1,215
Views
7
CrossRef citations to date
0
Altmetric
Reviews

The puzzling thermal expansion behavior of invar alloys: a review on process-structure-property relationship

, & ORCID Icon

References

  • Nie, Q.; Chen, G.; Wang, B.; Yang, L.; Zhang, J.; Tang, W. Effect of Invar Particle Size on Microstructures and Properties of the Cu/Invar Bi-Metal Matrix Composites Fabricated by SPS. J. Alloys Compd. 2022, 891, 162055. doi:10.1016/j.jallcom.2021.162055
  • Nyanor, P.; El-Kady, O.; Yehia, H. M.; Hamada, A. S.; Hassan, M. A. Effect of Bimodal-Sized Hybrid TiC–CNT Reinforcement on the Mechanical Properties and Coefficient of Thermal Expansion of Aluminium Matrix Composites. Met. Mater. Int. 2021, 27, 753–766. doi:10.1007/s12540-020-00802-w
  • Ebert, H. P.; Braxmeier, S.; Neubert, D. Intercomparison of Thermophysical Property Measurements on Iron and Steels. Int. J. Thermophys. 2019, 40, 1–18. doi:10.1007/s10765-019-2568-3
  • Touloukian, Y. S.; Buyco, E. H. Thermophysical Properties of Matter – The TPRC Data Series; Vol. 4. Specific Heat – Metallic Elements and Alloys: New York; 1970.
  • Guillaume, C. E. Recherches sur les aciers Au Nickel. Dilatations Aux Temperatures Elevees; Resistance Electrique. C. R. Acad. Sci. Paris 1897, 125, 235–238.
  • Sahoo, A.; Medicherla, V. R. R. Fe-Ni Invar Alloys: A Review. Mater. Today Proc. 2021, 43, 2242–2244.
  • Guillaume, C.-É. Invar and Elinvar. Nobel Lect. Phys. 1901-1921 1920, 12, 444–473.
  • Buschow, K. J.; Wohlfarth, E. P.; Christoph, V. Ferromagnetic materials. A Handbook on the Properties of Magnetically Ordered Substances, Vol. 5. North Holland, ISBN: 0 444 874 771,. Cryst. Res. Technol. 1991, 5, 319–590. doi:10.1002/crat.2170260703
  • Weiss, R. J. The origin of the “İnvar” Effect. Proc. Phys. Soc. 1963, 82, 281–288. doi:10.1088/0370-1328/82/2/314
  • Inaba, M.; Teshima, K.; Higashinakagawa, E.; Ohtake, Y. Development of an Invar (Fe-36Ni) Shadow Mask for Color Cathode Ray Tubes. IEEE Trans. Electron Devices 1988, 35, 1721–1729. doi:10.1109/16.7378
  • Shiga, M. Invar alloys. Curr. Opin. Solid State Mater. Sci. 1996, 1, 340–348. doi:10.1016/S1359-0286(96)80023-4
  • Van Schilfgaarde, M.; Abrikosov, I. A.; Johansson, B. Origin of the İnvar Effect in İron-Nickel Alloys. Nature 1999, 400, 46–49. doi:10.1038/21848
  • Matsushita, M.; Endo, S.; Miura, K.; Ono, F. Pressure Induced Magnetic Phase Transition in Fe-Ni Invar Alloy. J. Magn. Magn. Mater. 2003, 265, 352–356. doi:10.1016/S0304-8853(03)00287-7
  • NASA, NASA Sp. Veh. Des. Criteria (Chemical Propulsion), NASA: Ohio; 1974.
  • Sokolowski, W. M.; Jacobs, S. F.; Lane, M. S.; O’Donnell, T. P.; Hsieh, C. Dimensional Stability of High-Purity Invar 36, Proc. SPIE 1993, Quality and Reliability for Optical Systems; San Diego 1993, 115–126.
  • Berthold, J. W.; Jacobs, S. F. Ultraprecise Thermal Expansion Measurements of Seven Low Expansion Materials. Appl. Opt. 1976, 15, 2344–2347. doi:10.1364/AO.15.002344
  • Jacobs, S. F. Dimensional Stability of Materials Useful in Optical Engineering. Opt. Acta (Lond.), 1986, 33, 1377–1388.
  • Wang, C.-S.; Wang, Y.-M. US 2008/0241296A1 2008.
  • Vinogradov, A.; Hashimoto, S.; Kopylov, V. I. Enhanced Strength and Fatigue Life of Ultra-Fine Grain Fe-36Ni Invar Alloy. Mater. Sci. Eng. A, 2003, 355, 277–285.
  • Bitkulov, I. K.; Burkhanov, A. M.; Kazantsev, V. A.; Mulyukov, R. R.; Mulyukov, K. Y.; Safarov, I. M. Effect of Severe Plastic Deformation on the Properties of the Fe-36% Ni İnvar Alloy. Phys. Met. Metallogr. 2006, 102, 91–96. doi:10.1134/S0031918X06070131
  • Collocott, S. J.; White, G. K. Thermal Expansion and Heat Capacity of Some Stainless Steels and FeNi Alloys. Cryogenics (Guildf.) 1986, 26, 402–405. doi:10.1016/0011-2275(86)90084-6
  • Park, W. S.; Chun, M. S.; Han, M. S.; Kim, M. H.; Lee, J. M. Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures: Part I—Experimental İnvestigations. Mater. Sci. Eng. A 2011, 528, 5790–5803. doi:10.1016/j.msea.2011.04.032
  • Zheng, J.-J.; Li, C.-S.; He, S.; Cai, B.; Song, Y.-L. Microstructural and Tensile Behavior of Fe-36%Ni Alloy after Cryorolling and Subsequent Annealing. Mater. Sci. Eng. A 2016, 670, 275–279. doi:10.1016/j.msea.2016.06.004
  • Solov’eva, N. A.; Yudkevich, M. I.; Pasternak, I. I.; Pogosov, V. Z. Effect of Ruthenium, Rhodium, and Palladium on the Coefficient of Thermal Expansion of İron-Nickel and İron-Nickel-Cobalt Alloys. Met. Sci. Heat Treat 1968, 10, 293–294.
  • Tanji, Y.; Shirakawa, Y. Thermal Expansion Coefficient of Fe-Ni (Fcc) Alloys. J. Japan Inst. Met 1970, 34, 228–232. doi:10.2320/jinstmet1952.34.2_228
  • Tino, Y.; Kagawa, H. On Unusually Low Thermal Expansion Found in the Irreversible Iron-Nickel Alloys. J. Phys. Soc. Japan 1970, 28, 1445–1451.
  • Sridharan, K.; Worzala, F. J.; Dodd, R. A. Heat Treatment and Microstructure of an FeNiCo Invar Alloy Strengthened by İntermetallic Precipitation. Mater. Charact. 1992, 29, 321–327.
  • Zhang, J.; Tu, Y.; Xu, J.; Zhang, J.; Zhang, J. Effect of Solid Solution Treatment on Microstructure of Fe-Ni Based High Strength Low Thermal Expansion Alloy. J. Iron Steel Res. Int. 2008, 15, 75–78. doi:10.1016/S1006-706X(08)60016-3
  • Chen, L.; Fu Zhang, J.; Zhang, L.; Meng, L. Textures of High-Strength and Low-Expansion Fe-Ni Alloy Wires during Cold-Drawing Processes. Int. J. Miner. Metall. Mater. 2009, 16, 667–671.
  • Berthod, P.; Aranda, L.; Hamini, Y. Thermal Expansion of Chromium-Rich İron-Based or İron/Nickel-Based Alloys Reinforced by Tantalum Carbides. Mater. Sci. 2011, 47, 319–326. doi:10.1007/s11003-011-9399-0
  • Ustinovshchikov, Y. I.; Shabanova, IN.; Lomova, N. V. Microstructures Responsible for the İnvar and Permalloy Effects in Fe-Ni Alloys. Russ. Metall. 2015, 2015, 389–394. doi:10.1134/S0036029515050158
  • Yu, Y.; Chen, W.; Zheng, H. Effects of Ti-Ce Refiners on Solidification Structure and Hot Ductility of Fe-36Ni İnvar Alloy. J. Rare Earths 2013, 31, 927–932. doi:10.1016/S1002-0721(12)60381-0
  • Hong-Guang, Z.; Li-Jiang, Y.; Heng, X. Effect of Two Kinds of Refiners on the Solidification Structure and Property of İnvar Alloy. High Temp. Mater. Process 2013, 32, 375–381.
  • Zheng, H. G.; Li, Y.; Liu, X. F. Effects of Zr on the Solidification Structure and Hot Ductility of Fe-36Ni İnvar Alloy. Beijing Keji Daxue Xuebao/Journal Univ. Sci. Technol. Beijing 2014, 36, 145–150.
  • Ha, T. K.; Min, S. H. Effect of C Content on the Microstructure and Physical Properties of Fe-36Ni Invar Alloy. Mater. Sci. Forum 2014, 804, 293–296. doi:10.4028/www.scientific.net/MSF.804.293
  • Liu, H.; Sun, Z.; Wang, G.; Sun, X.; Li, J.; Xue, F.; Peng, H.; Zhang, Y. Effect of Aging on Microstructures and Properties of Mo-Alloyed Fe–36Ni İnvar Alloy. Mater. Sci. Eng. A 2016, 654, 107–112. doi:10.1016/j.msea.2015.12.018
  • Zheng, J.; Li, C.; He, S.; Cai, B.; Song, Y. Deformation Behavior of Fe-36Ni Steel during Cryogenic (123–173 K) Rolling. J. Iron Steel Res. Int. 2016, 23, 447–452. doi:10.1016/S1006-706X(16)30071-1
  • Ogorodnikova, O. M.; Maksimova, E. V. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys. Russ. Phys. J. 2018, 61, 7–13. doi:10.1007/s11182-018-1358-x
  • Rao, Z.; Ponge, D.; Körmann, F.; Ikeda, Y.; Schneeweiss, O.; Friák, M.; Neugebauer, J.; Raabe, D.; Li, Z. Invar Effects in FeNiCo Medium Entropy Alloys: From an Invar Treasure Map to Alloy Design. Intermetallics 2019, 111, 106520. doi:10.1016/j.intermet.2019.106520
  • Sui, Q. S.; Li, J. X.; Zhai, Y. Z.; Sun, Z. H.; Wu, Y. F.; Zhao, H. T.; Feng, J. H.; Sun, M. C.; Yang, C. L.; Chen, B. A.; Peng, H. F. Effect of Alloying with V and Ti on Microstructures and Properties in Fe–Ni–Mo–C İnvar Alloys. Materialia 2019, 8, 100474.
  • Zheng, Y.; Wang, F.; Li, C.; Yang, Z.; He, Y. Effects of B on the Hot Ductility of Fe-36Ni Invar Alloy. High Temp. Mater. Process 2019, 48, 380–388.
  • Eliezer, Z.; Hoggins, J. T. Plastic deformation of İnvar Alloys. Mater. Res. Bull. 1977, 12, 227–233. doi:10.1016/0025-5408(77)90139-8
  • Kim, C. D.; Chikazumi, S.; Matsui, M. Magnetostriction of Fe-Ni Invar Alloys. J. Phys. Soc. Japan 1978, 44, 1152–1157.
  • Ustinovshikov, Y.; Shabanova, I. A Study of Microstructures Responsible for the Emergence of the İnvar and Permalloy Effects in Fe-Ni Alloys. J. Alloys Compd. 2013, 578, 292–296. doi:10.1016/j.jallcom.2013.06.039
  • Wei, K.; Yang, Q.; Ling, B.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Mechanical Properties of Invar 36 Alloy Additively Manufactured by Selective Laser Melting. Mater. Sci. Eng. A 2020, 772, 138799.
  • Yang, Q.; Wei, K.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Microstructures and Unique Low Thermal Expansion of Invar 36 Alloy Fabricated by Selective Laser Melting. Mater. Charact. 2020, 166, 110409. doi:10.1016/j.matchar.2020.110409
  • Yakout, M.; Elbestawi, M. A.; Veldhuis, S. C. Density and Mechanical Properties in Selective Laser Melting of Invar 36 and Stainless Steel 316L. J. Mater. Process. Technol. 2019, 266, 397–420. doi:10.1016/j.jmatprotec.2018.11.006
  • Yakout, M.; Elbestawi, M. A.; Veldhuis, S. C.; Nangle-Smith, S. Influence of Thermal Properties on Residual Stresses in SLM of Aerospace Alloys. Rapid Prototyp. J. 2020, 26, 213–222. doi:10.1108/RPJ-03-2019-0065
  • Yakout, M.; Elbestawi, M. A.; Veldhuis, S. C. A Study of Thermal Expansion Coefficients and Microstructure during Selective Laser Melting of Invar 36 and Stainless Steel 316L. Addit. Manuf 2018, 24, 405–418. doi:10.1016/j.addma.2018.09.035
  • Harrison, N. J.; Todd, I.; Mumtaz, K. Thermal Expansion Coefficients in Invar Processed by Selective Laser Melting. J. Mater. Sci. 2017, 52, 10517–10525. doi:10.1007/s10853-017-1169-4
  • Qiu, C.; Adkins, N. J. E.; Attallah, M. M. Selective Laser Melting of Invar 36: Microstructure and Properties. Acta Mater. 2016, 103, 382–395. doi:10.1016/j.actamat.2015.10.020
  • Yakout, M.; Cadamuro, A.; Elbestawi, M. A.; Veldhuis, S. C. The Selection of Process Parameters in Additive Manufacturing for Aerospace Alloys. Int. J. Adv. Manuf. Technol. 2017, 92, 2081–2098. doi:10.1007/s00170-017-0280-7
  • Strauss, J. T.; Stucky, M. J. 2016 Laser Additive Manufacturing Processing of a Mixture of İron and Nickel Powders. In Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf. SFF 2016.
  • Yakout, M.; Phillips, I.; Elbestawi, M. A.; Fang, Q. In-Situ Monitoring and Detection of Spatter Agglomeration and Delamination during Laser-Based Powder Bed Fusion of Invar 36. Opt. Laser Technol. 2021, 136, 106741. doi:10.1016/j.optlastec.2020.106741
  • Wegener, T.; Brenne, F.; Fischer, A.; Möller, T.; Hauck, C.; Auernhammer, S.; Niendorf, T. On the Structural İntegrity of Fe-36Ni Invar Alloy Processed by Selective Laser Melting. Addit. Manuf. 2021, 37, 101603. doi:10.1016/j.addma.2020.101603
  • Neef, P.; Bernhard, R.; Wiche, H.; Wesling, V. Laser-Based Additive Manufacturing of Optical, Thermal and Structural Components. Adv. Struct. Mater. 2020, 125, 57–66.
  • Asgari, H.; Salarian, M.; Ma, H.; Olubamiji, A.; Vlasea, M. On Thermal Expansion Behavior of İnvar Alloy Fabricated by Modulated Laser Powder Bed Fusion. Mater. Des. 2018, 160, 895–905.
  • Nagayama, T.; Yamamoto, T.; Nakamura, T.; Fujiwara, Y. Properties of Electrodeposited İnvar Fe–Ni Alloy/SiC Composite Film. Surf. Coatings Technol. 2017, 322, 70–75.
  • Nagayama, T.; Yamamoto, T.; Nakamura, T. Thermal Expansions and Mechanical Properties of Electrodeposited Fe–Ni Alloys in the Invar Composition Range. Electrochim. Acta 2016, 205, 178–187. doi:10.1016/j.electacta.2016.04.089
  • Nagayama, T.; Yamamoto, T.; Nakamura, T. Electrodeposition of Invar Fe-Ni Alloy/SiC Particle Composite. ECS Trans. 2017, 75, 69–77. doi:10.1149/07537.0069ecst
  • Nadutov, V. M.; Ustinov, A. I.; Demchenkov, S. A.; Svystunov, Y. O.; Skorodzievski, V. S. Structure and Properties of Nanostructured Vacuum-Deposited Foils of Invar Fe–(35–38 Wt%)Ni Alloys. J. Mater. Sci. Technol. 2015, 31, 1079–1086. doi:10.1016/j.jmst.2015.09.011
  • Ratnayake, D.; Martin, M. D.; Gowrishetty, U. R.; Porter, D. A.; Berfield, T. A.; McNamara, S. P.; Walsh, K. M. Engineering stress in Thin Films for the Field of Bistable MEMS. J. Micromech. Microeng. 2015, 25, 1–16.
  • Ratnayake, D.; Walsh, K. M. 2016 Invar Thin Films for MEMS Bistable Devices. In Conf. Proc. – IEEE SOUTHEASTCON,.
  • Russell, K. C.; Garner, F. A. Thermal and İrradiation-İnduced Phase Separation in Fe-Ni Based İnvar-Type Alloys. Metall. Trans. A, Phys. Metall. Mater. Sci. 1992, 23, 1963–1976.
  • Zheng, X.; Cahill, D. G.; Zhao, J. C. Effect of MeV İon İrradiation on the Coefficient of Thermal Expansion of Fe-Ni Invar Alloys: A Combinatorial Study. Acta Mater. 2010, 58, 1236–1241. doi:10.1016/j.actamat.2009.10.024
  • Wakui, T.; Ishii, H.; Naoe, T.; Kogawa, H.; Haga, K.; Wakai, E.; Takada, H.; Futakawa, M. Optimum Temperature for Hip Bonding İnvar Alloy and Stainless Steel. Mater. Trans. 2019, 60, 1026–1033. doi:10.2320/matertrans.M2018346
  • Qi, J.; Halloran, J. W. Negative Thermal Expansion Artificial Material from İron-Nickel Alloys by Oxide Co-Extrusion with Reductive Sintering. J. Mater. Sci. 2004, 39, 4113–4118. doi:10.1023/B:JMSC.0000033391.65327.9d
  • Hidalgo, J.; Fernández-Blázquez, J. P.; Jiménez-Morales, A.; Barriere, T.; Gelin, J. C.; Torralba, J. M. Effect of the Particle Size and Solids Volume Fraction on the Thermal Degradation Behaviour of Invar 36 Feedstocks. Polym. Degrad. Stab. 2013, 98, 2546–2555. doi:10.1016/j.polymdegradstab.2013.09.015
  • Hidalgo, J.; Jiménez-Morales, A.; Barriere, T.; Gelin, J. C.; Torralba, J. M. Mechanical and Functional Properties of Invar Alloy for μ -MIM. Powder Metall. 2014, 57, 127–136. doi:10.1179/1743290113Y.0000000081
  • Hidalgo, J.; Jiménez-Morales, A.; Barriere, T.; Gelin, J. C.; Torralba, J. M. Water Soluble Invar 36 Feedstock Development for μPIM. J. Mater. Process. Technol. 2014, 214, 436–444. doi:10.1016/j.jmatprotec.2013.09.014
  • Davis, J. R. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys; ASM International: Materials Park, OH, 2000.
  • F.-06 ASTM; Standard Specification for Iron-Nickel and Iron-Nickel-Cobalt Alloys for Low Thermal Expansion Applications, ASTM International: West Conshohocken; 2016.
  • McCain, W. S. Mechanical and Physical Properties of Invar and Invar-Type Alloys. DMIC Memo. 1965, 207, 70.
  • Lement, B. S.; Averbach, B. L.; Cohen, M. The Dimensional Behavior of Invar. Transacations Am. Soc. Met. 1951, 43, 1072–1907.
  • Cacciamani, G.; Dinsdale, A.; Palumbo, M.; Pasturel, A. The Fe-Ni System: Thermodynamic Modelling Assisted by Atomistic Calculations. Intermetallics 2010, 18, 1148–1162. doi:10.1016/j.intermet.2010.02.026
  • Béranger, G.; Duffaut, F.; Tires, J. F. A Hundred Years after the Discovery of Invar: The Iron-Nickel Alloys; Intercept Ltd: Androver, UK, 1996.
  • Vernyhora, I. V.; Tatarenko, V. A.; Bokoch, S. M. Thermodynamics of f.c.c.-Ni–Fe Alloys in a Static Applied Magnetic Field. ISRN Thermodyn. 2012, 2012, 1–11. doi:10.5402/2012/917836
  • Ohnuma, I.; Shimenouchi, S.; Omori, T.; Ishida, K.; Kainuma, R. Experimental Determination and Thermodynamic Evaluation of Low-Temperature Phase Equilibria in the Fe–Ni Binary System. Calphad Comput. Coupling Phase Diagrams Thermochem. 2019, 67, 101677. doi:10.1016/j.calphad.2019.101677
  • Owen, E. A.; Sully, A. H. XXXI. On the Migration of Atoms in İron-Nickel Alloys. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1941, 31, 314–338. doi:10.1080/14786444108520762
  • Goldstein, J.; Ogilvie, R. A re-Evaluation of the İron-Rich Portion of the Fe-Ni System. Trans. AIME 1965, 233, 2083–2087.
  • Romig, A. D.; Goldstein, J. I. Determination of the Fe-Ni and Fe-Ni-P Phase Diagrams at Low Temperatures (700 to 300 °C). Metall. Trans. A 1980, 11, 1151–1159.
  • Leech, P.; Sykes, C. LXIX. The Evidence for a Superlattice in the Nickel-İron Alloy Ni 3 Fe. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1939, 27, 742–753.
  • Swartzendruber, L. J.; Itkin, V. P.; Alcock, C. B. Phase Diagrams of Binary Iron Alloys. J. Phase Equilib. 1991, 12, 288–312. doi:10.1007/BF02649918
  • Ohnuma, I.; Kainuma, R.; Ishida, K. Effect of the İnteraction between the Chemical and the Magnetic Ordering on the Phase Equilibria of İron-Base Alloys. In CALPHAD and Alloy Thermodynamics: Seattle; 2002, 61–78.
  • Nishizawa, T.; Hasebe, M.; Ko, M. Thermodynamic Analysis of Solubility and Miscibility Gap in Ferromagnetic Alpha İron Alloys. Acta Metall. 1979, 27, 817–828. doi:10.1016/0001-6160(79)90116-0
  • Reuter, K. B.; Williams, D. B.; Goldstein, J. I. Low Temperature Phase Transformations in the Metallic Phases of İron and Stony-İron Meteorites. Geochim. Cosmochim. Acta 1988, 52, 617–626. doi:10.1016/0016-7037(88)90323-7
  • Yang, C. W.; Williams, D. B.; Goldstein, J. I. A Revision of the Fe-Ni Phase Diagram at Low Temperatures (<400 °C). J. Phase Equilibria 1996, 17, 522–531.
  • Mohri, T.; Chen, Y.; Jufuku, Y. First-Principles Calculation of L10 -Disorder Phase Equilibria for Fe–Ni System. Calphad 2009, 33, 244–249. doi:10.1016/j.calphad.2008.09.005
  • Zhang, J.; Williams, D. B.; Goldstein, J. I. Decomposition of Fe-Ni Martensite: Implications for the Low-Temperature (≤500 °C) Fe-Ni Phase Diagram. Metall. Mater. Trans. A 1994, 25, 1627–1637.
  • Owen, E. A.; Sully, A. H. LVI. The Equilibrium Diagram of İron-Nickel Alloys. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1939, 27, 614–636.
  • Hellawell, A.; Hume-Rothery, W. The Constitution of Alloys of İron and Manganese with Transition Elements of the First Long Period. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 1957, 249, 417–459.
  • Jenkins, C. H.; Bucknall, E.; Austin, C.; Mellor, G. Some Alloys for Use at High Temperatures: Part IV: The Constitution of the Alloys of Nickel, Chromium and İron. J. Iron Steel Inst. 1937, 136, 187–222.
  • Bennedek, H.; Schafmeister, P. No Title. Arch Eisenhűttenwes 1931, 5, 123–125. doi:10.1002/srin.193101155
  • Hanson, D.; Hanson, H. The Constitution of the Nickel-İron Alloys. J Iron Steel Inst 1920, 102, 39–64.
  • Guertler, W.; Tammann, G. Metallographische Mitteilungen aus dem Institut für anorganische Chemie der Universität Göttingen. IX. Über die Legierungen des Nickels und Kobalts mit Eisen. Zeitschrift für Anorg. Chemie 1905, 45, 205–224. doi:10.1002/zaac.19050450122
  • Hanson, D.; Freeman, J. R. The Constitution of the Alloys of İron and Nickel. J Iron Steel Inst 1923, 107, 301–321.
  • Kase, T. No Title. Sci. Rep. Tohoku Imp. Univ. 1925, 14, 173–217.
  • Vogel, R. Über die Struktur der Eisen-Nickelmeteoriten. Zeitschrift für Anorg. und Allg. Chemie 1925, 142, 193–228. doi:10.1002/zaac.19251420117
  • Vogel, R. Z. On the Structure of Iron Meteorites. Arch Eisenhűttenwes 1927, 1, 605–611.
  • Romig, A. D.; Goldstein, J. I. Determination of the Fe-Rich Portion of the Fe-Ni-C Phase Diagram. Metall. Trans. A 1978, 9, 1599–1609. doi:10.1007/BF02661942
  • Raghavan, V. Fe-Mn-Ni (Iron-Manganese-Nickel). J. Phase Equilibria. 1994, 15, 617–619. doi:10.1007/BF02647624
  • Raghavan, V. Fe-Ni-Si (İron-Nickel-Silicon). J. Phase Equilibria. 2003, 24, 269–271. doi:10.1361/105497103770330631
  • Cacciamani, G.; De Keyzer, J.; Ferro, R.; Klotz, U. E.; Lacaze, J.; Wollants, P. Critical Evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti Alloy Systems. Intermetallics 2006, 14, 1312–1325. doi:10.1016/j.intermet.2005.11.028
  • De Keyzer, J.; Cacciamani, G.; Dupin, N.; Wollants, P. Thermodynamic Modeling and Optimization of the Fe–Ni–Ti System. Calphad 2009, 33, 109–123. doi:10.1016/j.calphad.2008.10.003
  • Ma, X.; Khan, S. A.; Choi, N.; Hatalis, M.; Robinson, M. Fe-42%Ni Austenitic Alloy as a Novel Substrate for Flexible Electronics. MRS Proc. 2011, 1285, mrsf10-1285-d06-03. doi:10.1557/opl.2011.677
  • Roy, D. M.; Pettifor, D. G. Stoner Theory Support for the Two-State Hypothesis for γ İron. J. Phys. F Met. Phys. 1977, 7, 183–187.
  • Stoner, E. C. Collective Electron Ferromagnetism II. Energy and Specific Heat. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1939, 169, 339–371.
  • Masumoto, H. No Title. Sci. Rept. Tohuku Uni. 1931, 20, 101.
  • Chikazumi, S.; Mizoguchi, T.; Yamaguchi, N.; Beckwith, P. The Invar Problem. J. Appl. Phys. 1968, 39, 939. doi:10.1063/1.1656337
  • Kim, G. Quantitative Calculations of Thermal-Expansion Coefficient in Fe–Ni Alloys: First-Principles Approach. Curr. Appl. Phys. 2022, 38, 76–80. doi:10.1016/j.cap.2022.03.011
  • Zheng, Y.; Li, J.; Cui, L. Martensitic Transformations and Thermal Expansion Behaviors of Structural Heterogeneous NiTi Alloys. Mater. Sci. Eng. A 2006, 438–440, 567–570. doi:10.1016/j.msea.2006.02.162
  • Owen, W. S. The Influence of Lattice Softening of the Parent Phase on the Martensitic] Transformation in Fe-Ni and Fe-Pt Alloys. Mater. Sci. Eng. A 1990, 127, 197–204. doi:10.1016/0921-5093(90)90310-Y
  • Matsui, M.; Adachi, K. Magneto-Elastic Properties and İnvar Anomaly of Fe-Pd Alloys. Phys. B Condens. Matter. 1990, 161, 53–59. doi:10.1016/0921-4526(89)90102-6
  • Gepreel, M. A.-H.; Niinomi, M.; Nakai, M.; Morinaga, M. Invar Properties in Ti-Alloys Achieved Through Alloy Design and Thermomechanical Treatments. JOM 2019, 71, 3631–3639. doi:10.1007/s11837-019-03599-1
  • Lumley, R. Development of Thin Wall Cast Invar for Satellite Applications. In Australian Foundry Institute Conference, Queensland, Australia, 2020.
  • Gandhewar, V. R.; Bansod, S. V.; Borade, A. B. Induction Furnace: A Review. Int. J. Eng. Technol. 2011, 3, 277–284.
  • Campbell, F. C. Metals Fabrication: Understanding the Basics; ASM International: Ohio, 2013.
  • Bauccio, M. ASM Metals Reference Book; 3rd Edition; ASM International: Ohio, 1993.
  • Mostefa, L. B.; Saindrenan, G.; Solignac, M. P.; Colin, J. P. Effect of İnterfacial Sulfur Segregation on the Hot Ductility Drop of FeNi36 Alloys. Acta Metall. Mater 1991, 39, 3111–3118.
  • Saindrenan, G.; Simonetta-Perrot, M. T.; Gall, R. L.; Louahdi, R. A Study of the High Temperature Tensile Properties of an Fe-Ni Alloy. J. Phys. IV JP 2004, 123, 111–115.
  • Tateno, J.; Samukawa, T.; Sodani, Y. Influence of Heating Temperature on Edge Crack in Hot Rolling of 36%Ni-Fe Alloy. ISIJ Int. 2016, 56, 1219–1225. doi:10.2355/isijinternational.ISIJINT-2016-025
  • Ogorodnikova, O. M.; Chermensky, V. I.; Konchakovsky, I. V. Simulation of Centrifugal Casting and Structure of Fe-Ni-Co Super-Invar Alloy. Solid State Phenom. 2017, 265, 1142–1147. doi:10.4028/www.scientific.net/SSP.265.1142
  • Tanji, Y. Thermal Expansion Coefficient and Spontaneous Volume Magnetostriction of Fe-Ni (Fcc) Alloys. J. Phys. Soc. Japan 1971, 31, 1366–1373.
  • Kaladhar, M.; Subbaiah, K. V.; Srinivasa Rao, C. H. Machining of austenitic stainless steel - a review. Int. J. Mach. Mach. Mater. 2012, 12, 178. doi:10.1504/IJMMM.2012.048564
  • Chen, C.; Xie, Y.; Liu, L.; Zhao, R.; Jin, X.; Li, S.; Huang, R.; Wang, J.; Liao, H.; Ren, Z. Cold Spray Additive Manufacturing of Invar 36 Alloy: microstructure, Thermal Expansion and Mechanical Properties. J. Mater. Sci. Technol. 2021, 72, 39–51. doi:10.1016/j.jmst.2020.07.038
  • Zheng, H.; Liu, K. Machinability of Engineering Materials. In Handbook of Manufacturing Engineering and Technology; Springer: London; pp 899–939, 2015.
  • Bobbio, L. D.; Otis, R. A.; Borgonia, J. P.; Dillon, R. P.; Shapiro, A. A.; Liu, Z. K.; Beese, A. M. Additive Manufacturing of a Functionally Graded Material from Ti-6Al-4V to Invar: Experimental Characterization and Thermodynamic Calculations. Acta Mater. 2017, 127, 133–142. doi:10.1016/j.actamat.2016.12.070
  • Qiao, Y.; Kang, R.; Jin, Z.; Gao, H. The Thermal Characteristics of Invar 36 Alloy during Plane Grinding. Advanced Materials Research. Trans. Tech. Publ. 2010, 97–101, 918–921. doi:10.4028/www.scientific.net/AMR.97-101.918
  • Zhang, H.; Dang, J.; An, Q.; Cai, X.; Chen, M. Study on the Drilling Performances of a Newly Developed CFRP/İnvar Co-Cured Material. J. Manuf. Process. 2021, 66, 669–678. doi:10.1016/j.jmapro.2021.04.042
  • Zheng, X. W.; Ying, G. F.; Chen, Y.; Fu, Y. C. The Effects of Cutting Parameters on Work-Hardening of Milling Invar 36. Adv. Mater. Res. 2015, 1089, 373–376. doi:10.4028/www.scientific.net/AMR.1089.373
  • Zhao, G.; Huang, C.; He, N.; Liu, H.; Zou, B. Preparation and Cutting Performance of Reactively Hot Pressed TiB 2-SiC Ceramic Tool When Machining Invar36 Alloy. Int. J. Adv. Manuf. Technol. 2016, 86, 2679–2688. 2016 doi:10.1007/s00170-016-8355-4
  • An, Q.; Zou, F.; Cai, X.; Gao, M.; Chen, M. Experimental Investigation on the Machinability of CFRP/Invar36 Hybrid Co-Cured Material in Turning Operations. Int. J. Adv. Manuf. Technol. 2020, 107, 3715–3726. doi:10.1007/s00170-020-05333-7
  • Zou, Y.; Ma, B.; Cui, H.; Lu, F.; Xu, P. Microstructure, Wear, and Oxidation Resistance of Nanostructured Carbide-Strengthened Cobalt-Based Composite Coatings on Invar Alloys by Laser Cladding. Surf. Coatings Technol. 2020, 381, 125188. doi:10.1016/j.surfcoat.2019.125188
  • Louhenkilpi, S. Continuous Casting of Steel. In Treatise Process Metall; Elsevier: Stockholm; 2014, 373–434.
  • Ghosh, A. Segregation in Cast Products. Sadhana 2001, 26, 5–24. doi:10.1007/BF02728476
  • Kim, B.-S.; Yoo, K.-J.; Kim, B.-G.; Lee, H.-W. Effect of Carbon on the Coefficient of Thermal Expansion of as-Cast Fe − 30wt.%Ni − 12.5wt.%Co− ×C İnvar Alloys. Met. Mater. Int. 2002, 8, 247–252. doi:10.1007/BF03186092
  • Ghosh, A. Principles of Secondary Processing and Casting of Liquid Steel; Oxford & IBH: New Delhi, 1990.
  • Wittenauer, J. Factors Affecting the Mechanical Strength of Fe-36Ni Invar. Proc. “Invar Eff. A Centen. Symp. Conf. 1996, 231–238.
  • Nadutov, V. M.; Kosintsev, S. G.; Svystunov, E. O.; Zaporozhets, O. I. Interatomic Interaction and Magnetostriction in İnvar FeNi-C-Based Alloys. Metallofiz. i Noveishie Tekhnologii 2009, 31, 1021–1034.
  • Nadutov, V. M.; Kosintsev, S. G.; Svystunou, Y. O.; Tatarenko, V. A.; Yefimova, T. V. Magnetic Properties of Alloyed İnvar Alloys on the Base of Fe-Ni-C. Metallofiz. i Noveishie Tekhnologii 2006, 28, 39–48.
  • Colpaert, H. Solidification, Segregation, and Nonmetallic Inclusions. In Metallogr. Steels; André Luiz V. da Costa e Silva, Ed., ASM International: Ohio; 129–191, 2018.
  • Schaffnit, P.; Stallybrass, C.; Konrad, J.; Stein, F.; Weinberg, M. A Scheil–Gulliver Model Dedicated to the Solidification of Steel. Calphad 2015, 48, 184–188. doi:10.1016/j.calphad.2015.01.002
  • Brown, R. A.; Kim, D. H. Modelling of Directional Solidification: From Scheil to Detailed Numerical Simulation. J. Cryst. Growth 1991, 109, 50–65. doi:10.1016/0022-0248(91)90157-Z
  • Rappaz, M.; Doré, X.; Gandin, C.-A.; Jacot, A.; Jalanti, T. Modelling of As-Cast Structures. Mater. Sci. Forum 1996, 217–222, 7–18. doi:10.4028/www.scientific.net/MSF.217-222.7
  • Ghosh, A. Fundamental Aspects of Segregation Control in Continuous Casting of Steel. in Proc. Int. Symp. Qual. Challenges Contin. Cast 1997, 203–218.
  • Moore, J. J.; Hamilton, J. C. Axial Segregation in Continuously Cast Steel Billets. Metall. Mater. Technol. 1980, 12, 569–573.
  • Mochnacki, B.; Prazmowski, M.; Suchy, J. S. Analysis of Segregation Process in the Solidifying Casting. Arch. Foundry Eng. 2002, 2, 1–6.
  • Flemings, M. C. Solidification Processing. Metall. Mater. Trans. B 1974, 5, 2121–2134. doi:10.1007/BF02643923
  • Qiu, C. A New Approach to Synthesise High Strength Nano-Oxide Dispersion Strengthened Alloys. J. Alloys Compd. 2019, 790, 1023–1033. doi:10.1016/j.jallcom.2019.03.221
  • Li, G.; Cai, Y.; Qi, H. Study on Constitutive Relationship of Fe-36Ni İnvar Alloy. Adv. Mater. Res. 2011, 291, 1131–1135.
  • He, Y.; Wang, F.; Li, C.; Yang, Z.; Zhang, J.; Li, Y. Effect of Mg Content on the Hot Ductility of Wrought Fe-36Ni Alloy with Ti Addition. Mater. Sci. Eng. A 2016, 673, 99–107.
  • Kim, Y.; Cho, J.; Bae, W. Efficient Forging Process to İmprove the Closing Effect of the İnner Void on an Ultra-Large İngot. J. Mater. Process. Technol. 2011, 211, 1005–1013. doi:10.1016/j.jmatprotec.2011.01.001
  • Imayev, V.; Gaisin, R.; Gaisina, E.; Imayev, R.; Fecht, H. J.; Pyczak, F. Effect of Hot Forging on Microstructure and Tensile Properties of Ti-TiB Based Composites Produced by Casting. Mater. Sci. Eng. A 2014, 609, 34–41. doi:10.1016/j.msea.2014.04.091
  • Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; 10th ed., Wiley: New York, 2018.
  • Xu, N.; Song, Q.; Bao, Y. Microstructure and Mechanical Properties’ Modification of Friction Stir Welded Invar 36 Alloy Joint. Science and Technology of Welding and Joining. 2018, 24, 79–82. doi:10.1080/13621718.2018.1490104.
  • Bhadeshia, H. K. D. H. Twinning-İnduced Plasticity Steels. Scr. Mater 2012, 66, 955. doi:10.1016/j.scriptamat.2012.04.006
  • Yanchong, Y.; Weiqing, C.; Hongguang, Z. Research on the Hot Ductility of Fe-36Ni Invar Alloy. Rare Met. Mater. Eng. 2014, 43, 2969–2973. doi:10.1016/S1875-5372(15)60044-3
  • Shi, C. b.; Huang, Y.; Zhang, J. x.; Li, J.; Zheng, X. Review on desulfurization in electroslag remelting. Int. J. Miner. Metall. Mater. 2021, 28, 18. doi:10.1007/s12613-020-2075-3
  • Alvarez, G.; Campo, O.; Lainez, E. Influence of Sulphur and Mn/S Ratio on the Hot Ductility of Steels during Continuous Casting. Steel Res 1993, 64, 292–298. doi:10.1002/srin.199301025
  • Zhao, Q.; Wu, Y.; He, J.; Yao, Y.; Sun, Z.; Peng, H. Effect of Cold Drawing on Microstructure and Properties of the İnvar Alloy Strengthened by Carbide-Forming Elements. J. Mater. Res. Technol. 2021, 13, 1012–1019. doi:10.1016/j.jmrt.2021.05.026
  • Balasubramanian, N.; Langdon, T. G. The Strength–Grain Size Relationship in Ultrafine-Grained Metals. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 5827–5838. doi:10.1007/s11661-016-3499-2
  • Guan, R. G.; Tie, D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects. Acta Metall. Sin. (English Lett). 2017, 30, 409–432.
  • Hansen, N. Hall–Petch Relation and Boundary Strengthening. Scr. Mater. 2004, 51, 801–806. doi:10.1016/j.scriptamat.2004.06.002
  • Mishra, A.; Kad, B. K.; Gregori, F.; Meyers, M. A. Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis. Acta Mater. 2007, 55, 13–28. doi:10.1016/j.actamat.2006.07.008
  • Wu, X.; Tao, N.; Hong, Y.; Xu, B.; Lu, J.; Lu, K. Microstructure and Evolution of Mechanically-İnduced Ultrafine Grain in Surface Layer of AL-Alloy Subjected to USSP. Acta Mater. 2002, 50, 2075–2084. doi:10.1016/S1359-6454(02)00051-4
  • Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J. J. Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions. Prog. Mater. Sci. 2014, 60, 130–207. doi:10.1016/j.pmatsci.2013.09.002
  • Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D. Y.; Micari, F.; Lahoti, G. D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; Yanagida, A. Severe Plastic Deformation (SPD) Processes for Metals. CIRP Ann. – Manuf. Technol. 2008, 57, 716–735. doi:10.1016/j.cirp.2008.09.005
  • Wang, C.; Ma, A.; Sun, J.; Liu, H.; Huang, H.; Yang, Z.; Jiang, J. Effect of ECAP Process on as-Cast and as-Homogenized Mg-Al-Ca-Mn Alloys with Different Mg2Ca Morphologies. J. Alloys Compd. 2019, 793, 259–270. doi:10.1016/j.jallcom.2019.04.202
  • Suresh, M.; Sharma, A.; More, A. M.; Kalsar, R.; Bisht, A.; Nayan, N.; Suwas, S. Effect of Equal Channel Angular Pressing (ECAP) on the Evolution of Texture, Microstructure and Mechanical Properties in the Al-Cu-Li Alloy AA2195. J. Alloys Compd. 2019, 785, 972–983. doi:10.1016/j.jallcom.2019.01.161
  • Gu, Y.; Ma, A.; Jiang, J.; Li, H.; Song, D.; Wu, H.; Yuan, Y. Simultaneously improving Mechanical Properties and Corrosion Resistance of Pure Ti by Continuous ECAP plus Short-Duration Annealing. Mater. Charact. 2018, 138, 38–47. doi:10.1016/j.matchar.2018.01.050
  • Adom, E.; Ji, X. Modelling of Boil-Off Gas in LNG Tanks: A Case Study. Int. J. Eng. Technol 2010, 2, 292–296.
  • Berns, H.; Fischer, A.; Kleff, J. Scratch Tests on İron-, Nickel- and Cobalt-Based Alloys at Elevated Temperatures. Wear 1993, 162–164, 585–589. doi:10.1016/0043-1648(93)90545-W
  • Walter, M.; Mujica Roncery, L.; Weber, S.; Leich, L.; Theisen, W. XRD Measurement of Stacking Fault Energy of Cr–Ni Austenitic Steels: influence of Temperature and Alloying Elements. J. Mater. Sci. 2020, 55, 13424–13437. doi:10.1007/s10853-020-04953-4
  • Wang, P.; Xiao, N.; Lu, S.; Li, D.; Li, Y. Investigation of the Mechanical Stability of Reversed Austenite in 13%Cr-4%Ni Martensitic Stainless Steel during the Uniaxial Tensile Test. Mater. Sci. Eng. A 2013, 586, 292–300. doi:10.1016/j.msea.2013.08.028
  • Zhang, W. X.; Chen, Y. Z.; Cong, Y. B.; Liu, Y. H.; Liu, F. On the austenite stability of cryogenic Ni steels: microstructural effects: a review. J. Mater. Sci. 2021, 56, 12539. doi:10.1007/s10853-021-06068-w
  • Zhu, L. H.; Huang, Q. W. Study on Martensitic Transformation of Mechanically Alloyed Nanocrystalline Fe-Ni. Mater. Lett. 2003, 57, 4070–4073. doi:10.1016/S0167-577X(03)00267-2
  • Ma, B.; Li, C.; Zheng, J.; Song, Y.; Han, Y. Strain Hardening Behavior and Deformation Substructure of Fe–20/27Mn–4Al–0.3C Non-Magnetic Steels. Mater. Des. 2016, 92, 313–321. doi:10.1016/j.matdes.2015.12.038
  • Ghosh, G.; Olson, G. B. Kinetics of f.c.c. → b.c.c. heterogeneous Martensitic Nucleation—II. Thermal Activation. Acta Metall. Mater. 1994, 42, 3371–3379. doi:10.1016/0956-7151(94)90469-3
  • Ghosh, G.; Olson, G. B. Computational thermodynamics and the Kinetics of Martensitic Transformation. J. Phase Equilibria. 2001, 22, 199–207. doi:10.1361/105497101770338653
  • Ghosh, G.; Olson, G. B. Kinetics of F.C.C. → B.C.C. heterogeneous Martensitic Nucleation—I. The Critical Driving Force for Athermal Nucleation. Acta Metall. Mater. 1994, 42, 3361–3370. doi:10.1016/0956-7151(94)90468-5
  • Kaufman, L.; Cohen, M. The Martensitic Transformation in the Iron-Nickel System. JOM 1956, 8, 1393–1401. doi:10.1007/BF03377892
  • Samek, L.; De Moor, E.; Penning, J.; De Cooman, B. C. Influence of Alloying Elements on the Kinetics of Strain-İnduced Martensitic Nucleation in Low-Alloy, Multiphase High-Strength Steels. Metall. Mater. Trans. A 2006, 37, 109–124. doi:10.1007/s11661-006-0157-0
  • Mayer, P.; Skorupski, R.; Smaga, M.; Eifler, D.; Aurich, J. C. Deformation Induced Surface Hardening When Turning Metastable Austenitic Steel AISI 347 with Different Cryogenic Cooling Strategies. Procedia CIRP 2014, 14, 101–106. doi:10.1016/j.procir.2014.03.097
  • Giolli, C.; Turbil, M.; Rizzi, G.; Rosso, M.; Scrivani, A. Wear Resistance Improvement of Small Dimension Invar Massive Molds for CFRP Components. J. Therm. Spray Technol. 2009, 18, 652–664. doi:10.1007/s11666-009-9397-z
  • Thakur, L.; Arora, N. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes. J. Mater. Eng. Perform 2013, 22, 574–583. doi:10.1007/s11665-012-0265-5
  • Thakur, L.; Arora, N. A Comparative Study on Slurry and Dry Erosion Behaviour of HVOF Sprayed WC-CoCr Coatings. Wear 2013, 303, 405–411. doi:10.1016/j.wear.2013.03.028
  • Gulyaev, A. A.; Svistunova, E. L. Precipitation proCess and Age-Hardenability of Fe-Ni-Be İnvar Alloys. Scr. Metall. Mater. 1995, 33, 1497–1503. doi:10.1016/0956-716X(95)00433-V
  • Nakama, K.; Sugita, K.; Shirai, Y. Effect of MC Type Carbides on Age Hardness and Thermal Expansion of Fe–36 Wt%Ni–0.2 Wt%C Alloy. Metallogr. Microstruct. Anal. 2013, 2, 383–387. doi:10.1007/s13632-013-0101-9
  • Lu, D. Z.; Wu, M. J. Observation of Etch Pits in Fe-36wt%Ni Invar Alloy. Int. J. Miner. Metall. Mater. 2014, 21, 682–686.
  • Sui, Q.; He, J.; Zhang, X.; Sun, Z.; Zhang, Y.; Wu, Y.; Zhu, Z.; Zhang, Q.; Peng, H. Strengthening of the Fe-Ni Invar Alloy Through Chromium. Materials (Basel) 2019, 12, 1297. doi:10.3390/ma12081297
  • Yazdani, M.; Abbasi, S. M.; Momeni, A.; Taheri, A. K. Hot Ductility of a Fe-Ni-Co Alloy in Cast and Wrought Conditions. Mater. Des. 2011, 32, 2956–2962.
  • Mintz, B.; Yue, S.; Jonas, J. J. Hot Ductility of Steels and İts Relationship to the Problem of Transverse Cracking during Continuous Casting. Int. Mater. Rev. 1991, 36, 187–220. doi:10.1179/imr.1991.36.1.187
  • Maehara, Y.; Yasumoto, K.; Tomono, H.; Nagamichi, T.; Ohmori, Y. Surface Cracking Mechanism of Continuously Cast Low Carbon Low Alloy Steel Slabs. Mater. Sci. Technol. (United Kingdom) 1990, 6, 793–806. doi:10.1179/mst.1990.6.9.793
  • Mintz, B.; Abushosha, R. Effectiveness of Hot Tensile Test in Simulating Straightening in Continuous Casting. Mater. Sci. Technol. (United Kingdom) 1992, 8, 171–178. doi:10.1179/mst.1992.8.2.171
  • Mulyukov, R. R.; Kazantsev, V. A.; Mulyukov, K. Y.; Burkhanov, A. M.; Safarov, I. M.; Bitkulov, I. K. Properties of Fe-36%Ni İnvar with Nanocrystalline Structure. Rev. Adv. Mater. Sci 2006, 11, 116–121.
  • Monroe, J. A.; Gehring, D.; Karaman, I.; Arroyave, R.; Brown, D. W.; Clausen, B. Tailored Thermal Expansion Alloys. Acta Mater. 2016, 102, 333–341. doi:10.1016/j.actamat.2015.09.012
  • Drebushchak, V. A. Thermal Expansion of Solids: review on Theories. J. Therm. Anal. Calorim. 2020, 142, 1097–1113. doi:10.1007/s10973-020-09370-y
  • Hu, G. W.; Zeng, L. C.; Du, H.; Liu, X. W.; Wu, Y.; Gong, P.; Fan, Z. T.; Hu, Q.; George, E. P. Tailoring Grain Growth and Solid Solution Strengthening of Single-Phase CrCoNi Medium-Entropy Alloys by Solute Selection. J. Mater. Sci. Technol. 2020, 54, 196–205. doi:10.1016/j.jmst.2020.02.073
  • Wang, Z.; Fang, Q.; Li, J.; Liu, B.; Liu, Y. Effect of Lattice Distortion on Solid Solution Strengthening of BCC High-Entropy Alloys. J. Mater. Sci. Technol. 2018, 34, 349–354. doi:10.1016/j.jmst.2017.07.013
  • Wang, Z.; Huang, Y.; Yang, Y.; Wang, J.; Liu, C. T. Atomic-Size Effect and Solid Solubility of Multicomponent Alloys. Scr. Mater. 2015, 94, 28–31. doi:10.1016/j.scriptamat.2014.09.010
  • Ardell, A. J. Precipitation Hardening. Metall. Trans. A 1985, 16, 2131–2165. doi:10.1007/BF02670416
  • Khoptiar, Y.; Gotman, I.; Gutmanas, E. Y. Pressure-Assisted Combustion Synthesis of Dense Layered Ti3AlC2 and İts Mechanical Properties. J. Am. Ceram. Soc. 2004, 88, 28–33. doi:10.1111/j.1551-2916.2004.00012.x
  • Charles, J. A. Development and Use of Layered Ferrous Microstructure. Mater. Sci. Technol. 1998, 14, 496–503. doi:10.1179/mst.1998.14.6.496
  • Sun, Z.; Song, X. Effect of Microstructure Scale on Negative Thermal Expansion of Antiperovskite Manganese Nitride. J. Mater. Sci. Technol. 2014, 30, 903–909.
  • Yang, C.; Tong, P.; Lin, J. C.; Guo, X. G.; Zhang, K.; Wang, M.; Wu, Y.; Lin, S.; Huang, P. C.; Xu, W.; et al. Size Effects on Negative Thermal Expansion in Cubic ScF3. Appl. Phys. Lett. 2016 109, 023110. doi:10.1063/1.4959083
  • Khmelevskyi, S.; Mohn, P. Magnetostriction in Fe-Based Alloys and the Origin of the Invar Anomaly. Phys. Rev. B – Condens. Matter Mater. Phys. 2004, 69, 140404. doi:10.1103/PhysRevB.69.140404
  • Ruban, A. V.; Katsnelson, M. I.; Olovsson, W.; Simak, S. I.; Abrikosov, I. A. Origin of Magnetic Frustrations in Fe-Ni Invar Alloys. Phys. Rev. B – Condens. Matter Mater. Phys. 2005, 71, 54402. doi:10.1103/PhysRevB.71.054402
  • Cui, J.; Li, B.; Liu, Z.; Qi, F.; Zhang, B.; Zhang, J. Numerical investigation of Segregation Evolution during the Vacuum Arc Remelting Process of Ni-Based Superalloy İngots. Metals (Basel) 2021, 11, 2046. doi:10.3390/met11122046
  • Descotes, V.; Quatravaux, T.; Bellot, J. P.; Witzke, S.; Jardy, A. Titanium Nitride (TiN) Germination and Growth during Vacuum Arc Remelting of a Maraging Steel. Metals (Basel) 2020, 10, 541. doi:10.3390/met10040541
  • Patel, A.; Fiore, D. On the Modeling of Vacuum Arc Remelting Process in Titanium Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2016, 143, 12017. doi:10.1088/1757-899X/143/1/012017
  • Beaman, J. J.; Lopez, L. F.; Williamson, R. L. Modeling of the Vacuum Arc Remelting Process for Estimation and Control of the Liquid Pool Profile. J. Dyn. Syst. Meas. Control. Trans. ASME 2014, 136(3), 031007.
  • Mir, H. E.; Jardy, A.; Bellot, J. P.; Chapelle, P.; Lasalmonie, D.; Senevat, J. Thermal Behaviour of the Consumable Electrode in the Vacuum Arc Remelting Process. J. Mater. Process. Technol 2010, 210, 564–572. doi:10.1016/j.jmatprotec.2009.11.008
  • Chapelle, P.; Bellot, J. P.; Duval, H.; Jardy, A.; Ablitzer, D. Modelling of Plasma Generation and Expansion in a Vacuum Arc: Application to the Vacuum Arc Remelting Process. J. Phys. D. Appl. Phys 2002, 35, 137–150. doi:10.1088/0022-3727/35/2/306
  • Pericleous, K.; Djambazov, G.; Ward, M.; Yuan, L.; Lee, P. D. A Multiscale 3D Model of the Vacuum Arc Remelting Process. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., Springer 2013, 44, 5365–5376. doi:10.1007/s11661-013-1680-4
  • Chen, C.; Ma, B.; Miao, S.; Liu, B. Effect of Cobalt on Microstructure and Mechanical Properties of İnvar Alloy. Lect. Notes Mech. Eng. 2018, 1, 855–864.
  • Chen, C.; Ma, B.; Liu, B.; He, J.; Xue, H.; Zuo, Y.; Li, X. Refinement Mechanism and Physical Properties of Arc Melted İnvar Alloy with Different Modifiers. Mater. Chem. Phys. 2019, 227, 138–147. doi:10.1016/j.matchemphys.2019.02.006
  • Smith, R. J.; Lewis, G. J.; Yates, D. H. Development and Application of Nickel Alloys in Aerospace Engineering. Aircr. Eng. Aerosp. Technol. 2001, 73, 138–147.
  • Abbasi, S. M.; Morakabati, M.; Mahdavi, R.; Momeni, A. Effect of Microalloying Additions on the Hot Ductility of Cast FeNi36. J. Alloys Compd. 2015, 639, 602–610. doi:10.1016/j.jallcom.2015.03.167
  • Clapp, D. Overview of Conventional Powder Metallurgy Processing. Adv. Mater. Process 1995, 148, 60–61.
  • Akgul, B.; Erden, F.; Ozbay, S. Porous Cu/Al Composites for Cost-Effective Thermal Management. Powder Technol. 2021, 391, 11–19. doi:10.1016/j.powtec.2021.06.007
  • Du, Y.; Li, S.; Zhang, K.; Lu, K. BN/Al Composite Formation by High-Energy Ball Milling. Scr. Mater. 1997, 36, 7–14. doi:10.1016/S1359-6462(96)00335-1
  • Çelebi, M.; Güler, O.; Çanakçı, A.; Çuvalcı, H. The Effect of Nanoparticle Content on the Microstructure and Mechanical Properties of ZA27-Al2O3-Gr Hybrid Nanocomposites Produced by Powder Metallurgy. J. Compos. Mater. 2021, 55, 3395–3408. doi:10.1177/00219983211015719
  • Karabacak, A. H.; Çanakçı, A.; Erdemir, F.; Özkaya, S.; Çelebi, M. Effect of Different Reinforcement on the Microstructure and Mechanical Properties of AA2024-Based Metal Matrix Nanocomposites. Int. J. Mater. Res. 2020, 111, 416–423. doi:10.3139/146.111901
  • Çelebi, M.; Çanakçı, A.; Güler, O.; Özkaya, S.; Karabacak, A. H.; Arpacı, K. A. Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing. JOM 2022, 74, 4449–4461. doi:10.1007/s11837-022-05441-7
  • Sadoun, A. M.; Fathy, A. Experimental Study on Tribological Properties of Cu–Al2O3 Nanocomposite Hybridized by Graphene Nanoplatelets. Ceram. Int. 2019, 45, 24784–24792. doi:10.1016/j.ceramint.2019.08.220
  • Burmeister, C. F.; Kwade, A. Process engineering with Planetary Ball Millss. Chem. Soc. Rev. 2013, 42, 7660–7667. doi:10.1039/c3cs35455e
  • Li, Z.; Wu, Y.; Zhuang, B.; Zhao, X.; Tang, Y.; Ding, X. Preparation of Novel Copper-Powder-Sintered Frame/Para Ffi n Form-Stable Phase Change Materials with Extremely High Thermal Conductivity. Appl. Energy 2017, 206, 1147–1157. doi:10.1016/j.apenergy.2017.10.046
  • Khanna, N.; Mistry, S.; Rashid, R. A. R.; Gupta, M. K. Investigations on Density and Surface Roughness Characteristics during Selective Laser Sintering of Invar-36 Alloy. Mater. Res. Express 2019, 6, 86541. doi:10.1088/2053-1591/ab18bd
  • Todd, I.; Sidambe, A. T.Dr, Developments in Metal Injection Moulding (MIM). Adv. Powder Metall. Prop. Process. Appl.; Elsevier: Cambridge; 2013, 109–146.
  • Cha, B.; Jang, J. M.; Lee, W.; Ko, S. H.; Son, S. H.; You, W. K.; Lee, J. S. Micro Powder İnjection Molding Process Using TiH 2 Powder. J. Ceram. Process. Res. 2012, 13, 22–25.
  • Dwivedi, S. K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603. doi:10.1016/j.ijhydene.2018.09.201
  • ASTM, ISO/ASTM 52900: 2015 Additive Manufacturing-General Principles-Terminology. 2015.
  • Motallebi, R.; Savaedi, Z.; Mirzadeh, H. Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100992. doi:10.1016/j.cossms.2022.100992
  • Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. doi:10.1016/j.matdes.2021.110008
  • Sun, C.; Wang, Y.; McMurtrey, M. D.; Jerred, N. D.; Liou, F.; Li, J. Additive Manufacturing for Energy: A Review. Appl. Energy 2021, 282, 116041. doi:10.1016/j.apenergy.2020.116041
  • Neikov, O. D. Powders for Additive Manufacturing Processing. In Handb. Non-Ferrous Met. Powd.; Elsevier: Oxford; 2019, 373–399.
  • Badiru, A. B.; Valencia, V. V.; Liu, D. Additive Manufacturing: Handbook Product Development for the Defense Industry; CRC Press: Florida, 2017.
  • Özsoy, K.; Duman, B.; İçkale Gülteki̇n, D. Metal Part Production with Additive Manufacturing for Aerospace and Defense Industry. International Journal of Technological Sciences. 2019, 11, 201‐210.
  • Froes, F.; Boyer, R.; Dutta, B. Introduction to Aerospace Materials Requirements and the Role of Additive Manufacturing. In Addit. Manuf. Aerosp. Ind.; Elsevier: Amsterdam, Netherlands; 2019, 1–6.
  • Tan, H.; Wang, Y.; Wang, G.; Zhang, F.; Fan, W.; Feng, Z.; Lin, X. Investigation on Microstructure and Properties of Laser Solid Formed Low Expansion Invar 36 Alloy. J. Mater. Res. Technol. 2020, 9, 5827–5839. doi:10.1016/j.jmrt.2020.03.108
  • Obidigbo, C.; Tatman, E. P.; Gockel, J. Processing Parameter and Transient Effects on Melt Pool Geometry in Additive Manufacturing of Invar 36. Int. J. Adv. Manuf. Technol. 2019, 104, 3139–3146. doi:10.1007/s00170-019-04229-5
  • Narra, S. P.; Wu, Z.; Patel, R.; Capone, J.; Paliwal, M.; Beuth, J.; Rollett, A. Use of Non-Spherical Hydride-Dehydride (HDH) Powder in Powder Bed Fusion Additive Manufacturing. Addit. Manuf. 2020, 34, 101188. doi:10.1016/j.addma.2020.101188
  • Gokuldoss, P. K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials (Basel) 2017, 10, 672. doi:10.3390/ma10060672
  • Xia, M.; Gu, D.; Yu, G.; Dai, D.; Chen, H.; Shi, Q. Porosity Evolution and İts Thermodynamic Mechanism of Randomly Packed Powder-Bed during Selective Laser Melting of Inconel 718 Alloy. Int. J. Mach. Tools Manuf. 2017, 116, 96–106. doi:10.1016/j.ijmachtools.2017.01.005
  • Marattukalam, J. J.; Karlsson, D.; Pacheco, V.; Beran, P.; Wiklund, U.; Jansson, U.; Hjörvarsson, B.; Sahlberg, M. The Effect of Laser Scanning Strategies on Texture, Mechanical Properties, and Site-Specific Grain Orientation in Selective Laser Melted 316L SS. Mater. Des. 2020, 193, 108852. doi:10.1016/j.matdes.2020.108852
  • Kul, M.; Akgul, B.; Oskay, K. O.; Alsan, A. E.; Karaca, B. Optimisation of Recycled Moulding Sand Composition Using the Mixture Design Method. Int. J. Cast Met. Res. 2021, 34, 104–109. doi:10.1080/13640461.2021.1936381
  • Kul, M.; Erden, F.; Oskay, K. O.; Karasungur, O.; Şimşir, M.; Kumruoğlu, L. C.; Karakaya, İ. A Novel and Eco-Friendly Approach for the Simultaneous Recovery of Copper and Diamond from Waste Cutting Segments via Electrodissolution/Deposition. J. Sustain. Metall. 2021, 7, 1224–1240. doi:10.1007/s40831-021-00406-7
  • Fang, Z.-C.; Wu, Z.-L.; Huang, C.-G.; Wu, C.-W. Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts. Opt. Laser Technol. 2020, 129, 106283. doi:10.1016/j.optlastec.2020.106283
  • Rogl, G.; Rogl, P. F. How Severe Plastic Deformation Changes the Mechanical Properties of Thermoelectric Skutterudites and Half Heusler Alloys. Front. Mater. 2020, 7, 378. doi:10.3389/fmats.2020.600261
  • Nadutov, V. M.; Vashchuk, D. L.; Pilipenko, A. N.; Davidenko, O. A.; Beloshenko, V. A. Internal Friction in Invar Fe-35% Ni Alloy after Combined SPD by Hydroextrusion and Drawing. Funct. Mater. 2014, 21, 52–58. doi:10.15407/fm21.01.052
  • Nadutov, V. M.; Vashchuk, D. L.; Svystunov, Y. O.; Beloshenko, V. A.; Spuskanyuk, V. Z.; Davidenko, A. A. Magnetic and Invar Properties of Fe-35%Ni Alloy after Grinding of Structure by Hydroextrusion. Funct. Mater 2012, 19, 334–342.
  • Chen, Z. W.; Phan, M. A. L.; Darvish, K. Grain Growth during Selective Laser Melting of a Co–Cr–Mo Alloy. J. Mater. Sci 2017, 52, 7415–7427. doi:10.1007/s10853-017-0975-z
  • Rayleigh, L. On the Instability of Jets. Proc. London Math. Soc. 1878, s1-10, 4–13. doi:10.1112/plms/s1-10.1.4
  • Liu, S.; Guo, H. Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy. Materials (Basel) 2020, 13, 3632. doi:10.3390/ma13163632
  • Mills, K. C.; Keene, B. J. Factors Affecting Variable Weld Penetration. Int. Mater. Rev 1990, 35, 185–216. doi:10.1179/095066090790323966
  • Boutaous, M.; Liu, X.; Siginer, D. A.; Xin, S. Balling Phenomenon in Metallic Laser Based 3D Printing Process. Int. J. Therm. Sci. 2021, 167, 107011. doi:10.1016/j.ijthermalsci.2021.107011
  • Xue, L.; Atli, K. C.; Zhang, C.; Hite, N.; Srivastava, A.; Leff, A. C.; Wilson, A. A.; Sharar, D. J.; Elwany, A.; Arroyave, R.; Karaman, I. Laser Powder Bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Tensile Superelasticity. Acta Mater. 2022, 229, 117781. doi:10.1016/j.actamat.2022.117781
  • Arcella, F.; Abbott, D.; House, M. 2000 Titanium alloy Structures for Airframe Application by the Laser Forming Process. in 41st Struct. Struct. Dyn. Mater. Conf. Exhib., American Institute of Aeronautics and Astronautics, Reston, Virigina,. doi:10.2514/6.2000-1465
  • Lin, X.; Yue, T. M.; Yang, H. O.; Huang, W. D. Microstructure and Phase Evolution in Laser Rapid Forming of a Functionally Graded Ti–Rene88DT Alloy. Acta Mater 2006, 54, 1901–1915. doi:10.1016/j.actamat.2005.12.019
  • Yang, K.; Li, W.; Guo, X.; Yang, X.; Xu, Y. Characterizations and Anisotropy of Cold-Spraying Additive-Manufactured Copper Bulk. J. Mater. Sci. Technol. 2018, 34, 1570–1579. doi:10.1016/j.jmst.2018.01.002
  • Erden, F.; Akgul, B.; Danaci, I.; Oner, M. R. Thermoelectric and Thermomechanical Properties of İnvar 36: Comparison with Common Thermoelectric Materials. J. Alloys Compd. 2023, 932, 167690. doi:10.1016/j.jallcom.2022.167690
  • Akhlaghi, M.; Rahimi, R.; Schröder, C.; Fabrichnaya, O.; Volkova, O. Investigation of Discontinuous Precipitation upon Age-Hardening of İnvar-Based Sn Alloy. J. Mater. Res. 2017, 32, 3842–3853. doi:10.1557/jmr.2017.364
  • Hu, Q.; Wang, J. M.; Yan, Y. H.; Guo, S.; Chen, S. S.; Lu, D. P.; Zou, J. Z.; Zeng, X. R. Invar Effect of Fe-Based Bulk Metallic Glasses. Intermetallics 2018, 93, 318–322. doi:10.1016/j.intermet.2017.10.012
  • Scopus, 2022.
  • Zhang, L.; Wen, T.; Chen, W.; Li, X.; Xu, A. Mathematical Modeling on the Effect of the Interfacial Tension on the Droplets during Electroslag Remelting. Metall. Mater. Trans. B 2021, 52, 3167–3182. doi:10.1007/s11663-021-02244-0
  • Brenk, J.; Hassan-Pour, S.; Spiess, P.; Friedrich, B. Examination of an Alternative Method for the Pyrometallurgical Production of Copper-Chromium Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2016, 143, 12016. doi:10.1088/1757-899X/143/1/012016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.