Snell, J. R. Key Issues in the Application of Unified Railway Axle Standards. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, 279–282. doi:10.1243/0954409043125914
  • Madia, M.; Beretta, S.; Zerbst, U. An Investigation on the Influence of Rotary Bending and Press Fitting on Stress Intensity Factors and Fatigue Crack Growth in Railway Axles. Eng. Fract. Mech. 2008, 75, 1906–1920. doi:10.1016/j.engfracmech.2007.08.015
  • Watson, A. S.; Timmis, K. A Method of Estimating Railway Axle Stress Spectra. Eng. Fract. Mech. 2011, 78, 836–847. doi:10.1016/j.engfracmech.2009.12.001
  • Ognjanovic, M.; Simonovic, A.; Ristivojevic, M.; Lazovic, T. Research of Rail Traction Shafts and Axles Fractures towards Impact of Service Conditions and Fatigue Damage Accumulation. Eng. Fail. Anal. 2010, 17, 1560–1571. doi:10.1016/j.engfailanal.2010.06.007
  • Wells, J. H. Kinetic Boundary Friction. The Engineer, London, UK; 1929, 147, 454.
  • Hartog, J. P. D. Forced Vibrations with Combined Viscous and Coulomb Damping. Philos. Mag. 1930, 9, 801–817. doi:10.1080/14786443008565051
  • Eadie, D. T.; Kalousek, J.; Chiddick, K. C. The Role of High Positive Friction (HPF) Modifier in the Control of Short Pitch Corrugations and Related Phenomena. Wear 2002, 253, 185–192. doi:10.1016/S0043-1648(02)00098-4
  • Withers, P. J.; Turski, M.; Edwards, L.; Bouchard, P. J.; Buttle, D. J. Recent Advances in Residual Stress Measurement. Int. J. Press. Vessel. Pip. 2008, 85, 118–127. doi:10.1016/j.ijpvp.2007.10.007
  • Withers, P. J.; Bhadeshia, H. K. D. H. Residual Stress Part 1 – Measurement Techniques. Mater. Sci. Technol. 2001, 17, 355–365. doi:10.1179/026708301101509980
  • Klinger, C.; Bettge, D. Axle Fracture of an ICE3 High Speed Train. Eng. Fail. Anal. 2013, 35, 66–81. doi:10.1016/j.engfailanal.2012.11.008
  • Danks, D.; Clayton, P. Comparison of the Wear Process for Eutectoid Rail Steels: Field and Laboratory Tests. Wear 1987, 120, 233–250. doi:10.1016/0043-1648(87)90069-X
  • Beretta, S.; Carboni, M.; Lo Conte, A.; Palermo, E. An Investigation of the Effects of Corrosion on the Fatigue Strength of AlN Axle Steel. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2008, 222, 129–143. doi:10.1243/09544097JRRT157
  • Dhua, S. K.; Ray, A.; Sarma, D. S. Effect of Tempering Temperatures on the Mechanical Properties and Microstructures of HSLA-100 Type Copper-Bearing Steels. Mater. Sci. Eng. A 2001, 318, 197–210. doi:10.1016/S0921-5093(01)01259-X
  • Talamba, R.; Stoica, M. Mounted Axles. Rosia Montata, ASAB Dacia Publishing House, Bucharest, Romania 2005, ISBN 973-7725-04-2.
  • Wohler, A. Theorie Rechteckiger Eiserner Bruckenbalken Mit Gittetwanden Und Mit Blechwanden. Zeitschrift Fur Bauwes 1855, 5, 121–166.
  • Ewing, J. A.; Humfrey, J. C. W. The Fracture of Metals under Repeated Alternations of Stresses. Philos. Trans. R. Soc. 1903, 200, 241–250.
  • Ritchie, R. O. Mechanism of Fatigue-Crack Propagation in Ductile and Brittle Materials. Int. J. Fract. 1999, 100, 55–83. doi:10.1023/A:1018655917051
  • Klenam, D. E. P.; Soboyejo, W. O. Fatigue of Thermostructural Alloys. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00092-X
  • Klenam, D. E. P.; Oghenevweta, J. E.; Soboyejo, W. O. Fracture and Toughening of Intermetallics. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00070-0
  • Klenam, D. E. P.; Oghenevweta, J. E.; Soboyejo, W. O. Fatigue of Single/Multiple Semi-Elliptical Cracks. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00084-0
  • Schmidová, E.; Paščenko, P.; Culek, B.; Schmid, M. Premature Failures of Railway Axles after Repeated Pressing. Eng. Fail. Anal. 2021, 123, 105253. doi:10.1016/j.engfailanal.2021.105253
  • Gürer, G.; Gür, C. H. H. Failure Analysis of Fretting Fatigue Initiation and Growth on Railway Axle Press-Fits. Eng. Fail. Anal. 2018, 84, 151–166. doi:10.1016/j.engfailanal.2017.06.054
  • Axle, R.; et al. The Effects of Friction Coefficient and Interference on the Fretting Fatigue Strength of Railway Axle Assembly. UPB Sci. Bull. Ser. D Mech. Eng. 2013, 75, 71–84.
  • Berthier, Y.; Vincent, L.; Godet, M. Fretting Fatigue and Fretting Wear. Tribol. Int. 1989, 22, 235–242. doi:10.1016/0301-679X(89)90081-9
  • Stone, D. H. 2011 Fretting Fatigue of Axles. In ASME 2011 Rail Transportation Division Fall Technical Conference; pp 35–37.
  • Kappes, W.; Hentschel, D.; Oelschlägel, T. Potential Improvements of the Presently Applied in-Service Inspection of Wheelset Axles. Int. J. Fatigue 2016, 86, 64–76. doi:10.1016/j.ijfatigue.2015.08.014
  • Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a Root Cause of Fatigue Failure of Metallic Components. I: Basic Aspects. Eng. Fail. Anal. 2019, 98, 228–239. doi:10.1016/j.engfailanal.2019.01.054
  • Hillmansen, S.; Smith, R. A. The Management of Fatigue Crack Growth in Railway Axles. J. Rail Rapid Transp. 2004, 218, 327–336. doi:10.1243/0954409043125879
  • Indraratna, B.; Ionescu, D.; Christie, H. D. Shear Behaviour of Railway Ballast Based on Large Scale Triaxial Testing. J. Geotech. Geoenviron. Eng. 1998, 124, 439–449. doi:10.1061/(ASCE)1090-0241(1998)124:5(439)
  • Ren, X.; Wu, F.; Xiao, F.; Jiang, B. Corrosion Induced Fatigue Failure of Railway Wheels. Eng. Fail. Anal. 2015, 55, 300–316. doi:10.1016/j.engfailanal.2015.06.009
  • Beretta, S.; Carboni, M.; Conte, A. L.; Regazzi, D.; Trasatti, S.; Rizzi, M. Crack Growth Studies in Railway Axles under Corrosion Fatigue: Full-Scale Experiments and Model Validation. Proc. Eng. 2011, 10, 3650–3655. doi:10.1016/j.proeng.2011.04.601
  • Cervello, S. Fatigue Properties of Railway Axles: New Results of Full-Scale Specimens from Euraxles Project. Int. J. Fatigue 2016, 86, 2–12. doi:10.1016/j.ijfatigue.2015.11.028
  • Murtaza, G.; Akid, R. Empirical Corrosion Fatigue Life Prediction Models of a High Strength Steel. Eng. Fract. Mech. 2000, 67, 461–474. doi:10.1016/S0013-7944(00)00057-6
  • Alp, T.; Husain, Z.; Cottis, R. A. Corrosion Fatigue Crack Initiation and Growth in 18 Ni Maraging Steel. J. Mater. Sci. 1986, 21, 9, 3263–3268.
  • Ragab, A.; Alawi, H.; Sorein, K. Corrosion Fatigue of Steel in Various Aqueous Environments. Fat. Frac. Eng. Mat. Struct. 1989, 12, 469–479. doi:10.1111/j.1460-2695.1989.tb00557.x
  • Domínguez Almaraz, G. M.; Ávila Ambriz, J. L.; Cadenas Calderón, E. Fatigue Endurance and Crack Propagation under Rotating Bending Fatigue Tests on Aluminum Alloy AISI 6063-T5 with Controlled Corrosion Attack. Eng. Fract. Mech. 2012, 93, 119–131. doi:10.1016/j.engfracmech.2012.06.012
  • Balbín, J. A.; Chaves, V.; Larrosa, N. O. Pit to Crack Transition and corrosion fatigue Lifetime Reduction Estimations by Means of a Short Crack Microstructural Model. Corros. Sci 2021, 180, 109171. doi:10.1016/j.corsci.2020.109171
  • Chan, K. S. Roles of Microstructure in Fatigue Crack Initiation. Int. J. Fatigue 2010, 32, 1428–1447. doi:10.1016/j.ijfatigue.2009.10.005
  • Hu, Y.; Wu, S.; Withers, P. J.; Cao, H.; Chen, P.; Zhang, Y.; Shen, Z.; Vojtek, T.; Hutař, P. Corrosion Fatigue Lifetime Assessment of High-Speed Railway Axle EA4T Steel with Artificial Scratch. Eng. Fract. Mech. 2021, 245, 107588. doi:10.1016/j.engfracmech.2021.107588
  • Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a Root Cause of Fatigue Failure of Metallic Components. III: Cavities, Dents, Corrosion Pits, Scratches. Eng. Fail. Anal. 2019, 97, 759–776. doi:10.1016/j.engfailanal.2019.01.034
  • Pineau, A.; McDowell, D. L.; Busso, E. P.; Antolovich, S. D. Failure of Metals II: Fatigue. Acta Mater. 2016, 107, 484–507. doi:10.1016/j.actamat.2015.05.050
  • Gavras, A. G.; Spangenberger, A. G.; Lados, D. A. Fatigue Crack Growth Microstructural Mechanisms and Texture-Sensitive Predictive Modeling of Lightweight Structural Metals. Int. J. Fatigue 2021, 149, 106278. doi:10.1016/j.ijfatigue.2021.106278
  • Beretta, S.; Lo Conte, A.; Rudlin, J.; Panggabean, D. From Atmospheric Corrosive Attack to Crack Propagation for A1N Railway Axles Steel under Fatigue: Damage Process and Detection. Eng. Fail. Anal. 2015, 47, 252–264. doi:10.1016/j.engfailanal.2014.07.026
  • Beretta, S.; Sangalli, F.; Syeda, J.; Panggabean, D.; Rudlin, J. RAAI Project: Life-Prediction and Prognostics for Railway Axles under Corrosion-Fatigue Damage. Proc. Struct. Integr. 2017, 4, 64–70. doi:10.1016/j.prostr.2017.07.010
  • Gangloff, R. P. Environmental Cracking - Corrosion Fatigue. In Corrosion Tests and Standards: Application and Interpretation; Baboian, B., Ed. ASTM International, West Conshohocken, USA, 2005; 302–321.
  • Hoddinott, D. S. Railway Axle Failure Investigations and Fatigue Crack Growth Monitoring of an Axle. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, 283–292. doi:10.1243/0954409043125897
  • Vermilyea, D. A. A Theory for the Propagation of Stress Corrosion Cracks in Metals. J. Electrochem. Soc. 1972, 119, 405. doi:10.1149/1.2404217
  • Jones, D. A. A Unified Mechanism of Stress Corrosion and Corrosion Fatigue Cracking. Metall. Trans. A 1985, 2, 1133–1141.
  • Transportation Safety Board of Canada. Railway Investigation Report R01Q0010. Main Track Derailment, Canadian National Train No. G-894-31-14, Mile 12.56, Drummondville Subdivision, Trudel, Quebec, 2001; pp 1–9.
  • Transportation Safety Board of Canada. Railway Investigation Report R07T0240, Main Track Train Derailment Canadian Pacific Railway Freight Train No. 230-25 Mile 42. 80, Belleville Subdivision Tichborne, Ontario. 2007; pp 1–12.
  • Swiss Bureau for Railway Funicular and Boat Accidents. Schlussbericht der Unfalluntersuchungsstelle Bahnen und Schiffe über die vom in Zugsentgleisung. Reg. No. 06072601, 2006; pp 1–10. (In German). http://www.sust.admin.ch/pdfs/BS/pdf/4020499.pdf.
  • Australian Transport Safety Bureau. Derailment of XPT Passenger Train ST22; Harden, New South Wales. 2006.
  • Schulte-Werning, B.; Beier, M.; Degen, K. G.; Stiebel, D. Research on Noise and Vibration Reduction at DB to Improve the Environmental Friendliness of Railway Traffic. J. Sound Vib. 2006, 293, 1058–1069. doi:10.1016/j.jsv.2005.08.065
  • Giannella, V.; Sepe, R.; Borrelli, A.; De Michele, G.; Armentani, E. Numerical Investigation on the Fracture Failure of a Railway Axle. Eng. Fail. Anal. 2021, 129, 105680. doi:10.1016/j.engfailanal.2021.105680
  • Ishihara, S.; Saka, S.; Nan, Z. Y.; Goshima, T.; Sunada, S. Prediction of Corrosion Fatigue Lives of Aluminium Alloy on the Basis of Corrosion Pit Growth Law. Fatigue Frac. Eng. Mat. Struct. 2006, 29, 472–480. doi:10.1111/j.1460-2695.2006.01018.x
  • Li, H.; Zhang, J.; Wu, S.; Zhang, H.; Fu, Y. Corrosion Fatigue Mechanism and Life Prediction of Railway Axle EA4T Steel Exposed to Artificial Rainwater. Eng. Fail. Anal. 2022, 138, 106319. ). doi:10.1016/j.engfailanal.2022.106319
  • Murakami, Y.; Endo, M. The Reality of the Concept of Fatigue Damage in Multiple Step Amplitude Loadings: Reason for Unsuccessful Results of Existing Damage Counting Models. Int. J. Fatigue 2022, 154, 106529. doi:10.1016/j.ijfatigue.2021.106529
  • Hobson, P. D. The Growth of Short Fatigue Cracks in a Medium Carbon Steel. PhD Thesis, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK, 1985.
  • Tilly, G. Fatigue of Land-Based Structures. Int. J. Fatigue 1985, 7, 67–78. doi:10.1016/0142-1123(85)90036-2
  • Hurricks, P. L. The Mechanism of Fretting — A Review. Wear 1970, 15, 389–409. doi:10.1016/0043-1648(70)90235-8
  • Horger, O. J. Fatigue of Large Shafts by Fretting Corrosion. In Proceedings of the International Conference on the Fatigue of Metals, Institute of Mechanical Engineers; 1956; p 352.
  • Waterhouse, R. B.; Taylor, D. E. Fretting Debris and the Delamination Theory of Wear. Wear 1974, 29, 337–344. doi:10.1016/0043-1648(74)90019-2
  • Waterhouse, R. B. Fretting Wear. Wear 1984, 100, 107–118. doi:10.1016/0043-1648(84)90008-5
  • Jin, O.; Mall, S. Effects of Slip on Fretting Behavior: Experiments and Analyses. Wear 2004, 256, 671–684. doi:10.1016/S0043-1648(03)00510-6
  • Endo, H.; Marui, E. Studies on Fretting Wear: Influence of Rubbing Surface Materials and Some Considerations. Wear 2002, 253, 795–802. doi:10.1016/S0043-1648(02)00226-0
  • Peng, J. F.; Zhu, M. H.; Cai, Z. B.; Liu, J. H.; Zuo, K. C.; Song, C.; Wang, W. J. On the Damage Mechanisms of Bending Fretting Fatigue. Tribol. Int. 2014, 76, 133–141. doi:10.1016/j.triboint.2013.12.018
  • Fouvry, S.; Kubiak, K. Development of a Fretting-Fatigue Mapping Concept: The Effect of Material Properties and Surface Treatments. Wear 2009, 267, 2186–2199. doi:10.1016/j.wear.2009.09.012
  • Varfolomeev, I.; Luke, M.; Burdack, M. Effect of Specimen Geometry on Fatigue Crack Growth Rates for the Railway Axle Material EA4T. Eng. Fract. Mech. 2011, 78, 742–753. doi:10.1016/j.engfracmech.2010.11.011
  • Foletti, S.; Beretta, S.; Gurer, G. Defect Acceptability under Full-Scale Fretting Fatigue Tests for Railway Axles. Int. J. Fatigue 2016, 86, 34–43. doi:10.1016/j.ijfatigue.2015.08.023
  • Hills, D. A. Mechanics of Fretting Fatigue. Wear 1994, 175, 107–113. doi:10.1016/0043-1648(94)90173-2
  • Varenberg, M.; Halperin, G.; Etsion, I. Different Aspects of the Role of Wear Debris in Fretting Wear. Wear 2002, 252, 902–910. doi:10.1016/S0043-1648(02)00044-3
  • Zheng, J. F.; Luo, J.; Mo, J. L.; Peng, J. F.; Jin, X. S.; Zhu, M. H. Fretting Wear Behaviors of a Railway Axle Steel. Tribol. Int. 2010, 43, 906–911. doi:10.1016/j.triboint.2009.12.031
  • Neu, R. W. Progress in Standardization of Fretting Fatigue Terminology and Testing. Tribol. Int. 2011, 44, 1371–1377. doi:10.1016/j.triboint.2010.12.001
  • Chowdhury, M. A.; Kowser, M. A.; Zobaer Shah, Q. M.; Das, S. Characteristics and Damage Mechanisms of Bending Fretting Fatigue of Materials. Int. J. Damage Mech. 2018, 27, 453–487. doi:10.1177/1056789517693412
  • Lemaitre, J. A Continuous Damage Mechanics Model for Ductile Fracture. J. Eng. Mater. Technol. Trans. ASME 1985, 107, 83–89. doi:10.1115/1.3225775
  • Bhattacharya, B.; Ellingwood, B. Continuum Damage Mechanics Analysis of Fatigue Crack Initiation. Int. J. Fatigue 1998, 20, 631–639. doi:10.1016/S0142-1123(98)00032-2
  • Chaboche, J. L.; Lesne, P. M. a Non‐Linear Continuous Fatigue Damage Model. Fat. Frac. Eng. Mat. Struct. 1988, 11, 1–17. doi:10.1111/j.1460-2695.1988.tb01216.x
  • Hojjati-Talemi, R.; Wahab, M. A. Fretting Fatigue Crack Initiation Lifetime Predictor Tool: Using Damage Mechanics Approach. Tribol. Int. 2013, 60, 176–186. doi:10.1016/j.triboint.2012.10.028
  • Hojjati-Talemi, R.; Wahab, M. A.; Giner, E.; Sabsabi, M. Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics. Tribol. Lett. 2013, 52, 11–25. doi:10.1007/s11249-013-0189-8
  • Quraishi, S. M.; Khonsari, M. M.; Baek, D. K. A Thermodynamic Approach for Predicting Fretting Fatigue Life. Tribol. Lett. 2005, 19, 169–175. doi:10.1007/s11249-005-6143-7
  • Chaudonneret, M. A Simple and Efficient Multiaxial Fatigue Damage Model for Engineering Applications of Macro-Crack Initiation. J. Eng. Mater. Technol. Trans. ASME 1993, 115, 373–379. doi:10.1115/1.2904232
  • Crossland, B. Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel. Proc. Int. Fatigue Met. 1956, 138, 138–149.
  • Findley, W. N. A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending. J. Eng. Ind. 1959, 81, 301–305. doi:10.1115/1.4008327
  • McDiarmid, D. L. A General Criterion for High Cycle Multiaxial Fatigue Failure. Fatigue Frac. Eng. Mat. Struct. 1991, 14, 429–453. doi:10.1111/j.1460-2695.1991.tb00673.x
  • Lykins, C. D.; Mall, S.; Jain, V. A Shear Stress-Based Parameter for Fretting Fatigue Crack Initiation. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 461–473. doi:10.1046/j.1460-2695.2001.00412.x
  • Fatemi, A.; Socie, D. F. A Critical Plane Approach to Multiaxial Fatigue Damage Including out‐of‐Phase Loading. Fatigue Frac. Eng. Mat. Struct. 1988, 11, 149–165. doi:10.1111/j.1460-2695.1988.tb01169.x
  • Szolwinski, M. P.; Farris, T. N. Mechanics of Fretting Fatigue Crack Formation. Wear 1996, 198, 93–107. doi:10.1016/0043-1648(96)06937-2
  • Liu, K. C. A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction. ASTM Spec. Tech. Publ. 1993, 1191, 67–67.
  • Brown, M. W.; Miller, K. J. A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. doi:10.1243/PIME_PROC_1973_187_161_02
  • Ding, J.; Houghton, D.; Williams, E. J.; Leen, S. B. Simple Parameters to Predict Effect of Surface Damage on Fretting Fatigue. Int. J. Fatigue 2011, 33, 332–342. doi:10.1016/j.ijfatigue.2010.09.008
  • Ruiz, C.; Boddington, P. H. B.; Chen, K. C. An Investigation of Fatigue and Fretting in a Dovetail Joint. Exp. Mech. 1984, 24, 208–217. doi:10.1007/BF02323167
  • Wharton, M. H.; Waterhouse, R. B.; Hirakawa, K.; Nishioka, K. The Effect of Different Contact Materials on the Fretting Fatigue Strength of an Aluminium Alloy. Wear 1973, 26, 253–260. doi:10.1016/0043-1648(73)90139-7
  • Bhatti, N. A.; Abdel Wahab, M. Fretting Fatigue Crack Nucleation: A Review. Tribol. Int. 2018, 121, 121–138. doi:10.1016/j.triboint.2018.01.029
  • Coffin, L. F. A Study of the Effect of Cyclic Thermal Stresses on Ductile Metal. Trans. Am. Soc. Mech. Eng. 1954, 76, 931–949. doi:10.1115/1.4015020
  • Gelfi, M.; La Vecchia, G. M.; Lecis, N.; Troglio, S. Relationship between through-Thickness Residual Stress of CrN-PVD Coatings and Fatigue Nucleation Sites. Surf. Coatings Technol. 2005, 192, 263–268. doi:10.1016/j.surfcoat.2004.05.032
  • Niederhauser, S.; Karlsson, B. Fatigue Behaviour of Co–Cr Laser Cladded Steel Plates for Railway Applications. Wear 2005, 258, 1156–1164. doi:10.1016/j.wear.2004.03.026
  • Korzynski, M.; Pacana, A.; Cwanek, J. Fatigue Strength of Chromium Coated Elements and Possibility of Its Improvement with Slide Diamond Burnishing. Surf. Coatings Technol. 2009, 203, 1670–1676. doi:10.1016/j.surfcoat.2008.12.022
  • Ibrahim, A.; Berndt, C. C. Fatigue and Deformation of HVOF Sprayed WC–Co Coatings and Hard Chrome Plating. Mater. Sci. Eng. A 2007, 456, 114–119. doi:10.1016/j.msea.2006.12.030
  • Klenam, D. E. P. Composition Refinement of Medium Carbon-Low Alloy Steels to Improve Wear and Corrosion Resistance for Rail Axle Applications; PhD Thesis, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa, 2019.
  • Pickering, F. B. Physical Metallurgy and the Design of Steels; Applied Science Publishers, London, UK, 1978.
  • Bhadeshia, H. K. D. H. The Lower Bainite Transformation and the Significance of Carbide Precipitation. Acta Metall. 1980, 28, 1103–1114. doi:10.1016/0001-6160(80)90093-0
  • Cantini, S.; Ghidini, A. A Basic Life Estimates for Railway Axle Materials under Constant Amplitude Loading and LEFM Hypothesis; Lucchini Internal Report R&D R015-2003, Italy, 2003.
  • Zhou, J.; et al. The Comprehensive Effect of Controlled Cooling and Si/Mn Elements on the Structure-Property Relationship of a Novel Wire Rod. J. Mater. Eng. Perform. 2022, 1–9.
  • Beretta, S.; Zerbst, U. Damage Tolerance of Railway Axles. Eng. Fract. Mech. 2011, 78, 713. doi:10.1016/j.engfracmech.2011.02.014
  • Pokorný, P.; Náhlík, L.; Hutař, P. Influence of Threshold Values on Residual Fatigue Lifetime of Railway Axles under Variable Amplitude Loading. Proc. Eng. 2015, 101, 380–385. doi:10.1016/j.proeng.2015.02.046
  • Moon, A.; Sangal, S.; Mondal, K. Corrosion Behaviour of New Railway Axle Steels. Trans. Indian Inst. Met. 2013, 66, 33–41. doi:10.1007/s12666-012-0167-0
  • Association of American Railroads. Manual of Standards and Recommended Practice, Section G, Part 1, Washington DC, USA, 1990.
  • Mancini, G.; Corbizi, A.; Lombardo, F.; Cervello, S. Design of Railway Axle in Compliance with the European Norms: High Strength Alloyed Steels Compared to Standard Steels. In Proceedings of World Congress on Railway Research; 2006, pp 1–12.
  • Zhang, J. W. W.; Lu, L. T. T.; Shiozawa, K.; Zhou, W. N. N.; Zhang, W. H. H. Effect of Nitrocarburizing and Post-Oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime. Int. J. Fatigue 2011, 33, 880–886. doi:10.1016/j.ijfatigue.2011.01.016
  • Zhang, J.; Lu, L.; Cui, G.; Shen, X.; Yi, H.; Zhang, W. Effect of Process Temperature on the Microstructure and Properties of Gas Oxynitrocarburized 35CrMo Alloy Steel. Mater. Des. 2010, 31, 2654–2658. doi:10.1016/j.matdes.2009.11.068
  • Yang, B.; Zhao, Y. Experimental Research on Dominant Effective Short Fatigue Crack Behavior for Railway LZ50 Axle Steel. Int. J. Fatigue 2012, 35, 71–78. doi:10.1016/j.ijfatigue.2010.11.012
  • Beretta, S.; Carboni, M.; Cantini, S.; Ghidini, A. Application of Fatigue Crack Growth Algorithms to Railway Axles and Comparison of Two Steel Grades. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2004, 218, 317–326. doi:10.1243/0954409043125888
  • Beretta, S.; Carboni, M. Variable Amplitude Fatigue Crack Growth in a Mild Steel for Railway Axles: Experiments and Predictive Models. Eng. Fract. Mech. 2011, 78, 848–862. doi:10.1016/j.engfracmech.2010.11.019
  • Beretta, S.; Carboni, M.; Cervello, S. Design Review of a Freight Railway Axle: Fatigue Damage versus Damage Tolerance. Materialwissenschaft und Werkstofftechnik 2011, 42, 1099–1104. doi:10.1002/mawe.201100916
  • UN16787-71. Assi fucinati di acciano special legato, bonificati, ad elevate caratteristieche di fatica a di tenacita per sale monatete di rotabili ferroviari. Qualita: Preserizoni e Prove, 1971.
  • Vickerman, R. High-Speed Rail in Europe: Experience and Issues for Future Development. Ann. Reg. Sci. 1997, 31, 21–38. doi:10.1007/s001680050037
  • Zhang, J. W.; Lu, L. T.; Wu, P. B.; Ma, J. J.; Wang, G. G.; Zhang, W. H. Inclusion Size Evaluation and Fatigue Strength Analysis of 35CrMo Alloy Railway Axle Steel. Mater. Sci. Eng. A 2013, 562, 211–217. doi:10.1016/j.msea.2012.11.035
  • Abbasi, E.; Luo, Q.; Owens, D. A Comparison of Microstructure and Mechanical Properties of Low-Alloy-Medium-Carbon Steels after Quench-Hardening. Mater. Sci. Eng. A 2018, 725, 65–75. doi:10.1016/j.msea.2018.04.012
  • Rackwitz, J.; Yu, Q.; Yang, Y.; Laplanche, G.; George, E. P.; Minor, A. M.; Ritchie, R. O. Effects of Cryogenic Temperature and Grain Size on Fatigue-Crack Propagation in the Medium-Entropy CrCoNi Alloy. Acta Mater. 2020, 200, 351–365. doi:10.1016/j.actamat.2020.09.021
  • Jo, Y. H.; Doh, K.-Y.; Kim, D. G.; Lee, K.; Kim, D. W.; Sung, H.; Sohn, S. S.; Lee, D.; Kim, H. S.; Lee, B.-J.; et al. Cryogenic-Temperature Fracture Toughness Analysis of Non-Equi-Atomic V10Cr10Fe45Co20Ni15 High-Entropy Alloy. J. Alloys Compd. 2019, 809, 151864. doi:10.1016/j.jallcom.2019.151864
  • Japanese Standards. Japanese Industrial Standards JIS E 4502-1-2001 Axles for Railway Rolling Stock - Quality Requirements, Japan, 2001.
  • Japanese Standards. Japanese Industrial Standards JIS E 4502-2-2001 Axles for Railway Rolling Stock - Dimensional Requirements, Japan, 2001.
  • Gao, J.; et al. Influence of Artificial Defects on Fatigue Strength of Induction Hardened S38C Axles. Int. J. Fatigue 2020, 139, 105746.
  • Horger, O. Wheel, axle and rail stress Problem Related to Higher Capacity Cars-Axle Problems. In Anthology of Rail Vehicle Dynamics 3, Axles, Wheels and Rail-Wheel Interaction; American Society of Mechanical Engineers, 1973, pp 49–58.
  • ASTM Standard A 730-93. Standard Specification for Forgings, Carbon and Alloy Steels for Railway Use, ASTM International, Material Park, OH, USA, 1993.
  • Zhu, Y.; Kang, G.; Ding, J.; Zhu, M. Study on Bending Fretting Fatigue of LZ50 Axle Steel considering Ratchetting by Finite Element Method. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 127–138. doi:10.1111/j.1460-2695.2012.01705.x
  • Japanese Standards. Japan Association of Rolling Stock Industries Standards JRIS J 0401-2007 Rolling Stock - Induction-Hardened Axles for High Speed Vehicle, 2007.
  • Pokorný, P.; et al. Influence of Heat Treatment-Induced Residual Stress on Residual Fatigue Life of Railway Axles. Theor. Appl. Fract. Mech. 2020, 109, 102732.
  • Itagaki, M.; Nozue, R.; Watanabe, K.; Katayama, H.; Noda, K. Electrochemical Impedance of Thin Rust Film of Low-Alloy Steels. Corros. Sci. 2004, 46, 1301–1310. doi:10.1016/j.corsci.2003.08.002
  • Wranglén, G. Review Article on the Influence of Sulphide Inclusions on the Corrodibility of Fe and Steel. Corros. Sci. 1969, 9, 585–602. doi:10.1016/S0010-938X(69)80114-9
  • Wranglen, G. Pitting and Sulphide Inclusions in Steel. Corros. Sci. 1974, 14, 331–349. doi:10.1016/S0010-938X(74)80047-8
  • Moon, A. P.; Sangal, S.; Layek, S.; Giribaskar, S.; Mondal, K. Corrosion Behavior of High-Strength Bainitic Rail Steels. Metall. Mater. Trans. A 2015, 46, 1500–1518. doi:10.1007/s11661-014-2732-0
  • Guo, J.; Yang, S.; Shang, C.; Wang, Y.; He, X. Influence of Carbon Content and Microstructure on Corrosion Behaviour of Low Alloy Steels in a Cl- Containing Environment. Corros. Sci. 2009, 51, 242–251. doi:10.1016/j.corsci.2008.10.025
  • Liang, C.; Yu, M.; Ma, H.; Chen, H. Effect of Vacuum Hot Pressing on Plasma-Sprayed Molybdenum Coatings on Rail Vehicle Axle Steel. J. Therm. Spray Technol. 2019, 28, 893–903. doi:10.1007/s11666-019-00862-4
  • Miracle, D.; Majumdar, B.; Wertz, K.; Gorsse, S. New Strategies and Tests to Accelerate Discovery and Development of Multi-Principal Element Structural Alloys. Scr. Mater. 2017, 127, 195–200. doi:10.1016/j.scriptamat.2016.08.001
  • Liao, Z.; Yang, B.; Dai, S.; Xiao, S.; Yang, G.; Zhu, T. Effects of Stress Amplitude Ratio and Phase Angle on Short Fatigue Crack Behavior and Fracture Mode of EA4T Steel. J. Mater. Eng. Perform. 2021, 30, 2853–2863. doi:10.1007/s11665-021-05607-5
  • Ritchie, R. O. The Conflicts between Strength and Toughness. Nat. Mater. 2011, 10, 817–822. doi:10.1038/nmat3115
  • Mistry, P. J.; Johnson, M. S. Lightweighting of Railway Axles for the Reduction of Unsprung Mass and Track Access Charges. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2020, 234, 958–968. doi:10.1177/0954409719877774
  • Klenam, D. E. P.; Rahbar, N.; Soboyejo, W. O. Mechanical Properties of Complex Concentrated Alloys: Implications for Structural Integrity. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00047-5
  • Klenam, D. E. P.; Rahbar, N.; Soboyejo, W. O. Critical Review of Factors Hindering Scalability of Complex Concentrated Alloys. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00051-7
  • Klenam, D. E. P.; et al. Complex Concentrated Alloys: A Cornucopia of Possible Structural and Functional Applications. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00056-6
  • Fintová, S.; Pokorný, P.; Fajkoš, R.; Hutař, P. EA4T Railway Axle Steel Fatigue Behavior under Very High-Frequency Fatigue Loading. Eng. Fail. Anal. 2020, 115, 104668. doi:10.1016/j.engfailanal.2020.104668
  • Yang, J. P.; Zhao, Y. X.; Wang, J. G. Appropriate Method for Railway Vehicle Axle Journal Bearing Capacity Evaluation. In 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 2020, pp 1010–1016.
  • Luo, Y.; Wu, S.; Zhao, X.; Hu, Y.; Li, C.; Shen, Z.; Zhong, X. Three-Dimensional Correlation of Damage Criticality with the Defect Size and Lifetime of Externally Impacted 25CrMo4 Steel. Mater. Des. 2020, 195, 109001. doi:10.1016/j.matdes.2020.109001
  • Pourheidar, A.; Regazzi, D.; Cervello, S.; Foletti, S.; Beretta, S. Fretting Fatigue Analysis of Full-Scale Railway Axles in Presence of Artificial Micro-Notches. Tribol. Int. 2020, 150, 106383. doi:10.1016/j.triboint.2020.106383
  • He, J.; Cui, Y.; Liu, Y.; Wang, H. Probabilistic Analysis of Crack Growth in Railway Axles Using a Gaussian Process. Adv. Mech. Eng. 2020, 12, 1–12.
  • Rana, R. Low-Density Steels. Jom 2014, 66, 1730–1733. doi:10.1007/s11837-014-1137-2
  • Zuazo, I.; Hallstedt, B.; Lindahl, B.; Selleby, M.; Soler, M.; Etienne, A.; Perlade, A.; Hasenpouth, D.; Massardier-Jourdan, V.; Cazottes, S.; et al. Low-Density Steels: Complex Metallurgy for Automotive Applications. J. Mater. 2014, 66, 1747–1758. doi:10.1007/s11837-014-1084-y
  • Chen, S.; Rana, R.; Haldar, A.; Ray, R. K. Current State of Fe-Mn-Al-C Low Density Steels. Prog. Mater. Sci. 2017, 89, 345–391. doi:10.1016/j.pmatsci.2017.05.002
  • Klenam, D.; Rahbar, N.; Soboyejo, W. Critical Review of Limitations of Equiatomic Composition Alloying Strategy of Complex Concentrated Alloys. In Reference Module in Materials Science and Materials Engineering; Elsevier, Philadelphia, USA, 2022. doi:10.1016/B978-0-12-822944-6.00055-4
  • Gludovatz, B.; et al. Exceptional Damage-Tolerance of a Medium Entropy Alloy CrCoNi at Cryogenic Temperatures. Nat. Commun. 2016, 7, 1–8.
  • Xue, P.; et al. CrCoNi Medium-Entropy Alloy Thin-Walled Parts Manufactured by Laser Metal Deposition: Microstructure Evolution and Mechanical Anisotropy. Mater. Sci. Eng. A 2021, 817, 104743.
  • Zheng, X.; Xie, W.; Zeng, L.; Wei, H.; Zhang, X.; Wang, H. Achieving High Strength and Ductility in a Heterogeneous-Grain-Structured CrCoNi Alloy Processed by Cryorolling and Subsequent Short-Annealing. Mater. Sci. Eng. A 2021, 821, 141610. doi:10.1016/j.msea.2021.141610
  • Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-off. Nature 2016, 534, 227–230. doi:10.1038/nature17981
  • Dong, Y.; Duan, S.; Huang, X.; Li, C.; Zhang, Z. Excellent Strength-Ductility Synergy in as-Cast Al0.6CoCrFeNi2Mo0.08V0.04 High-Entropy Alloy at Room and Cryogenic Temperatures. Mater. Lett. 2021, 294, 129778. doi:10.1016/j.matlet.2021.129778
  • Yi, J.; Wang, L.; Zeng, L.; Xu, M.; Yang, L.; Tang, S. Excellent Strength-Ductility Synergy in a Novel Single-Phase Equiatomic CoFeNiTiV High Entropy Alloy. Int. J. Refract. Met. Hard Mater. 2021, 95, 105416. doi:10.1016/j.ijrmhm.2020.105416
  • Zhang, W.; Ma, Z.; Zhao, H.; Ren, L. Breakthrough the Strength-Ductility Trade-off in a High-Entropy Alloy at Room Temperature via Cold Rolling and Annealing. Mater. Sci. Eng. A 2021, 800, 140264. doi:10.1016/j.msea.2020.140264
  • Liu, Y.; He, Y.; Cai, S. Effect of Gradient Microstructure on the Strength and Ductility of Medium-Entropy Alloy Processed by Severe Torsion Deformation. Mater. Sci. Eng. A 2021, 801, 140429. doi:10.1016/j.msea.2020.140429
  • Jiang, K.; Gan, B.; Li, J.; Dou, Q.; Suo, T. Towards Strength-Ductility Synergy in a CrCoNi Solid Solution Alloy via Nanotwins. Mater. Sci. Eng. A 2021, 816, 141298. doi:10.1016/j.msea.2021.141298
  • Zhang, D. D.; Wang, H.; Zhang, J. Y.; Xue, H.; Liu, G.; Sun, J. Achieving Excellent Strength-Ductility Synergy in Twinned NiCoCr Medium-Entropy Alloy via Al/Ta co-Doping. J. Mater. Sci. Technol. 2021, 87, 184–195. doi:10.1016/j.jmst.2021.01.060
  • Li, G.; Liu, M.; Lyu, S.; Nakatani, M.; Zheng, R.; Ma, C.; Li, Q.; Ameyama, K. Simultaneously Enhanced Strength and Strain Hardening Capacity in FeMnCoCr High-Entropy Alloy via Harmonic Structure Design. Scr. Mater. 2021, 191, 196–201. doi:10.1016/j.scriptamat.2020.09.036
  • Huang, L.; et al. Simultaneously Enhanced Strength-Ductility of AlCoCrFeNi 2.1 Eutectic High-Entropy Alloy via Additive Manufacturing. Mater. Sci. Eng. A, 2022, 830, 142327
  • Reddy, S. R.; Yoshida, S.; Bhattacharjee, T.; Sake, N.; Lozinko, A.; Guo, S.; Bhattacharjee, P. P.; Tsuji, N. Nanostructuring with Structural-Compositional Dual Heterogeneities Enhances Strength-Ductility Synergy in Eutectic High Entropy Alloy. Sci. Rep. 2019, 9, 1–10. doi:10.1038/s41598-019-47983-y
  • Sun, S.; Gao, P.; Sun, G.; Cai, Z.; Hu, J.; Han, S.; Lian, J.; Liao, X. Nanostructuring as a Route to Achieve Ultra-Strong High- and Medium-Entropy Alloys with High Creep Resistance. J. Alloys Compd. 2020, 830, 154656. doi:10.1016/j.jallcom.2020.154656
  • Koch, C. C. Nanocrystalline High-Entropy Alloys. J. Mater. Res. 2017, 32, 3435–3444. doi:10.1557/jmr.2017.341
  • Sharma, A. S.; Yadav, S.; Biswas, K.; Basu, B. High-Entropy Alloys and Metallic Nanocomposites: Processing Challenges, Microstructure Development and Property Enhancement. Mater. Sci. Eng. R Rep. 2018, 131, 1–42. doi:10.1016/j.mser.2018.04.003
  • Wei, S.; He, F.; Tasan, C. C. Metastability in High-Entropy Alloys: A Review. J. Mater. Res. 2018, 33, 2924–2937. doi:10.1557/jmr.2018.306
  • He, Z. F.; Jia, N.; Ma, D.; Yan, H. L.; Li, Z. M.; Raabe, D. Joint Contribution of Transformation and Twinning to the High Strength-Ductility Combination of a FeMnCoCr High Entropy Alloy at Cryogenic Temperatures. Mater. Sci. Eng. A 2019, 759, 437–447. doi:10.1016/j.msea.2019.05.057
  • Li, J.; Chen, H.; Fang, Q.; Jiang, C.; Liu, Y.; Liaw, P. K. Unraveling the Dislocation-Precipitate Interactions in High-Entropy Alloys. Int. J. Plast. 2020, 133, 102819. doi:10.1016/j.ijplas.2020.102819
  • Soto, A. O.; Salgado, A. S.; Niño, E. B. Thermodynamic Analysis of High Entropy Alloys and Their Mechanical Behavior in High and Low-Temperature Conditions with a Microstructural approach - A Review. Intermetallics 2020, 124, 106850. doi:10.1016/j.intermet.2020.106850
  • Song, H.; Yang, J.; Jo, Y. H.; Song, T.; Kim, H. S.; Lee, B.-J.; Lee, S. Excellent Combination of Cryogenic-Temperature Strength and Ductility of High-Entropy-Alloy-Cored Multi-Layered Sheet. J. Alloys Compd. 2019, 797, 465–470. doi:10.1016/j.jallcom.2019.05.088
  • Xie, J.; Zhang, S.; Sun, Y.; Hao, Y.; An, B.; Li, Q.; Wang, C.-A. Microstructure and Mechanical Properties of High Entropy CrMnFeCoNi Alloy Processed by Electopulsing-Assisted Ultrasonic Surface Rolling. Mater. Sci. Eng. A 2020, 795, 140004. doi:10.1016/j.msea.2020.140004
  • Zhu, Y.; Zhou, S.; Wang, L.; Liang, Y.-J.; Xue, Y.; Wang, L. Improving the Ductility of High-Strength Multiphase NiAl Alloys by Introducing Multiscale High-Entropy Phases and Martensitic Transformation. Mater. Sci. Eng. A 2021, 808, 140949. doi:10.1016/j.msea.2021.140949
  • An, Z.; Mao, S.; Liu, Y.; Zhou, H.; Zhai, Y.; Tian, Z.; Liu, C.; Zhang, Z.; Han, X. Hierarchical Grain Size and Nanotwin Gradient Microstructure for Improved Mechanical Properties of a Non-Equiatomic CoCrFeMnNi High-Entropy Alloy. J. Mater. Sci. Technol. 2021, 92, 195–207. doi:10.1016/j.jmst.2021.02.059
  • Hu, Y.; Dong, Y.; Huang, X.; Li, C.; Zhang, Z. Microstructure Characteristics of a High-Entropy-Alloy Intermetallic Laminate Composite. Mater. Lett. 2020, 273, 127937. doi:10.1016/j.matlet.2020.127937
  • Li, Z.; Raabe, D. Strong and Ductile Non-Equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. Jom (1989) 2017, 69, 2099–2106. doi:10.1007/s11837-017-2540-2
  • Li, J.; Huang, Y.; Meng, X.; Xie, Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Adv. Eng. Mater. 2019, 1900343, 1–27.
  • Bagherifard, S.; Guagliano, M. Fatigue Performance of Cold Spray Deposits: Coating, Repair and Additive Manufacturing Cases. Int. J. Fatigue 2020, 139, 105744. doi:10.1016/j.ijfatigue.2020.105744
  • Srikanth, A.; Mohammed Thalib Basha, G.; Venkateshwarlu, B. A Brief Review on Cold Spray Coating Process. Mater. Today Proc. 2020, 22, 1390–1397. doi:10.1016/j.matpr.2020.01.482
  • Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications. Addit. Manuf. 2018, 21, 628–650. doi:10.1016/j.addma.2018.04.017
  • Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T. Cold Spraying – A Materials Perspective. Acta Mater. 2016, 116, 382–407. doi:10.1016/j.actamat.2016.06.034
  • Blose, R. E.; Walker, B. H.; Walker, R. M.; Froes, S. H. New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys. Met. Powder Rep. 2006, 61, 30–37. doi:10.1016/S0026-0657(06)70713-5
  • Li, W.; Cao, C.; Yin, S. Solid-State Cold Spraying of Ti and Its Alloys: A Literature Review. Prog. Mater. Sci. 2020, 110, 100633. doi:10.1016/j.pmatsci.2019.100633
  • Zhang, Z.; Liu, F.; Han, E. H.; Xu, L. Mechanical and Corrosion Properties in 3.5% NaCl Solution of Cold Sprayed Al-Based Coatings. Surf. Coatings Technol. 2020, 385, 125372. doi:10.1016/j.surfcoat.2020.125372
  • Chen, C.; Xie, Y.; Yan, X.; Ahmed, M.; Lupoi, R.; Wang, J.; Ren, Z.; Liao, H.; Yin, S. Tribological Properties of Al/Diamond Composites Produced by Cold Spray Additive Manufacturing. Addit. Manuf. 2020, 36, 101434. doi:10.1016/j.addma.2020.101434
  • Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. doi:10.1016/j.msea.2003.10.257
  • Manzoni, A. M.; Glatzel, U. New Multiphase Compositionally Complex Alloys Driven by the High Entropy Alloy Approach. Mater. Charact. 2019, 147, 512–532. doi:10.1016/j.matchar.2018.06.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.