2,250
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives

, , , , , , & show all

References

  • Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011, 334, 928–935.
  • Choi, J. W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nat. Rev. Mater. 2016, 1, 1–16.
  • Choi, S.-J.; Ahn, J.-H.; Han, J.-W.; Seol, M.-L.; Moon, D.-I.; Kim, S.; Choi, Y.-K. Transformable Functional Nanoscale Building Blocks with Wafer-Scale Silicon Nanowires. Nano Lett. 2011, 11, 854–859.
  • Woo Lee, S.; Gallant, B. M.; Ryung Byon, H.; Hammond, P. T.; Shao-Horn, Y. Nanostructured Carbon-Based Electrodes: bridging the Gap between Thin-Film Lithium-Ion Batteries and Electrochemical Capacitors. Energy Environ. Sci. 2011, 4, 1972–1985.
  • Chen, C.; Tao, L.; Du, S.; Chen, W.; Wang, Y.; Zou, Y.; Wang, S. Advanced Exfoliation Strategies for Layered Double Hydroxides and Applications in Energy Conversion and Storage. Adv. Funct. Mater. 2020, 30, 1909832.
  • Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science. 2019, 366, 6468.
  • Zhang, J.; Xia, Z.; Dai, L. Carbon-Based Electrocatalysts for Advanced Energy Conversion and Storage. Sci. Adv. 2015, 1, e1500564.
  • Hu, J.; Wang, Q.; Fu, L.; Rajagopalan, R.; Cui, Y.; Chen, H.; Yuan, H.; Tang, Y.; Wang, H. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-Like Structure as an Advanced Anode for Li-Ion Batteries. ACS Appl. Mater. Interfaces. 2020, 12, 48467–48475.
  • Jiang, S.; Yang, Z.; Liu, Y.; Johnson, N.; Bloom, I.; Zhang, L.; Zhang, Z. Engineering the Si Anode Interface Via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance. ACS Appl. Energy Mater. 2021, 4, 8193–8200. 10.1021/acsaem.1c00374
  • Guan, P.; Li, J.; Lu, T.; Guan, T.; Ma, Z.; Peng, Z.; Zhu, X.; Zhang, L. Facile and Scalable Approach to Fabricate Granadilla-Like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries. ACS Appl. Mater. Interfaces. 2018, 10, 34283–34290.
  • Braun, P. V.; Cho, J.; Pikul, J. H.; King, W. P.; Zhang, H. High Power Rechargeable Batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 186–198. 10.1016/j.cossms.2012.05.002
  • Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical Energy Storage for Transportation—Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries. Energy Environ. Sci. 2012, 5, 7854–7863. 10.1039/c2ee21892e
  • Majeed, M. K.; Saleem, A.; Majeed, M. U.; Lotfi, M.; Hussain, M. M.; Gong, H. Metal–Organic Framework Mediated Nickel Doped Copper Ferrite for Superior Lithium Storage. Sustain. Energy Fuels. 2021, 5, 2715–2723. 10.1039/D1SE00200G
  • Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on Advanced Materials for Li-Ion Batteries. Adv. Mater. 2009, 21, 4593–4607. 10.1002/adma.200901710
  • Wu, H.; Cui, Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today. 2012, 7, 414–429. 10.1016/j.nantod.2012.08.004
  • Saleem, A.; Majeed, M. K.; Niaz, S.-I.; Iqbal, M.; Akhlaq, M.; Ashfaq, M. Z.; Zhang, Y.; Gong, H. Nickel Doped Copper Ferrite NixCu1−xFe2O4 for a High Crystalline Anode Material for Lithium Ion Batteries. New J. Chem. 2021, 45, 1456–1462. 10.1039/D0NJ04429F
  • Lyu, F.; Sun, Z.; Nan, B.; Yu, S.; Cao, L.; Yang, M.; Li, M.; Wang, W.; Wu, S.; Zeng, S.; et al. Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Appl. Mater. Interfaces. 2017, 9, 10699–10707.
  • Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M. J.; Zhang, J.-G.; Liu, J. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-Ion Battery Anodes. Nat. Commun. 2014, 5, 4105.
  • Lin, D.; Lu, Z.; Hsu, P.-C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H.; Liu, C.; Cui, Y. A High Tap Density Secondary Silicon Particle Anode Fabricated by Scalable Mechanical Pressing for Lithium-Ion Batteries. Energy Environ. Sci. 2015, 8, 2371–2376. 10.1039/C5EE01363A
  • Majeed, M. K.; Iqbal, R.; Hussain, A.; Lotfi, M.; Plante, E. C. L.; Majeed, M. U.; Ashfaq, M. Z.; Javed, M. S.; Ahmad, M.; Saleem, A. Disclosing the Superior Lithium Storage of Double-Shelled Si@N-Doped Carbon: A Synergic Combination of Experiment and Theory. Sustain. Energy Fuels. 2022, DOI: 10.1039/D2SE01571D.
  • Rahman, M. A.; Song, G.; Bhatt, A. I.; Wong, Y. C.; Wen, C. Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2016, 26, 647–678. 10.1002/adfm.201502959
  • Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries. Chem. Soc. Rev. 2019, 48, 285–309.
  • Kim, H.; Seo, M.; Park, M.-H.; Cho, J. A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. Engl. 2010, 49, 2146–2149.
  • Liu, L.; Lyu, J.; Li, T.; Zhao, T. Well-Constructed Silicon-Based Materials as High-Performance Lithium-Ion Battery Anodes. Nanoscale. 2016, 8, 701–722. 10.1039/C5NR06278K
  • Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. 10.1002/aenm.201300882
  • Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Adv. Mater. 2017, 29, 1605531. 10.1002/adma.201605531
  • Jiang, T.; Zhang, R.; Yin, Q.; Zhou, W.; Dong, Z.; Chernova, N. A.; Wang, Q.; Omenya, F.; Whittingham, M. S. Morphology, Composition and Electrochemistry of a Nano-Porous Silicon Versus Bulk Silicon Anode for Lithium-Ion Batteries. J. Mater. Sci. 2017, 52, 3670–3677. 10.1007/s10853-016-0599-8
  • Song, T.; Xia, J.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; et al. Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries. Nano Lett. 2010, 10, 1710–1716.
  • Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid–Electrolyte Interphase Control. Nat. Nanotechnol. 2012, 7, 310–315.
  • Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources. 2014, 257, 421–443. 10.1016/j.jpowsour.2013.11.103
  • Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem. 2015, 2, 1645–1651.
  • Choi, M.-J.; Xiao, Y.; Hwang, J.-Y.; Belharouak, I.; Sun, Y.-K. Novel Strategy to Improve the Li-Storage Performance of Micro Silicon Anodes. J. Power Sources. 2017, 348, 302–310. 10.1016/j.jpowsour.2017.03.020
  • Han, Y.; Lin, N.; Xu, T.; Li, T.; Tian, J.; Zhu, Y.; Qian, Y. An Amorphous Si Material with a Sponge-Like Structure as an Anode for Li-Ion and Na-Ion Batteries. Nanoscale. 2018, 10, 3153–3158.
  • Obrovac, M. N. Si-Alloy Negative Electrodes for Li-Ion Batteries. Curr. Opin. Electrochem. 2018, 9, 8–17. 10.1016/j.coelec.2018.02.002
  • Luo, F.; Liu, B.; Zheng, J.; Chu, G.; Zhong, K.; Li, H.; Huang, X.; Chen, L. Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2509.
  • Majeed, M. K.; Saleem, A.; Wang, C.; Song, C.; Yang, J. Simplified Synthesis of Biomass-Derived Si/C Composites as Stable Anode Materials for Lithium-Ion Batteries. Chemistry. 2020, 26, 10544–10549.
  • Lin, L.; Xu, X.; Chu, C.; Majeed, M. K.; Yang, J. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2016, 55, 14063–14066.
  • Wang, D.; Zhang, D.; Dong, Y.; Lin, X.; Liu, R.; Li, A.; Chen, X.; Song, H. Reconstructed Nano-Si Assembled Microsphere Via Molten Salt-Assisted Low-Temperature Aluminothermic Reduction of Diatomite as High-Performance Anodes for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 6146–6153. 10.1021/acsaem.1c00938
  • Ma, H.; Cheng, F.; Chen, J.-Y.; Zhao, J.-Z.; Li, C.-S.; Tao, Z.-L.; Liang, J. Nest-Like Silicon Nanospheres for High-Capacity Lithium Storage. Adv. Mater. 2007, 19, 4067–4070. 10.1002/adma.200700621
  • Ge, M.; Rong, J.; Fang, X.; Zhou, C. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Lett. 2012, 12, 2318–2323.
  • Karuppiah, S.; Keller, C.; Kumar, P.; Jouneau, P.-H.; Aldakov, D.; Ducros, J.-B.; Lapertot, G.; Chenevier, P.; Haon, C. A Scalable Silicon Nanowires-Grown-on-Graphite Composite for High-Energy Lithium Batteries. ACS Nano. 2020, 14, 12006–12015.
  • Liu, N.; Hu, L.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries. ACS Nano. 2011, 5, 6487–6493.
  • Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
  • Xia, F.; Kwon, S.; Lee, W. W.; Liu, Z.; Kim, S.; Song, T.; Choi, K. J.; Paik, U.; Park, W. I. Graphene as an Interfacial Layer for Improving Cycling Performance of Si Nanowires in Lithium-Ion Batteries. Nano Lett. 2015, 15, 6658–6664.
  • Jeong, S.; Lee, J.-P.; Ko, M.; Kim, G.; Park, S.; Cho, J. Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries. Nano Lett. 2013, 13, 3403–3407.
  • Abel, P. R.; Lin, Y.-M.; Celio, H.; Heller, A.; Mullins, C. B. Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. ACS Nano. 2012, 6, 2506–2516.
  • Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano. 2010, 4, 3671–3678.
  • Li, H.; Cheng, F.; Zhu, Z.; Bai, H.; Tao, Z.; Chen, J. Preparation and Electrochemical Performance of Copper Foam-Supported Amorphous Silicon Thin Films for Rechargeable Lithium-Ion Batteries. J. Alloys Compd. 2011, 509, 2919–2923. 10.1016/j.jallcom.2010.11.156
  • Demirkan, M. T.; Trahey, L.; Karabacak, T. Cycling Performance of Density Modulated Multilayer Silicon Thin Film Anodes in Li-Ion Batteries. J. Power Sources. 2015, 273, 52–61. 10.1016/j.jpowsour.2014.09.027
  • Wang, F.; Sun, L.; Zi, W.; Zhao, B.; Du, H. Solution Synthesis of Porous Silicon Particles as an Anode Material for Lithium Ion Batteries. Chemistry. 2019, 25, 9071–9077.
  • Tang, J.; Yin, Q.; Wang, Q.; Li, Q.; Wang, H.; Xu, Z.; Yao, H.; Yang, J.; Zhou, X.; Kim, J.-K.; et al. Two-Dimensional Porous Silicon Nanosheets as Anode Materials for High Performance Lithium-Ion Batteries. Nanoscale. 2019, 11, 10984–10991.
  • Tesfaye, A. T.; Gonzalez, R.; Coffer, J. L.; Djenizian, T. Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries. ACS Appl. Mater. Interfaces. 2015, 7, 20495–20498.
  • Yang, T.; Gao, Y.; Tang, Y.; Zhang, Y.; Li, X.; Liu, L. Porous Silicon from Industrial Waste Engineered for Superior Stability Lithium-Ion Battery Anodes. J. Nanoparticle Res. 2021, 23, 209.
  • Thakur, M.; Isaacson, M.; Sinsabaugh, S. L.; Wong, M. S.; Biswal, S. L. Gold-Coated Porous Silicon Films as Anodes for Lithium Ion Batteries. J. Power Sources. 2012, 205, 426–432. 10.1016/j.jpowsour.2012.01.058
  • Thakur, M.; Pernites, R. B.; Nitta, N.; Isaacson, M.; Sinsabaugh, S. L.; Wong, M. S.; Biswal, S. L. Freestanding Macroporous Silicon and Pyrolyzed Polyacrylonitrile as a Composite Anode for Lithium Ion Batteries. Chem. Mater. 2012, 24, 2998–3003. 10.1021/cm301376t
  • Thakur, M.; Sinsabaugh, S. L.; Isaacson, M. J.; Wong, M. S.; Biswal, S. L. Inexpensive Method for Producing Macroporous Silicon Particulates (MPSPs) with Pyrolyzed Polyacrylonitrile for Lithium Ion Batteries. Sci. Rep. 2012, 2, 795.
  • Zhao, Y.; Liu, X.; Li, H.; Zhai, T.; Zhou, H. Hierarchical Micro/Nano Porous Silicon Li-Ion Battery Anodes. Chem. Commun. (Camb.). 2012, 48, 5079–5081.
  • Wen, Z.; Lu, G.; Mao, S.; Kim, H.; Cui, S.; Yu, K.; Huang, X.; Hurley, P. T.; Mao, O.; Chen, J. Silicon Nanotube Anode for Lithium-Ion Batteries. Electrochem. Commun. 2013, 29, 67–70. 10.1016/j.elecom.2013.01.015
  • Abel, P. R.; Chockla, A. M.; Lin, Y.-M.; Holmberg, V. C.; Harris, J. T.; Korgel, B. A.; Heller, A.; Mullins, C. B. Nanostructured Si(1–x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes. ACS Nano. 2013, 7, 2249–2257.
  • Fan, Y.; Huang, K.; Zhang, Q.; Xiao, Q.; Wang, X.; Chen, X. Novel Silicon–Nickel Cone Arrays for High Performance LIB Anodes. J. Mater. Chem. 2012, 22, 20870–20873. 10.1039/c2jm34337a
  • Huang, T.; Sun, D.; Yang, W.; Wang, H.; Wu, Q.; Xiao, R. Binder-Free Anode with Porous Si/Cu Architecture for Lithium-Ion Batteries. Scr. Mater. 2018, 146, 304–307. 10.1016/j.scriptamat.2017.12.018
  • Zhang, Y.; Zhu, C.; Ma, Z. Si@Cu3Si Nano-Composite Prepared by Facile Method as High-Performance Anode for Lithium-Ion Batteries. J. Alloys Compd. 2021, 851, 156854. 10.1016/j.jallcom.2020.156854
  • Deniz Polat, B.; Levent Eryılmaz, O.; Chen, Z.; Keles, O.; Amine, K. High Capacity Anode with Well-Aligned, Ordered NiSi Nano-Columnar Arrays. Nano Energy. 2015, 13, 781–789. 10.1016/j.nanoen.2015.03.009
  • Yang, X.; Xu, G.; Jin, C.; Liu, B.; Ouyang, P.; Kong, K.; Lan, Y.; Yue, Z.; Li, X.; Sun, F.; et al. Si/Cu3Si/Cu Composite Material Synthesized by Low Cost and High Efficiency Method as Anode Materials for Lithium-Ion Batteries. Solid State Ion. 2019, 342, 115057. 10.1016/j.ssi.2019.115057
  • Saleem, A.; Hussain, A.; Ashfaq, M. Z.; Javed, M. S.; Rauf, S.; Hussain, M. M.; Saad, A.; Shen, J.; Majeed, M. K.; Iqbal, R. A Well-Controlled Cracks and Gliding-Free Single-Crystal Ni-Rich Cathode for Long-Cycle-Life Lithium-Ion Batteries. J. Alloys Compd. 2022, 924, 166375. 10.1016/j.jallcom.2022.166375
  • Wang, F.; Xu, S.; Zhu, S.; Peng, H.; Huang, R.; Wang, L.; Xie, X.; Chu, P. K. Ni-Coated Si Microchannel Plate Electrodes in Three-Dimensional Lithium-Ion Battery Anodes. Electrochim. Acta. 2013, 87, 250–255. 10.1016/j.electacta.2012.09.122
  • Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 1306–1315. 10.1021/cm2037475
  • Gowda, S. R.; Pushparaj, V.; Herle, S.; Girishkumar, G.; Gordon, J. G.; Gullapalli, H.; Zhan, X.; Ajayan, P. M.; Reddy, A. L. M. Three-Dimensionally Engineered Porous Silicon Electrodes for Li Ion Batteries. Nano Lett. 2012, 12, 6060–6065.
  • Song, T.; Cheng, H.; Choi, H.; Lee, J. H.; Han, H.; Hyun Lee, D.; Yoo, D. S.; Kwon, M. S.; Choi, J. M.; Doo, S. G.; et al. Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode. ACS Nano. 2012, 6, 303–309.
  • Liu, N.; Lu, N.; Yao, Y.-X.; Li, Y.-R.; Wang, C.-Z.; Ho, K.-M. Strain Effects in Ge/Si and Si/Ge Core/Shell Nanowires. J. Phys. Chem. C. 2011, 115, 15739–15742. 10.1021/jp110379n
  • Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Adv. Mater. 2010, 22, 2247–2250.
  • Zhu, B.; Jin, Y.; Tan, Y.; Zong, L.; Hu, Y.; Chen, L.; Chen, Y.; Zhang, Q.; Zhu, J. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode. Nano Lett. 2015, 15, 5750–5754.
  • Zong, L.; Zhu, B.; Lu, Z.; Tan, Y.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of Silicon from 84% to 99.999% Purity with a Simple and Scalable Process. Proc. Natl. Acad. Sci. USA. 2015, 112, 13473–13477. 10.1073/pnas.1513012112
  • Jin, Y.; Zhang, S.; Zhu, B.; Tan, Y.; Hu, X.; Zong, L.; Zhu, J. Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode. Nano Lett. 2015, 15, 7742–7747.
  • He, W.; Tian, H.; Xin, F.; Han, W. Scalable Fabrication of Micro-Sized Bulk Porous Si from Fe–Si Alloy as a High Performance Anode for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 17956–17962. 10.1039/C5TA04857E
  • Tang, J.; Dysart, A. D.; Kim, D. H.; Saraswat, R.; Shaver, G. M.; Pol, V. G. Fabrication of Carbon/Silicon Composite as Lithium-Ion Anode with Enhanced Cycling Stability. Electrochim. Acta. 2017, 247, 626–633. 10.1016/j.electacta.2017.06.178
  • Sourice, J.; Bordes, A.; Boulineau, A.; Alper, J. P.; Franger, S.; Quinsac, A.; Habert, A.; Leconte, Y.; De Vito, E.; Porcher, W.; et al. Core-Shell Amorphous Silicon-Carbon Nanoparticles for High Performance Anodes in Lithium Ion Batteries. J. Power Sources. 2016, 328, 527–535. 10.1016/j.jpowsour.2016.08.057
  • Saleem, A.; Majeed, M. K.; Iqbal, R.; Hussain, A.; Naeem, M. S.; Rauf, S.; Wang, Y.; Javed, M. S.; Shen, J. Nitrogenized 2D Covalent Organic Framework Decorated Ni-Rich Single Crystal Cathode to Ameliorate the Electrochemical Performance of Lithium Batteries. Adv. Materials Inter. 2022, 9, 2200800. 10.1002/admi.202200800
  • Sourice, J.; Quinsac, A.; Leconte, Y.; Sublemontier, O.; Porcher, W.; Haon, C.; Bordes, A.; Vito, E. D.; Boulineau, A.; Larbi, S. J. S.; et al. One-Step Synthesis of Si@C Nanoparticles by Laser Pyrolysis: High-Capacity Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2015, 7, 6637–6644.
  • Xia, M.; Yi-Ran, L.; Xiong, X.; Hu, W.; Tang, Y.; Zhou, N.; Zhou, Z.; Zhang, H. Enhancing the Electrochemical Performance of Micron-Scale SiO@C/CNTs Anode via Adding Piezoelectric Material BaTiO3 for High-Power Lithium Ion Battery. J. Alloys Compd. 2019, 800, 116–124. 10.1016/j.jallcom.2019.05.365
  • Gao, X.; Lu, W.; Xu, J. Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2021, 13, 21362–21370. 10.1021/acsami.1c03366
  • Pei, S.; Guo, J.; He, Z.; Huang, L.; Lu, T.; Gong, J.; Shao, H.; Wang, J. Porous Si–Cu3Si–Cu Microsphere@C Core–Shell Composites with Enhanced Electrochemical Lithium Storage. Chem. Eur. J. 2020, 26, 6006–6016. 10.1002/chem.201904995
  • Yang, D.; Shi, J.; Shi, J.; Yang, H. Simple Synthesis of Si/Sn@C-G Anodes with Enhanced Electrochemical Properties for Li-Ion Batteries. Electrochim. Acta. 2018, 259, 1081–1088. 10.1016/j.electacta.2017.10.117
  • Saleem, A.; Iqbal, R.; Hussain, A.; Javed, M. S.; Ashfaq, M.; Imran, M.; Hussain, M.; Akbar, A.; Jun, S.; Majeed, M. Recent Advances and Perspectives in Carbon-Based Fillers Reinforced Si3N4 Composite for High Power Electronic Devices. Ceram. Int. 2022, 48, 13401–13419. 10.1016/j.ceramint.2022.02.050
  • Du, L.; Wu, W.; Luo, C.; Zhao, H.; Xu, D.; Wang, R.; Deng, Y. Lignin Derived Si@C Composite as a High Performance Anode Material for Lithium Ion Batteries. Solid State Ion. 2018, 319, 77–82. 10.1016/j.ssi.2018.01.039
  • Zhu, J.; Wang, T.; Fan, F.; Mei, L.; Lu, B. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes. ACS Nano. 2016, 10, 8243–8251.
  • Shang, H.; Zuo, Z.; Yu, L.; Wang, F.; He, F.; Li, Y. Low-Temperature Growth of All-Carbon Graphdiyne on a Silicon Anode for High-Performance Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1801459. 10.1002/adma.201801459
  • Zhang, C.; Gu, L.; Kaskhedikar, N.; Cui, G.; Maier, J. Preparation of Silicon@Silicon Oxide Core–Shell Nanowires from a Silica Precursor Toward a High Energy Density Li-Ion Battery Anode. ACS Appl. Mater. Interfaces. 2013, 5, 12340–12345. 10.1021/am402930b
  • Hu, Y.; Qiao, Y.; Xie, Z.; Li, L.; Qu, M.; Liu, W.; Peng, G. Water-Soluble Polymer Assists Multisize Three-Dimensional Microspheres as a High-Performance Si Anode for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 9673–9681. 10.1021/acsaem.1c01791
  • Huang, S.; Shan, W.; He, S.; Chen, H.; Qin, H.; Wang, S.; Hou, X. Scalable Synthesis of Si/C Microspheres with 3D Conducting Nanosized Porous Channels as High-Performance Anodes in LIBs. Energy Fuels. 2020, 34, 13137–13143. 10.1021/acs.energyfuels.0c02618
  • Jeong, M.-G.; Du, H. L.; Islam, M.; Lee, J. K.; Sun, Y.-K.; Jung, H.-G. Self-Rearrangement of Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy and Long-Life Lithium-Ion Batteries. Nano Lett. 2017, 17, 5600–5606.
  • Li, B.; Yang, S.; Li, S.; Wang, B.; Liu, J. From Commercial Sponge toward 3D Graphene–Silicon Networks for Superior Lithium Storage. Adv. Energy Mater. 2015, 5, 1500289. 10.1002/aenm.201500289
  • Shi, L.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. Si Nanoparticles Adhering to a Nitrogen-Rich Porous Carbon Framework and Its Application as a Lithium-Ion Battery Anode Material. J. Mater. Chem. A. 2015, 3, 18190–18197. 10.1039/C5TA03974F
  • Jiao, M.; Qi, J.; Shi, Z.; Wang, C. Three-Dimensional Si/Hard-Carbon/Graphene Network as High-Performance Anode Material for Lithium Ion Batteries. J. Mater. Sci. 2018, 53, 2149–2160. 10.1007/s10853-017-1676-3
  • Kim, J. S.; Pfleging, W.; Kohler, R.; Seifert, H. J.; Kim, T. Y.; Byun, D.; Jung, H.-G.; Choi, W.; Lee, J. K. Three-Dimensional Silicon/Carbon Core–Shell Electrode as an Anode Material for Lithium-Ion Batteries. J. Power Sources. 2015, 279, 13–20. 10.1016/j.jpowsour.2014.12.041
  • Xiao, X.; Zhou, W.; Kim, Y.; Ryu, I.; Gu, M.; Wang, C.; Liu, G.; Liu, Z.; Gao, H. Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery. Adv. Funct. Mater. 2015, 25, 1426–1433. 10.1002/adfm.201403629
  • Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering Empty Space Between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2012, 12, 904–909.
  • Jin, D.; Saravanakumar, B.; Ou, Y.; Li, G.; Zhang, W.; Wang, H.; Yang, X.; Qiu, Y.; Wu, Y.; Li, W. Highly Stabilized Silicon Nanoparticles for Lithium Storage via Hierarchical Carbon Architecture. ACS Appl. Energy Mater. 2020, 3, 4777–4786. 10.1021/acsaem.0c00396
  • Shen, C.; Fang, X.; Ge, M.; Zhang, A.; Liu, Y.; Ma, Y.; Mecklenburg, M.; Nie, X.; Zhou, C. Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesis and Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries. ACS Nano. 2018, 12, 6280–6291. 10.1021/acsnano.8b03312
  • Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J.; et al. Silicon Carbide-Free Graphene Growth on Silicon for Lithium-Ion Battery with High Volumetric Energy Density. Nat. Commun. 2015, 6, 7393.
  • Chang, P.; Liu, X.; Zhao, Q.; Huang, Y.; Huang, Y.; Hu, X. Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces. 2017, 9, 31879–31886.
  • Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y. Growth of Conformal Graphene Cages on Micrometre-Sized Silicon Particles as Stable Battery Anodes. Nat. Energy. 2016, 1, 1–9.
  • Wu, J.; Qin, X.; Miao, C.; He, Y.-B.; Liang, G.; Zhou, D.; Liu, M.; Han, C.; Li, B.; Kang, F. A Honeycomb-Cobweb Inspired Hierarchical Core–Shell Structure Design for Electrospun Silicon/Carbon Fibers as Lithium-Ion Battery Anodes. Carbon. 2016, 98, 582–591. 10.1016/j.carbon.2015.11.048
  • Majeed, M. K.; Saleem, A.; Ma, X.; Ma, W. Clay-Derived Mesoporous Si/rGO for Anode Material of Lithium-Ion Batteries. J. Alloys Compd. 2020, 848, 156590. 10.1016/j.jallcom.2020.156590
  • Liu, H.; Wei, C.; Peng, H.; Ma, W.; Wang, Y.; Zhang, L.; Lu, C.; Ma, C.; Shi, J. Improved Lithium Storage Performance by Encapsulating Silicon in Free-Standing 3D Network Structure Carbon-Based Composite Membranes as Flexible Anodes. Surf. Coat. Technol. 2021, 423, 127606. 10.1016/j.surfcoat.2021.127606
  • Pan, L.; Wang, H.; Gao, D.; Chen, S.; Tan, L.; Li, L. Facile Synthesis of Yolk–Shell Structured Si–C Nanocomposites as Anodes for Lithium-Ion Batteries. Chem Commun. (Camb.). 2014, 50, 5878–5880.
  • Ren, W.; Zhang, Z.; Wang, Y.; Tan, Q.; Zhong, Z.; Su, F. Preparation of Porous Silicon/Carbon Microspheres as High Performance Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A. 2015, 3, 5859–5865. 10.1039/C4TA07093C
  • Hassan, F. M.; Batmaz, R.; Li, J.; Wang, X.; Xiao, X.; Yu, A.; Chen, Z. Evidence of Covalent Synergy in Silicon–Sulfur–Graphene Yielding Highly Efficient and Long-Life Lithium-Ion Batteries. Nat. Commun. 2015, 6, 8597.
  • Zhuang, X.; Zhang, Y.; He, L.; Zhu, Y.; Tian, Q.; Guo, X.; Chen, J.; Li, L.; Wang, Q.; Song, G.; Yan, X. Scalable Synthesis of Nano-Si Embedded in Porous C and Its Enhanced Performance as Anode of Li-Ion Batteries. Electrochim. Acta. 2017, 249, 166–172. 10.1016/j.electacta.2017.07.092
  • Shen, T.; Xia, X.; Xie, D.; Yao, Z.; Zhong, Y.; Zhan, J.; Wang, D.; Wu, J.; Wang, X.; Tu, J. Encapsulating Silicon Nanoparticles into Mesoporous Carbon Forming Pomegranate-Structured Microspheres as a High-Performance Anode for Lithium Ion Batteries. J. Mater. Chem. A. 2017, 5, 11197–11203. 10.1039/C7TA03294C
  • Wang, J.; Liu, D.-H.; Wang, Y.-Y.; Hou, B.-H.; Zhang, J.-P.; Wang, R.-S.; Wu, X.-L. Dual-Carbon Enhanced Silicon-Based Composite as Superior Anode Material for Lithium Ion Batteries. J. Power Sources. 2016, 307, 738–745. 10.1016/j.jpowsour.2016.01.040
  • Yang, Y.; Yang, X.; Chen, S.; Zou, M.; Li, Z.; Cao, A.; Yuan, Q. Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes. ACS Appl. Mater. Interfaces. 2017, 9, 22819–22825.
  • Zhou, Z. W.; Liu, Y. T.; Xie, X. M.; Ye, X. Y. Constructing Novel Si@SnO2 Core–Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. ACS Appl. Mater. Interfaces. 2016, 8, 7092–7100.
  • Wang, C.; Han, Y.; Li, S.; Chen, T.; Yu, J.; Lu, Z. Thermal Lithiated-TiO2: A Robust and Electron-Conducting Protection Layer for Li–Si Alloy Anode. ACS Appl. Mater. Interfaces. 2018, 10, 12750–12758. 10.1021/acsami.8b02150
  • Cheng, F.; Wang, G.; Sun, Z.; Yu, Y.; Huang, F.; Gong, C.; Liu, H.; Zheng, G.; Qin, C.; Wen, S. Carbon-Coated SiO/ZrO2 Composites as Anode Materials for Lithium-Ion Batteries. Ceram. Int. 2017, 43, 4309–4313. 10.1016/j.ceramint.2016.12.074
  • Li, J.; Wang, Y.; Huang, Z.; Huang, K.; Qi, X.; Zhong, J. Synthesis of Si/TiO2 Core–Shell Nanoparticles as Anode Material for High Performance Lithium Ion Batteries. J. Mater. Sci: Mater. Electron. 2016, 27, 12813–12819. 10.1007/s10854-016-5414-4
  • Wei, Z.; Li, R.; Huang, T.; Yu, A. Fabrication and Electrochemical Properties of Si/TiO2 Nanowire Array Composites as Lithium Ion Battery Anodes. J. Power Sources. 2013, 238, 165–172. 10.1016/j.jpowsour.2013.03.080
  • Li, S.; Niu, J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-Rate Aluminium Yolk-Shell Nanoparticle Anode for Li-Ion Battery with Long Cycle Life and Ultrahigh Capacity. Nat. Commun. 2015, 6, 7872.
  • Fang, S.; Shen, L.; Xu, G.; Nie, P.; Wang, J.; Dou, H.; Zhang, X. Rational Design of Void-Involved Si@TiO2 Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2014, 6, 6497–6503.
  • Yang, J.; Wang, Y.; Li, W.; Wang, L.; Fan, Y.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C.; et al. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. Adv. Mater. 2017, 29, 1700523. 10.1002/adma.201700523
  • Tang, D.; Yi, R.; Gordin, M. L.; Melnyk, M.; Dai, F.; Chen, S.; Song, J.; Wang, D. Titanium Nitride Coating to Enhance the Performance of Silicon Nanoparticles as a Lithium-Ion Battery Anode. J. Mater. Chem. A. 2014, 2, 10375–10378. 10.1039/C4TA01343C
  • Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Cui, K.; Kupsta, M.; Farbod, B.; Mitlin, D. Si Nanotubes ALD Coated with TiO2, TiN or Al2O3 as High Performance Lithium Ion Battery Anodes. J. Mater. Chem. A. 2014, 2, 2504–2516. 10.1039/C3TA14302C
  • He, Y.; Yu, X.; Wang, Y.; Li, H.; Huang, X. Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency. Adv. Mater. 2011, 23, 4938–4941.
  • Piper, D. M.; Travis, J. J.; Young, M.; Son, S.-B.; Kim, S. C.; Oh, K. H.; George, S. M.; Ban, C.; Lee, S.-H. Reversible High-Capacity Si Nanocomposite Anodes for Lithium-Ion Batteries Enabled by Molecular Layer Deposition. Adv. Mater. 2014, 26, 1596–1601.
  • Kim, M. K.; Jang, B. Y.; Lee, J. S.; Kim, J. S.; Nahm, S. Microstructures and Electrochemical Performances of Nano-Sized SiOx (1.18 ≤ x ≤ 1.83) as an Anode Material for a Lithium(Li)-Ion Battery. J. Power Sources. 2013, 244, 115–121. 10.1016/j.jpowsour.2013.03.041
  • Takezawa, H.; Iwamoto, K.; Ito, S.; Yoshizawa, H. Electrochemical Behaviors of Nonstoichiometric Silicon Suboxides (SiOx) Film Prepared by Reactive Evaporation for Lithium Rechargeable Batteries. J. Power Sources. 2013, 244, 149–157. 10.1016/j.jpowsour.2013.02.077
  • Babaa, M. R.; Moldabayeva, A.; Karim, M.; Zhexembekova, A.; Zhang, Y.; Bakenov, Z.; Molkenova, A.; Taniguchi, I. Development of a Novel SiO2 Based Composite Anode Material for Li-Ion Batteries. Mater. Today Proc. 2017, 4, 4542–4547. 10.1016/j.matpr.2017.04.027
  • Hwang, J.; Kim, K.; Jung, W.-S.; Choi, H.; Kim, J.-H. Facile and Scalable Synthesis of SiOx Materials for Li-Ion Negative Electrodes. J. Power Sources. 2019, 436, 226883. 10.1016/j.jpowsour.2019.226883
  • Meng, T.; Li, B.; Liu, C.; Wang, Q.; Su, H.; Hu, L.; Hao, J.; Du, E.; Gu, F. L.; Huang, B.; et al. Surface Engineering Enables Highly Reversible Lithium-Ion Storage and Durable Structure for Advanced Silicon Anode. Cell Rep. Phys. Sci. 2021, 2, 100486. 10.1016/j.xcrp.2021.100486
  • Lv, P.; Zhao, H.; Gao, C.; Du, Z.; Wang, J.; Liu, X. SiOx–C Dual-Phase Glass for Lithium Ion Battery Anode with High Capacity and Stable Cycling Performance. J. Power Sources. 2015, 274, 542–550. 10.1016/j.jpowsour.2014.10.077
  • Shi, L.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. Scalable Synthesis of Core-Shell Structured SiOx/Nitrogen-Doped Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources. 2016, 318, 184–191. 10.1016/j.jpowsour.2016.03.111
  • Qiang, W.; Huanhuan, H.; Jian, W.; Zhurui, S. Fabrication of SiOx Ultra-Fine Nanoparticles by IR Nanosecond Laser Ablation as Anode Materials for Lithium Ion Battery. Appl. Surf. Sci. 2017, 422, 155–161. 10.1016/j.apsusc.2017.06.002
  • Schulmeister, K.; Mader, W. TEM Investigation on the Structure of Amorphous Silicon Monoxide. J. Non-Cryst. Solids. 2003, 320, 143–150. 10.1016/S0022-3093(03)00029-2
  • Chen, Y.; Liu, L.; Xiong, J.; Yang, T.; Qin, Y.; Yan, C. Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries. Adv. Funct. Mater. 2015, 25, 6701–6709. 10.1002/adfm.201503206
  • Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K. Evidence for Nano-Si Clusters in Amorphous SiO Anode Materials for Rechargeable Li-Ion Batteries. Scr. Mater. 2013, 69, 92–95. 10.1016/j.scriptamat.2013.02.040
  • Park, C.-M.; Choi, W.; Hwa, Y.; Kim, J.-H.; Jeong, G.; Sohn, H.-J. Characterizations and Electrochemical Behaviors of Disproportionated SiO and Its Composite for Rechargeable Li-Ion Batteries. J. Mater. Chem. 2010, 20, 4854–4860. 10.1039/b923926j
  • Lv, P.; Zhao, H.; Wang, J.; Liu, X.; Zhang, T.; Xia, Q. Facile Preparation and Electrochemical Properties of Amorphous SiO2/C Composite as Anode Material for Lithium Ion Batteries. J. Power Sources. 2013, 237, 291–294. 10.1016/j.jpowsour.2013.03.054
  • Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-Ray Photoelectron Spectroscopy. Chem. Mater. 2012, 24, 1107–1115. 10.1021/cm2034195
  • Nita, C.; Fullenwarth, J.; Monconduit, L.; Meins, J.-M. L.; Fioux, P.; Parmentier, J.; Ghimbeu, C. M. Eco-Friendly Synthesis of SiO2 Nanoparticles Confined in Hard Carbon: A Promising Material with Unexpected Mechanism for Li-Ion Batteries. Carbon. 2019, 143, 598–609. 10.1016/j.carbon.2018.11.069
  • Xiao, K.; Tang, Q.; Liu, Z.; Hu, A.; Zhang, S.; Deng, W.; Chen, X. 3D Interconnected Mesoporous Si/SiO2 Coated with CVD Derived Carbon as an Advanced Anode Material of Li-Ion Batteries. Ceram. Int. 2018, 44, 3548–3555. 10.1016/j.ceramint.2017.11.043
  • Liu, Y.; Ruan, J.; Liu, F.; Fan, Y.; Wang, P. Synthesis of SiOx/C Composite with Dual Interface as Li-Ion Battery Anode Material. J. Alloys Compd. 2019, 802, 704–711. 10.1016/j.jallcom.2019.06.072
  • Li, X.; Shi, H.; Zhang, L.; Chen, J.; Lü, P. Novel Synthesis of SiOx/C Composite as High-Capacity Lithium-Ion Battery Anode from Silica-Carbon Binary Xerogel. Chin. J. Chem. Eng. 2020, 28, 579–583. 10.1016/j.cjche.2019.11.003
  • Zhu, G.; Gu, Y.; Heng, S.; Wang, Y.; Qu, Q.; Zheng, H. Simultaneous Growth of SiOx/Carbon Bilayers on Si Nanoparticles for Improving Cycling Stability. Electrochim. Acta. 2019, 323, 134840. 10.1016/j.electacta.2019.134840
  • He, W.; Liang, Y.; Tian, H.; Zhang, S.; Meng, Z.; Han, W.-Q. A Facile In Situ Synthesis of Nanocrystal-FeSi-Embedded Si/SiOx Anode for Long-Cycle-Life Lithium Ion Batteries. Energy Storage Mater. 2017, 8, 119–126. 10.1016/j.ensm.2017.05.003
  • Ren, Y.; Li, M. Facile Synthesis of SiOx@C Composite Nanorods as Anodes for Lithium Ion Batteries with Excellent Electrochemical Performance. J. Power Sources. 2016, 306, 459–466. 10.1016/j.jpowsour.2015.12.064
  • Xing, A.; Zhang, J.; Bao, Z.; Mei, Y.; Gordin, A. S.; Sandhage, K. H. A Magnesiothermic Reaction Process for the Scalable Production of Mesoporous Silicon for Rechargeable Lithium Batteries. Chem. Commun. (Camb.). 2013, 49, 6743–6745.
  • Feng, X.; Yang, J.; Lu, Q.; Wang, J.; Nuli, Y. Facile Approach to SiOx/Si/C Composite Anode Material from Bulk SiO for Lithium Ion Batteries. Phys. Chem. Chem. Phys. 2013, 15, 14420–14426. 10.1039/c3cp51799c
  • Ma, X.; Wei, Z.; Han, H.; Wang, X.; Cui, K.; Yang, L. Tunable Construction of Multi-Shell Hollow SiO2 Microspheres with Hierarchically Porous Structure as High-Performance Anodes for Lithium-Ion Batteries. Chem. Eng. J. 2017, 323, 252–259. 10.1016/j.cej.2017.04.108
  • Liang, C.; Chen, Y.; Xu, H.; Xia, Y.; Hou, X.; Gan, Y.; Ma, X.; Tao, X.; Huang, H.; Zhang, J.; et al. Embedding Submicron SiO2 into Porous Carbon as Advanced Lithium–Ion Batteries Anode with Ultralong Cycle Life and Excellent Rate Capability. J. Taiwan Inst. Chem. Eng. 2019, 95, 227–233. 10.1016/j.jtice.2018.07.007
  • Yom, J. H.; Hwang, S. W.; Cho, S. M.; Yoon, W. Y. Improvement of Irreversible Behavior of SiO Anodes for Lithium Ion Batteries by a Solid State Reaction at High Temperature. J. Power Sources. 2016, 311, 159–166. 10.1016/j.jpowsour.2016.02.025
  • Guo, L.; He, H.; Ren, Y.; Wang, C.; Li, M. Core-Shell SiO@F-Doped C Composites with Interspaces and Voids as Anodes for High-Performance Lithium-Ion Batteries. Chem. Eng. J. 2018, 335, 32–40. 10.1016/j.cej.2017.10.145
  • Huang, Y.; Peng, J.; Luo, J.; Li, W.; Wu, Z.; Shi, M.; Li, X.; Li, N.; Chang, B.; Wang, X. Spherical Gr/Si/GO/C Composite as High-Performance Anode Material for Lithium-Ion Batteries. Energy Fuels. 2020, 34, 7639–7647. 10.1021/acs.energyfuels.0c00982
  • Yu, B.-C.; Hwa, Y.; Kim, J.-H.; Sohn, H.-J. A New Approach to Synthesis of Porous SiOx Anode for Li-Ion Batteries via Chemical Etching of Si Crystallites. Electrochim. Acta. 2014, 117, 426–430. 10.1016/j.electacta.2013.11.158
  • Majeed, M. K.; Ma, G.; Cao, Y.; Mao, H.; Ma, X.; Ma, W. Metal–Organic Frameworks-Derived Mesoporous Si/SiOx@NC Nanospheres as a Long-Lifespan Anode Material for Lithium-Ion Batteries. Chemistry. 2019, 25, 11991–11997.
  • Chen, Y.; Mao, Q.; Bao, L.; Yang, T.; Lu, X.; Du, N.; Zhang, Y.; Ji, Z. Rational Design of Coaxial MWCNTs@Si/SiOx@C Nanocomposites as Extending-Life Anode Materials for Lithium-Ion Batteries. Ceram. Int. 2018, 44, 16660–16667. 10.1016/j.ceramint.2018.06.093
  • Ren, Y.; Wu, X.; Li, M. Highly Stable SiOx/Multiwall Carbon Nanotube/N-Doped Carbon Composite as Anodes for Lithium-Ion Batteries. Electrochim. Acta. 2016, 206, 328–336. 10.1016/j.electacta.2016.04.161
  • Yang, H.-W.; Lee, D. I.; Kang, N.; Yoo, J.-K.; Myung, S.-T.; Kim, J.; Kim, S.-J. Highly Enhancement of the SiOx Nanocomposite Through Ti-Doping and Carbon-Coating for High-Performance Li-Ion Battery. J. Power Sources. 2018, 400, 613–620. 10.1016/j.jpowsour.2018.08.065
  • Woo, J.; Baek, S.-H.; Park, J.-S.; Jeong, Y.-M.; Kim, J. H. Improved Electrochemical Performance of Boron-Doped SiO Negative Electrode Materials in Lithium-Ion Batteries. J. Power Sources. 2015, 299, 25–31. 10.1016/j.jpowsour.2015.08.086
  • Ashuri, M.; He, Q.; Liu, Y.; Emani, S.; Shaw, L. L. Synthesis and Performance of Nanostructured Silicon/Graphite Composites with a Thin Carbon Shell and Engineered Voids. Electrochim. Acta. 2017, 258, 274–283. 10.1016/j.electacta.2017.10.198
  • Nguyen, D. T.; Nguyen, C. C.; Kim, J. S.; Kim, J. Y.; Song, S. W. Facile Synthesis and High Anode Performance of Carbon Fiber-Interwoven Amorphous Nano-SiOx/Graphene for Rechargeable Lithium Batteries. ACS Appl. Mater. Interfaces. 2013, 5, 11234–11239.
  • Shen, C.; Fu, R.; Guo, H.; Wu, Y.; Fan, C.; Xia, Y.; Liu, Z. Scalable Synthesis of Si Nanowires Interconnected SiOx Anode for High Performance Lithium-Ion Batteries. J. Alloys Compd. 2019, 783, 128–135. 10.1016/j.jallcom.2018.12.291
  • Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery Anodes. Adv. Energy Mater. 2011, 1, 1154–1161. 10.1002/aenm.201100259
  • Zhang, J.; Zhang, C.; Wu, S.; Zheng, J.; Zuo, Y.; Xue, C.; Li, C.; Cheng, B. High-Performance Lithium-Ion Battery with Nano-Porous Polycrystalline Silicon Particles as Anode. Electrochim. Acta. 2016, 208, 174–179. 10.1016/j.electacta.2016.05.032
  • Xi, L. X.; Jiao, Y. X.; Qing, Z. G.; He, Z. X.; Lei, Z. Preparation and Properties of Silicon/Graphite Composites as Anode Materials for Lithium Batteries. J. Guangdong Uni. Technol. 2014, 31, 27–31.
  • Chang, H. S.; Ji, S. G.; Rho, M.; Lee, B. M.; Kim, S. S.; Choi, J. H. Thermally Crosslinked Polyimide Binders for Si-Alloy Anodes in Li-Ion Batteries. J. Electrochem. Sci. Technol. 2022, 13, 339–346. 10.33961/jecst.2021.01018
  • Wang, Z.; Xu, X.; Chen, C.; Huang, T.; Yu, A. Natural Sesbania Gum as an Efficient Biopolymer Binder for High-Performance Si-Based Anodes in Lithium-Ion Batteries. J. Power Sources. 2022, 539, 231604. 10.1016/j.jpowsour.2022.231604
  • Zhao, Y.; Yang, L.; Zuo, Y.; Song, Z.; Liu, F.; Li, K.; Pan, F. Conductive Binder for Si Anode with Boosted Charge Transfer Capability via n-Type Doping. ACS Appl. Mater. Interfaces. 2018, 10, 27795–27800.
  • Liu, X.; Zai, J.; Iqbal, A.; Chen, M.; Ali, N.; Qi, R.; Qian, X. Glycerol-Crosslinked PEDOT:PSS as Bifunctional Binder for Si Anodes: Improved Interfacial Compatibility and Conductivity. J. Colloid Interface Sci. 2020, 565, 270–277.
  • Li, T.; Yang, J.; Lu, S. Effect of Modified Elastomeric Binders on the Electrochemical Properties of Silicon Anodes for Lithium-Ion Batteries. Int. J. Miner. Metall. Mater. 2012, 19, 752–756.
  • Yuan, Q.; Zhao, F.; Zhao, Y.; Liang, Z.; Yan, D. Reason Analysis for Graphite-Si/SiOx/C Composite Anode Cycle Fading and Cycle Improvement with PI Binder. J. Solid State Electrochem. 2014, 18, 2167–2174.
  • Chen, L.; Wang, K.; Xie, X.; Xie, J. Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium Ion Batteries. J. Power Sources. 2007, 174, 538–543.
  • Cao, Z.; Zheng, X.; Qu, Q.; Huang, Y.; Zheng, H. Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode–Electrolyte Interphase. Adv. Mater. 2021, 33, 2103178.
  • Wen, Z.; Wu, F.; Li, L.; Chen, N.; Luo, G.; Du, J.; Zhao, L.; Ma, Y.; Li, Y.; Chen, R. Electrolyte Design Enabling Stable Solid Electrolyte Interface for High-Performance Silicon/Carbon Anodes. ACS Appl. Mater. Interfaces. 2022, 14, 38807–38814.
  • Aupperle, F.; von Aspern, N.; Berghus, D.; Weber, F.; Eshetu, G. G.; Winter, M.; Figgemeier, E. The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 6513–6527.
  • Nguyen, C. C.; Song, S.-W. Characterization of SEI Layer Formed on High Performance Si–Cu Anode in Ionic Liquid Battery Electrolyte. Electrochem. Commun. 2010, 12, 1593–1595.
  • Yan, Z.; Liu, Y.; Hatchard, T. D.; Scott, B.; Cao, Y.; Cao, S.; Obrovac, M. N. Quantitative Measurement of Solid Electrolyte Interphase Growth on Si-Based Anode Materials. J. Power Sources. 2022, 530, 231281.
  • Wang, J.; Zhang, L.; Zhang, H. Effects of Electrolyte Additive on the Electrochemical Performance of Si/C Anode for Lithium-Ion Batteries. Ionics 2018, 24, 3691–3698.
  • Li, M.-Q.; Qu, M.-Z.; He, X.-Y.; Yu, Z.-L. Effects of Electrolytes on the Electrochemical Performance of Si/Graphite/Disordered Carbon Composite Anode for Lithium-Ion Batteries. Electrochim. Acta. 2009, 54, 4506–4513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.