380
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Development of Fe-Ni-Co-Al-based superelastic alloys

, , , , , , & show all

References

  • Otsuka, H.; Yamada, H.; Maruyama, T.; Tanahashi, H.; Matsuda, S.; Murakami, M. Effects of Alloying Additions on Fe-Mn-Si Shape Memory Alloys. ISIJ Int. 1990, 30, 674–679. doi:10.2355/isijinternational.30.674
  • Saburi, T. Ti-Ni Shape Memory Alloys. In Shape Memory Materials; Cambridge University Press: UK, 1998; pp 49–96.
  • Wayman, C. M. Deformation, Mechanisms and Other Characteristics of Shape Memory Alloys. In Shape Memory Effects in Alloys; Springer: Boston, MA, 1975; pp 1–27.
  • Tadaki, T.; Otsuka, K.; Shimizu, K. Shape Memory Alloys. Annu. Rev. Mater. Sci. 1988, 18, 25–45. doi:10.1146/annurev.ms.18.080188.000325
  • Lagoudas, D. C. Shape Memory Alloys: Modeling and Engineering Applications; Springer: New York, 2008.
  • Schetky, L. M. Shape Memory Materials from Rubbers. Sci. Am. 1979, 241, 74–82. doi:10.1038/scientificamerican1179-74
  • Funakubo, T. Shape Memory Materials. J. Soc. Mater. Sci. Jpn. 1985, 34, 105–117.
  • Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M. A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. doi:10.1016/j.matdes.2013.11.084
  • Kumar, P.; Lagoudas, D. Introduction to Shape Memory Alloys; Springer: Cham, Switzerland, 2008; pp 1–51.
  • Otsuka, K.; Wayman, C. M.; Nakai, K.; Sakamoto, H.; Shimizu, K. Superelasticity Effects and Stress-Induced Martensitic Transformations in Cu-Al-Ni Alloys. Acta Metall. 1976, 24, 207–226. doi:10.1016/0001-6160(76)90071-7
  • Tanaka, K.; Kobayashi, S.; Sato, Y. Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys. Int. J. Plast. 1986, 2, 59–72. doi:10.1016/0749-6419(86)90016-1
  • Perkins, J. Shape Memory Effects in Alloys; Springer: New York, 2012.
  • Shu, Y.; Bhattacharya, K. The Influence of Texture on the Shape-Memory Effect in Polycrystals. Acta Mater. 1998, 46, 5457–5473. doi:10.1016/S1359-6454(98)00184-0
  • Ullakko, K.; Huang, J. K.; Kokorin, V. V.; O'Handley, R. C. Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics. Scr. Mater. 1997, 36, 1133–1138. doi:10.1016/S1359-6462(96)00483-6
  • Ullakko, K. Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials. JMEP. 1996, 5, 405–409. doi:10.1007/BF02649344
  • Heczko, O. Magnetic Shape Memory Effect and Magnetization Reversa. J. Magn. Magn. Mater. 2005, 290–291, 787–794. doi:10.1016/j.jmmm.2004.11.397
  • Heczko, O.; Straka, L. Temperature Dependence and Temperature Limits of Magnetic Shape Memory Effect. J. Appl. Phys. 2003, 94, 7139–7143. doi:10.1063/1.1626800
  • Sun, F.; Nowak, S.; Gloriant, T.; Laheurte, P.; Eberhardt, A.; Prima, F. Influence of a Short Thermal Treatment on the Superelastic Properties of a Titanium-Based Alloy. Scr. Mater. 2010, 63, 1053–1056. doi:10.1016/j.scriptamat.2010.07.042
  • Tanaka, Y.; Himuro, Y.; Kainuma, R.; Sutou, Y.; Omori, T.; Ishida, K. Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science 2010, 327, 1488–1490. doi:10.1126/science.1183169
  • Tseng, L.; Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.; Luo, Z.; Chumlyakov, Y. The Effect of Precipitates on the Superelastic Response of [1 0 0] Oriented FeMnAlNi Single Crystals under Compression. Acta Metall. 2015, 97, 234–244. doi:10.1016/j.actamat.2015.06.061
  • Zhang, W.; Ao, S. S.; Oliveira, J. P.; Zeng, Z.; Luo, Z.; Hao, Z. Z. Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys. Smart Mater. Struct. 2018, 27, 085020. doi:10.1088/1361-665X/aacfeb
  • Omori, T.; Ando, K.; Okano, M.; Xu, X.; Tanaka, Y.; Ohnuma, I.; Kainuma, R.; Ishida, K. Superelastic Effect in Polycrystalline Ferrous Alloys. Science 2011, 333, 68–71. doi:10.1126/science.1202232
  • Chumlyakov, Y. I.; Kireeva, I. V.; Kuts, O. A.; Kuksgauzen, D. A. Thermoelastic Martensitic Transformations and Superelasticity in the [001]-Oriented FeNiCoAlNb Single Crystals. Russ. Phys. J. 2015, 57, 1328–1335. doi:10.1007/s11182-015-0385-0
  • Chumlyakov, Y. I.; Kireeva, I. V.; Panchenko, E. Y.; Kirillov, V. A.; Timofeeva, E. E.; Kretinina, I. V.; Danil’Son, Y.; Karaman, I.; Maier, H.; Cesari, E. Thermoelastic Martensitic Transformations in Single Crystals with Disperse Particles. Russ. Phys. J. 2012, 54, 937–950. doi:10.1007/s11182-011-9701-5
  • Naat, N. A.; Mohammed, M. A. Investigation of the Martensitic Transformation of (Cu-Zn-Ni) Shape Memory Alloys. Int. Adv. Appl. Phys. 2017, 1809, 020–036.
  • Bhowmick, S.; Mishra, S. K. FNCATB Superelastic Damper for Seismic Vibration Mitigation. J. Intel. Mat. Syst. Str. 2016, 27, 2062–2077. doi:10.1177/1045389X15620039
  • Choi, W. S.; Pang, E. L.; Choi, P.-P.; Schuh, C. A. FeNiCoAlTaB Superelastic and Shape-Memory Wires with Oligocrystalline Grain Structure. Scr. Mater. 2020, 188, 1–5. doi:10.1016/j.scriptamat.2020.06.067
  • Xia, J.; Noguchi, Y.; Xu, X.; Odaira, T.; Kimura, Y.; Nagasako, M.; Omori, T.; Kainuma, R. Iron-Based Superelastic Alloys with Near-Constant Critical Stress Temperature Dependence. Science 2020, 369, 855–858. doi:10.1126/science.abc1590
  • Omori, T.; Iwaizako, H.; Kainuma, R. Abnormal Grain Growth Induced by Cyclic Heat Treatment in Fe-Mn-Al-Ni Superelastic Alloy. Mater. Des. 2016, 101, 263–269. doi:10.1016/j.matdes.2016.04.011
  • Koval, Y. M.; Ponomaryova, S. Effect of Ordering on the Volume Change and the Shape Memory Effect in a Fe3Pt Alloy during Martensitic Transformation. Tech. Phys. 2011, 56, 881–884. doi:10.1134/S1063784211060119
  • Vokoun, D.; Hu, C. Two-Way Shape Memory Effect in Fe-28.8 at.% Pd Melt-Spun Ribbons. Scr. Mater. 2002, 47, 453–457. doi:10.1016/S1359-6462(02)00149-5
  • Kajiwara, S.; Liu, D.; Kikuchi, T.; Shinya, N. Remarkable Improvement of Shape Memory Effect in Fe-Mn-Si Based Shape Memory Alloys by Producing NbC Precipitates. Scr. Mater. 2001, 44, 2809–2814. doi:10.1016/S1359-6462(01)00978-2
  • Wan, J. F. ; Chen, S. P.; Xu, Z. Y. Theoretical Calculation of the Thermo-Hysteresis of Phase Transformation in Fe-Mn-Si Alloys. Acta Metall. Sin. 2005, 41, 795–798.
  • Sato, A.; Chishima, E.; Soma, K.; Mori, T. Shape Memory Effect in γ⇄ ϵ Transformation in Fe-30Mn-1Si Alloy Single Crystals. Acta Metall. 1982, 30, 1177–1183. doi:10.1016/0001-6160(82)90011-6
  • Vollmer, M.; Segel, C.; Krooß, P.; Günther, J.; Tseng, L.; Karaman, I.; Weidner, A.; Biermann, H.; Niendorf, T. On the Effect of Gamma Phase Formation on the Pseudoelastic Performance of Polycrystalline Fe–Mn–Al–Ni Shape Memory Alloys. Scr. Mater. 2015, 108, 23–26. doi:10.1016/j.scriptamat.2015.06.013
  • Vollmer, M.; Bauer, A.; Frenck, J.-M.; Krooß, P.; Wetzel, A.; Middendorf, B.; Fehling, E.; Niendorf, T. Novel Prestressing Applications in Civil Engineering Structures Enabled by FeMnAlNi Shape Memory Alloys. Eng. Struct. 2021, 241, 112430. doi:10.1016/j.engstruct.2021.112430
  • Li, Z.; Zhang, Y.; Dong, K.; Zhang, Z. Research Progress of Fe-Based Superelastic Alloys. Crystals 2022, 12, 602. doi:10.3390/cryst12050602
  • Rahman, R. A. U.; Juhre, D.; Halle, T. Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys. Korean J. Mater. Res. 2018, 28, 381–390. doi:10.3740/MRSK.2018.28.7.381
  • Zhang, J.; Chen, S.; Li, L.; Hsu, T. Y. Analysis of the Stress-Strain Curves of a Fe-Mn-Si Shape Memory Alloy. Mater. Charact. 1998, 40, 37–41. doi:10.1016/S1044-5803(97)00104-6
  • Krooß, P.; Somsen, C.; Niendorf, T.; Schaper, M.; Karaman, I.; Chumlyakov, Y.; Eggeler, G.; Maier, H. Cyclic Degradation Mechanisms in Aged FeNiCoAlTa Shape Memory Single Crystals. Acta Mater. 2014, 79, 126–137. doi:10.1016/j.actamat.2014.06.019
  • Lee, D.; Omori, T.; Kainuma, R. Ductility Enhancement and Superelasticity in Fe–Ni–Co–Al–Ti–B Polycrystalline Alloy. J. Alloy. Compd. 2014, 617, 120–123. doi:10.1016/j.jallcom.2014.07.136
  • Chen, Z. X.; Peng, W. Y.; Qu, G. L.; Wang, W. W.; Shi, H. P.; Wang, W. J. Effect of Aging on Super-Elastic Response of a Polycrystalline FeNiCoAlNbB Shape Memory Alloy. MSF 2014, 787, 281–287. doi:10.4028/www.scientific.net/MSF.787.281
  • Evirgen, A.; Ma, J.; Karaman, I.; Luo, Z. P.; Chumlyakov, Y. I. Effect of Aging on the Superelastic Response of a Single Crystalline FeNiCoAlTa Shape Memory Alloy. Scr. Mater. 2012, 67, 475–478. doi:10.1016/j.scriptamat.2012.06.006
  • Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.; Schell, N.; Chulist, R. Effect of B Addition on the Superelasticity in FeNiCoAlTa Single Crystals. Mater. Des. 2021, 197, 109225. doi:10.1016/j.matdes.2020.109225
  • Lee, D.; Omori, T.; Han, K.; Hayakawa, Y.; Kainuma, R. Effect of Thermomechanical Processing on Texture and Superelasticity in Fe–Ni-Co-Al–Ti-B Alloy. Shap. Mem. Superelast. 2018, 4, 102–111. doi:10.1007/s40830-018-0160-5
  • Fu, H.; Li, W.; Song, S.; Jiang, Y.; Xie, J. Effects of Grain Orientation and Precipitates on the Superelasticity in Directionally Solidified FeNiCoAlTaB Shape Memory Alloy. J. Alloys Compd. 2016, 684, 556–563. doi:10.1016/j.jallcom.2016.05.209
  • Zhao, H.; Fu, H.; Xie, J.; Zhang, Z. Effects of Solution Treatment on Microstructure and Superelasticity of FeNiCoAlTaB Alloy. Mater. Res. Express 2018, 5, 016508. doi:10.1088/2053-1591/aaa1fd
  • Fu, H.; Zhao, H.; Zhang, Y.; Xie, J. Enhancement of Superelasticity in Fe-Ni-Co-Based Shape Memory Alloys by Microstructure and Texture Control. Procedia Eng. 2017, 207, 1505–1510. doi:10.1016/j.proeng.2017.10.1084
  • Fu, H.; Zhao, H.; Song, S.; Zhang, Z.; Xie, J. Evolution of the Cold-Rolling and Recrystallization Textures in FeNiCoAlNbB Shape Memory Alloy. J. Alloys Compd. 2016, 686, 1008–1016. doi:10.1016/j.jallcom.2016.06.273
  • Zhang, C.; Zhu, C.; Shin, S.; Casalena, L.; Vecchio, K. Grain Boundary Precipitation of Tantalum and NiAl in Superelastic FeNiCoAlTaB Alloy. Mater. Sci. Eng. A 2019, 743, 372–381. doi:10.1016/j.msea.2018.11.077
  • Guo, Y. J.; Peng, W. Y.; Chen, Z. X.; Chen, L.; Deng, X. H. Effect of Nb on Superelasticity of FeNiCoAlNb Polycrystalline Shape Memory Alloy. Trans. Mater. Heat Treat. 2018, 39, 78–84.
  • Kireeva, I. V.; Chumlyakov, Y. I.; Kirillov, V. A.; Karaman, I.; Cesari, E. Orientation and Temperature Dependence of Superelasticity Caused by Reversible γ-α′ Martensitic Transformations in FeNiCoAlTa Single Crystals. Tech. Phys. Lett. 2011, 37, 487–490. doi:10.1134/S1063785011050221
  • Ma, J.; Kockar, B.; Evirgen, A.; Karaman, I.; Luo, Z. P.; Chumlyakov, Y. I. Shape Memory Behavior and Tension–Compression Asymmetry of a FeNiCoAlTa Single-Crystalline Shape Memory Alloy. Acta Mater. 2012, 60, 2186–2195. doi:10.1016/j.actamat.2011.12.047
  • Chumlyakov, Y.; Kireeva, I.; Panchenko, E.; Karaman, I.; Maier, H. J.; Timofeeva, E. Shape Memory Effect and High-Temperature Superelasticity in High-Strength Single Crystals. J. Alloys Compd. 2013, 577, S393–S398. doi:10.1016/j.jallcom.2012.02.003
  • Chumlyakov, Y. I.; Kireeva, I. V.; Kuts, O. A.; Panchenko, M. Y.; Karaka, É.; Maier, H. J. Shape Memory Effect and Superelasticity in [001] Single Crystals of Fe–Ni–Co–Al–Nb(B) ferromagnetic Alloy. Russ. Phys. J. 2015, 58, 889–897. doi:10.1007/s11182-015-0587-5
  • Chumlyakov, Y.; Kireeva, I.; Panchenko, E.; Timofeeva, E.; Kretinina, I.; Kuts, O.; Karaman, I.; Maier, H. J. Shape Memory Effect and Superelasticity in Single Crystals of High-Strength Ferromagnetic Alloys. AMR 2014, 1013, 15–22. doi:10.4028/www.scientific.net/AMR.1013.15
  • Chumlyakov, Y. I.; Kireeva, I. V.; Poklonov, V. V.; Pobedennaya, Z. V.; Karaman, I. The Shape-Memory Effect and Superelasticity in Single-Crystal Ferromagnetic Alloy FeNiCoAlTi. Tech. Phys. Lett. 2014, 40, 747–750. doi:10.1134/S1063785014090053
  • Tseng, L. W.; Ma, J.; Karaman, I.; Wang, S. J.; Chumlyakov, Y. I. Superelastic Response of the FeNiCoAlTi Single Crystals under Tension and Compression. Scr. Mater. 2015, 101, 1–4. doi:10.1016/j.scriptamat.2014.12.021
  • Abuzaid, W.; Sehitoglu, H. Superelasticity and Functional Fatigue of Single Crystalline FeNiCoAlTi Iron-Based Shape Memory Alloy. Mater. Des. 2018, 160, 642–651. doi:10.1016/j.matdes.2018.10.003
  • Karaca, H. E.; Turabi, A. S.; Chumlyakov, Y. I.; Kireeva, I.; Tobe, H.; Basaran, B. Superelasticity of [001]-Oriented Fe42.6Ni27.9Co17.2Al9.9Nb2.4 Ferrous Shape Memory Alloys. Scr. Mater. 2016, 120, 54–57. doi:10.1016/j.scriptamat.2016.04.008
  • Borza, F.; Lupu, N.; Dobrea, V.; Chiriac, H. Tailoring the Magnetic Properties of New Fe-Ni-Co-Al-(Ta,Nb)-B Superelastic Rapidly Quenched Microwires. J. Appl. Phys. 2015, 117, 17E512. doi:10.1063/1.4917186
  • Omori, T.; Abe, S.; Tanaka, Y.; Lee, D. Y.; Ishida, K.; Kainuma, R. Thermoelastic Martensitic Transformation and Superelasticity in Fe–Ni–Co–Al–Nb–B Polycrystalline Alloy. Scr. Mater. 2013, 69, 812–815. doi:10.1016/j.scriptamat.2013.09.006
  • Kireeva, I. V.; Chumlyakov, Y. I.; Kirillov, V. A.; Kretinina, I. V.; Danil’son, Y. N.; Karaman, I.; Cesari, E. Thermoelastic γ–α′-Martensitic Transformations in FeNiCoAlTa Aging Single Crystals. Russ. Phys. J. 2011, 53, 1103–1106. doi:10.1007/s11182-011-9536-0
  • Chumlyakov, Y. I.; Kireeva, I. V.; Kutz, O. A.; Turabi, A. S.; Karaca, H. E.; Karaman, I. Unusual Reversible Twinning Modes and Giant Superelastic Strains in FeNiCoAlNb Single Crystals. Scr. Mater. 2016, 119, 43–46. doi:10.1016/j.scriptamat.2016.03.027
  • Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.; Chulist, R. Studies on the Two-Step Aging Process of Fe-Based Shape Memory Single Crystals. Materials 2020, 13, 1724–1710. doi:10.3390/ma13071724
  • Ma, J.; Hornbuckle, B. C.; Karaman, I.; Thompson, G. B.; Luo, Z. P.; Chumlyakov, Y. I. The Effect of Nanoprecipitates on the Superelastic Properties of FeNiCoAlTa Shape Memory Alloy Single Crystals. Acta Mater. 2013, 61, 3445–3455. doi:10.1016/j.actamat.2013.02.036
  • Tanaka, Y.; Omori, T.; Himuro, Y.; Sutou, Y.; Kainuma, R.; Ishida, K. Development of Iron-Based Shape Memory Alloy Showing Huge Superelasticity. Mater. Jpn. 2011, 50, 339–345. doi:10.2320/materia.50.339
  • Rahman, R. A.; Juhre, D.; Halle, T. Review of Applications of Ferrous Based Shape Memory Smart Materials in Engineering and in Biomedical Sciences. Pakistan J. Eng. Appl. Sci. 2019, 24, 32–49.
  • Chang, W. S.; Araki, Y. Use of Shape-Memory Alloys in Construction: A Critical Review. ICE Proc. Civil Eng. 2016, 169, 87–95. doi:10.1680/jcien.15.00010
  • Bhowmick, S.; Mishra, S. K. Ferrous SMA (FNCATB) Based Superelastic Friction Bearing Isolator (S-FBI) Subjected to Pulse Type Ground Motions, Soil Dyn. Earthq. Eng. 2017, 100, 34–48. doi:10.1016/j.soildyn.2017.03.037
  • Alaneme, K. K.; Okotete, E. A.; Anaele, J. U. Structural Vibration Mitigation – A Concise Review of the Capabilities and Applications of Cu and Fe Based Shape Memory Alloys in Civil Structures. J. Build. Eng. 2019, 22, 22–32. doi:10.1016/j.jobe.2018.11.014
  • Gu, N. J.; Dong, G. X.; Lin, X. P.; Wang, B. Q.; Ma, X. L. Recent Developments in Crystallographic Investigation of Martensitic Transformation, Prog. Nat. Sci. 2004, 14, 193–200. doi:10.1080/10020070412331343351
  • Malygin, G. A. Diffuse Martensitic Transitions and the Plasticity of Crystals with a Shape Memory Effect. Phys.-Usp. 2001, 44, 173–197. doi:10.1070/PU2001v044n02ABEH000760
  • Geng, Y.; Jin, M.; Ren, W.; Zhang, W.; Jin, X. Effects of Aging Treatment on Martensitic Transformation of Fe–Ni–Co–Al–Ta–B Alloys. J. Alloys Compd. 2013, 577, S631–S635. doi:10.1016/j.jallcom.2012.03.033
  • Otsuka, K.; Wayman, C. M. Shape Memory Materials; Cambridge University Press: New York, 1999.
  • Alaneme, K. K.; Okotete, E. A. Reconciling Viability and Cost-Effective Shape Memory Alloy Options – A Review of Copper and Iron Based Shape Memory Metallic Systems. J. Eng. Sci. Technol. Rev. 2016, 19, 1582–1592. doi:10.1016/j.jestch.2016.05.010
  • Xu, Z. Y. Shape Memory Materials, Rans. Nonferrous Met. Soc. China 2001, 11, 1–9.
  • Malygin, G. A. Diffuse Martensitic Transitions and the Plasticity of Crystals with a Shape Memory Effect. Phys.-Usp.+ 2001, 44, 197.
  • Tanaka, Y.; Kainuma, R.; Omori, T.; Ishida, K. Alloy Design for Fe-Ni-Co-Al-Based Superelastic Alloys. Mater. Today Proc. 2015, 2, S485–S492. doi:10.1016/j.matpr.2015.07.333
  • Adarsh, S. H.; Sampath, V. Influence of Microstructure on Mechanical and Magnetic Properties of an Fe-Ni-Co-Al-Ta-B Shape Memory Alloy. Mater. Res. Express 2019, 6, 075701. doi:10.1088/2053-1591/ab127b
  • Craciunescu, C.; Li, J.; Wuttig, M. Thermoelastic Stress-Induced Thin Film Martensites. Scr. Mater. 2003, 48, 65–70. doi:10.1016/S1359-6462(02)00347-0
  • Huang, H. J. The Development of New Iron Based Shape Memory Alloys; University of Wollongong Research Online: Wollongong, New South Wales, Australia, 1996.
  • Xiao, F.; Fukuda, T. Shape Memory Effect Associated with Successive FCC-FCT-BCT Martensitic Transformation in Single-Crystalline Fe-Pd Alloy. Materialia 2021, 16, 100685. doi:10.1016/j.mtla.2020.100685
  • Sehitoglu, H.; Efstathiou, C.; Maier, H. J.; Chumlyakov, Y. Hysteresis and Deformation Mechanisms of Transforming FeNiCoTi. Mech. Mater. 2006, 38, 538–550. doi:10.1016/j.mechmat.2005.05.024
  • Maki, T.; Furutani, S.; Tamura, I. Shape Memory Effect Related to Thin Plate Martensite with Large Thermal Hysteresis in Ausaged Fe–Ni–Co–Ti Alloy. ISIJ Int. 1989, 29, 438–445. doi:10.2355/isijinternational.29.438
  • Maki, T.; Kobayashi, K.; Tamura, I. Effect of Ausaging on the Morphology of Martensite in Fe-Ni-Ti-Co Alloys. J. Phys. Colloq. 1982, 43, 541–546.
  • Maki, T.; Kobayashi, K.; Minato, M.; Tamura, I. Thermoelastic Martensite in an Ausaged Fe-Ni-Ti-Co Alloy. Scr. Metall. 1984, 18, 1105–1109. doi:10.1016/0036-9748(84)90187-X
  • Maki, T.; Miyazaki, S. Medical and Dental Applications of Shape Memory Alloys; Woodhead Publishing: UK, 1998.
  • Morito, S.; Ohba, T.; Das, A. K.; Hayashi, T.; Yoshida, M. Effect of Solution Carbon and Retained Austenite Films on the Development of Deformation Structures of Low-Carbon Lath Martensite. ISIJ Int. 2013, 53, 2226–2232. doi:10.2355/isijinternational.53.2226
  • Akturk, S.; Durlu, T. N. Formation and Magnetic Properties of Butterfly-Shaped Martensite in an Fe–Ni–Cr Alloy. Mater. Sci. Eng. A 2006, 438–440, 292–295. doi:10.1016/j.msea.2006.01.121
  • Shibata, A.; Morito, S.; Furuhara, T.; Maki, T. Characterization of Substructure Evolution in Ferrous Lenticular Martensite. MSF 2010, 654–656, 1–6. doi:10.4028/www.scientific.net/MSF.654-656.1
  • Kashchenko, M. P.; Chashchina, V. G. Key Role of Transformation Twins in Comparison of Results of Crystal Geometric and Dynamic Analysis for Thin-Plate Martensite. Phys. Metals Metallogr. 2013, 114, 821–825. doi:10.1134/S0031918X1308005X
  • Umemoto, M.; Wayman, C. M. Crystallography and Morphology Studies of Fe-Pt Martensites: Lenticular to Thin Plate Transition and Thin Plate Morphologies. Acta Metall. 1978, 26, 1529–1549. doi:10.1016/0001-6160(78)90063-9
  • Tsuzaki, K.; Natsume, Y.; Kurokawa, Y.; Maki, T. Improvement of the Shape Memory Effect in Fe-Mn-Si Alloys by the Addition of Carbon. Scr. Metall. Et. Mater. 1992, 27, 471–473. doi:10.1016/0956-716X(92)90213-X
  • Baruj, A.; Bertolino, G.; Troiani, H. Temperature Dependence of Critical Stress and Pseudoelasticity in a Fe–Mn–Si–Cr Pre-Rolled Alloy. J. Alloys Compd. 2010, 502, 54–58. doi:10.1016/j.jallcom.2010.04.123
  • Huang, X.; Lei, Y.; Huang, B.; Chen, S.; Hsu, T. Effect of Rare-Earth Addition on the Shape Memory Behavior of a FeMnSiCr Alloy. Mater. Lett. 2003, 57, 2787–2791. doi:10.1016/S0167-577X(02)01375-7
  • Wen, Y.; Peng, H.; Raabe, D.; Gutiérrez-Urrutia, I.; Chen, J.; Du, Y. Large Recovery Strain in Fe-Mn-Si-Based Shape Memory Steels Obtained by Engineering Annealing Twin Boundaries. Nat. Commun. 2014, 5, 9. doi:10.1038/ncomms5964
  • Leinenbach, C.; Kramer, H.; Bernhard, C.; Eifler, D. Thermo‐Mechanical Properties of an Fe–Mn–Si–Cr–Ni–VC Shape Memory Alloy with Low Transformation Temperature. Adv. Eng. Mater. 2012, 14, 62–67. doi:10.1002/adem.201290004
  • Geng, Y.; Lee, D.; Xu, X.; Nagasako, M.; Jin, M.; Jin, X.; Omori, T.; Kainuma, R. Coherency of Ordered γ′ Precipitates and Thermoelastic Martensitic Transformation in FeNiCoAlTaB Alloys. J. Alloys Compd. 2015, 628, 287–292. doi:10.1016/j.jallcom.2014.12.172
  • Raghavan, V. Solid State Phase Transformations; Springer: Boston, MA, 1987.
  • Jin, M.; Geng, Y.; Zuo, S.; Jin, X. Precipitation and Its Effects on Martensitic Transformation in Fe-Ni-Co-Ti Alloys. Mater. Today. Proc. 2015, 2, S837–S840. doi:10.1016/j.matpr.2015.07.412
  • Kloß, H. Tetragonality and Stability of the Shape Memory Effect in an FeNiCoTi Alloy, Z. Med. Phys. 1996, 87, 175–178. doi:10.1515/ijmr-1996-870305
  • Kozlova, L.; Tinenko, A.; Demchenko, L.; Shevchenko, O.; Huseynov, S. Structural Features of Martensitic Transformations in Shape Memory Ferromagnetic Fe-Ni-Co-Ti Alloys. NAP 2019, 01MIT10, 1–3.
  • Sehitoglu, H.; Karaman, I.; Zhang, X. Y.; Chumlyakov, Y.; Maier, H. J. Deformation of FeNiCoTi Shape Memory Single Crystals. Scr. Mater. 2001, 44, 779–784. doi:10.1016/S1359-6462(00)00657-6
  • Kaufman, L.; Cohen, M. Thermodynamics and Kinetics of Martensitic Transformations. Progr. Met. Phys. 1958, 7, 165–246. doi:10.1016/0502-8205(58)90005-4
  • Guo, Z.; Rong, Y.; Chen, S.; Hsu (Xu Zuyao), T. Y.; Hong, J.; Zhao, X. Reverse Transformation Characteristics of Thermally Induced ε (Hcp) Martensite in an Fe–Mn–Si Based Alloy. Mater. Trans., JIM 1999, 40, 193–198. doi:10.2320/matertrans1989.40.193
  • Patel, J. R.; Cohen, M. Criterion for the Action of Applied Stress in the Martensitic Transformation. Acta Metall. 1953, 1, 531–538. doi:10.1016/0001-6160(53)90083-2
  • Bo, Z.; Lagoudas, D. C. Modeling of Cyclic Thermomechanical Response of Polycrystalline Shape Memory Alloys; Springer: Dordrecht, 1998; pp 109–122.
  • Zhao, L. C.; Cai, W.; Zheng, Y. Shape Memory Effect and Superelasticity in Alloys; National Defense Industry Press: Beijing, 2002; Vol. 5, pp 80–84.
  • Olson, G. B.; Cohen, M. A Mechanism for the Strain-Induced Nucleation of Martensitic Transformations. J. Less-Common. Met. 1972, 28, 107–118. doi:10.1016/0022-5088(72)90173-7
  • Titenko, A. N.; Demchenko, L. D.; Babanli, M. B.; Sharai, I. V.; Titenko, Y. А. Effect of Thermomechanical Treatment on Deformational Behavior of Ferromagnetic Fe–Ni–Co–Ti Alloy under Uniaxial Tension. Appl. Nanosci. 2019, 9, 937–943. doi:10.1007/s13204-019-00971-0
  • Khalil, W.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouby, C.; Mikolajczak, A.; Ben Zineb, T. Experimental Analysis of Fe-Based Shape Memory Alloy Behavior under Thermomechanical Cyclic Loading. Mech. Mater. 2013, 63, 1–11. doi:10.1016/j.mechmat.2013.04.002
  • Krooß, P.; Holzweissig, M. J.; Niendorf, T.; Somsen, C.; Schaper, M.; Chumlyakov, Y. I.; Maier, H. J. Thermal Cycling Behavior of an Aged FeNiCoAlTa Single-Crystal Shape Memory Alloy. Scr. Mater. 2014, 81, 28–31. doi:10.1016/j.scriptamat.2014.02.020
  • Pops, H. Stress-Induced Pseudoelasticity in Ternary Cu-Zn Based Beta Prime Phase Alloys. Metall. Mater. Trans. B 1970, 1, 251–258. doi:10.1007/BF02819268
  • Lieberman, D.; Schmerling, M.; Karz, R. Ferroelastic “Memory” and Mechanical Properties in Gold-Cadmium. In Shape Memory Effects in Alloys; Springer: Boston, MA, 1975; pp 203–244.
  • Nakanishi, N.; Mori, T.; Miura, S.; Murakami, Y.; Kachi, S. Pseudoelasticity in Au-Cd Thermoelastic Martensite. Philos. Mag. 1973, 28, 277–292. doi:10.1080/14786437308217452
  • Miyazaki, S.; Otsuka, K. Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys. MTA 1986, 17, 53–63. doi:10.1007/BF02644442
  • Chiba, T.; Miyamoto, G.; Furuhara, T. Comparison of Variant Selection between Lenticular and Lath Martensite Transformed from Deformed Austenite. ISIJ Int. 2013, 53, 915–919. doi:10.2355/isijinternational.53.915
  • Czerny, M.; Maziarz, W.; Cios, G.; Wójcik, A.; Chumlyakov, Y.; Schell, N.; Fitta, M.; Chulist, R. The Effect of Heat Treatment on the Precipitation Hardening in FeNiCoAlTa Single Crystals. Mater. Sci. Eng. A 2020, 784, 139327. doi:10.1016/j.msea.2020.139327
  • Jia, C. C.; Ishida, K.; Nishizawa, T. Partition of Alloying Elements between γ (A1), γ' (L12), and β (B2) Phases in Ni-Al Base Systems. Metall. Mater. Trans. A 1994, 25, 473–485. doi:10.1007/BF02651589
  • Liu, L.; Zhang, Y.; Li, J.; Fan, M.; Wang, X.; Wu, G.; Yang, Z.; Luan, J.; Jiao, Z.; Liu, C. T.; et al. Enhanced Strength-Ductility Synergy via Novel Bifunctional Nano-Precipitates in a High-Entropy Alloy. Int. J. Plast. 2022, 153, 103235.
  • Liu, L.; Zhang, Y.; Han, J.; Wang, X.; Jiang, W.; Liu, C. T.; Zhang, Z.; Liaw, P. K. Nanoprecipitate‐Strengthened High‐Entropy Alloys. Adv. Sci. 2021, 8, 2100870. doi:10.1002/advs.202100870
  • Lee, D.; Omori, T.; Kainuma, R. Microstructure and Mechanical Properties in B-Doped Fe-31.9Ni-9.6Co-4.7Ti Alloys. Shap. Mem. Superelast. 2016, 2, 228–234. doi:10.1007/s40830-016-0069-9
  • Seith, W.; Heumann, T. Diffusion in Metallen; Springer: Berlin, Heidelberg, 1939.
  • Ohtsuka, H.; Kajiwara, S. Effects of Carbon Content and Ausaging on γ↔ α′ Transformation Behavior and Reverse-Transformed Structure in Fe-Ni-Co-Al-C Alloys. MMTA 1994, 25, 63–71. doi:10.1007/BF02646675
  • Ming, K.; Bi, X.; Wang, J. Realizing Strength-Ductility Combination of Coarse-Grained Al0.2Co1.5CrFeNi1.5Ti0.3 Alloy via Nano-Sized, Coherent Precipitates. Int. J. Plast. 2018, 100, 177–191. doi:10.1016/j.ijplas.2017.10.005
  • Xu, S. S.; Li, J. P.; Cui, Y.; Zhang, Y.; Sun, L. X.; Li, J.; Luan, J. H.; Jiao, Z. B.; Wang, X.-L.; Liu, C. T.; Zhang, Z. W. Mechanical Properties and Deformation Mechanisms of a Novel Austenite-Martensite Dual Phase Steel. Int. J. Plast. 2020, 128, 102677. doi:10.1016/j.ijplas.2020.102677
  • Xu, S. S.; Zhao, Y.; Chen, D.; Sun, L. W.; Chen, L.; Tong, X.; Liu, C. T.; Zhang, Z. W. Nanoscale Precipitation and Its Influence on Strengthening Mechanisms in an Ultra-High Strength Low-Carbon Steel. Int. J. Plast. 2019, 113, 99–110. doi:10.1016/j.ijplas.2018.09.009
  • Xu, S. S.; Liu, Y. W.; Zhang, Y.; Luan, J. H.; Li, J. P.; Sun, L. X.; Jiao, Z. B.; Zhang, Z. W.; Liu, C. T. Precipitation Kinetics and Mechanical Properties of Nanostructured Steels with Mo Additions. Mater. Res. Lett. 2020, 8, 187–194. doi:10.1080/21663831.2020.1734976
  • Chen, C. H.; Wang, Y. C.; Wu, S. K.; Lu, N. H. Precipitation Hardening by Nanoscale Ti2Ni Phase in High Ti-Rich Ti52.6Ni46.8Si0.6 Melt-Spun Ribbon. J. Alloys Compd. 2019, 810, 151904. doi:10.1016/j.jallcom.2019.151904
  • Niendorf, T.; Lauhoff, C.; Karsten, E.; Gerstein, G.; Liehr, A.; Krooß, P.; Maier, H. J. Direct Microstructure Design by Hot Extrusion – High-Temperature Shape Memory Alloys with Bamboo-like Microstructure. Scr. Mater. 2019, 162, 127–131. doi:10.1016/j.scriptamat.2018.10.051
  • Sobrero, C.; La Roca, P.; Roatta, A.; Bolmaro, R.; Malarría, J. Shape Memory Properties of Highly Textured Cu–Al–Ni–(Ti) Alloys. Mater. Sci. Eng. A 2012, 536, 207–215. doi:10.1016/j.msea.2011.12.104
  • Rollett, A.; Rohrer, G. S.; Humphreys, J. Recrystallization and Related Annealing Phenomena; Elsevier: Oxford, 2017.
  • Chulist, R.; Czerny, M.; Panigrahi, A.; Zehetbauer, M.; Schell, N.; Skrotzki, W. Texture and microstructure of HPT-processed Fe-based shape memory alloys. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 375, 012006. doi:10.1088/1757-899X/375/1/012006
  • Sobrero, C. E.; Lauhoff, C.; Wegener, T.; Niendorf, T.; Krooß, P. On the Impact of Texture and Grain Size on the Pseudoelastic Properties of Polycrystalline Fe–Ni–Co–Al–Ti Alloy. Shap. Mem. Superelast. 2020, 6, 191–201. doi:10.1007/s40830-020-00280-4
  • Matthies, S.; Bunge, H. J., Eds. Theoretical Methods of Texture Analysis; DGM-Informationsgesellschaft-Verlag: Oberursel, 1987; Vol. 23, p 1488.
  • Kocks, U. F.; Tomé, C. N.; Wenk, H.-R. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties; Cambridge University Press: UK, 1998.
  • Ito, K.; Musick, R.; Lücke, K. The Influence of Iron Content and Annealing Temperature on the Recrystallization Textures of High-Purity Aluminium-Iron Alloys. Acta Metall. 1983, 31, 2137–2149. doi:10.1016/0001-6160(83)90033-0
  • Lee, D. N. Strain Energy Release Maximization Model for Evolution of Recrystallization Textures. Int. J. Mech. Sci. 2000, 42, 1645–1678. doi:10.1016/S0020-7403(99)00095-8
  • Mirzaeifar, R.; DesRoches, R.; Yavari, A.; Gall, K. A Micromechanical Analysis of the Coupled Thermomechanical Superelastic Response of Textured and Untextured Polycrystalline NiTi Shape Memory Alloys. Acta Mater. 2013, 61, 4542–4558. doi:10.1016/j.actamat.2013.04.023
  • Liu, W. C.; Zhai, T.; Man, C. S.; Morris, J. G. Quantification of Recrystallization Texture Evolution in Cold Rolled AA 5182 Aluminum Alloy. Scr. Mater. 2003, 49, 539–545. doi:10.1016/S1359-6462(03)00350-6
  • Wang, X.; Guo, M.; Cao, L.; Luo, J.; Zhang, J.; Zhuang, L. Effect of Heating Rate on Mechanical Property, Microstructure and Texture Evolution of Al–Mg–Si–Cu Alloy during Solution Treatment. Mater. Sci. Eng. A 2015, 621, 8–17. doi:10.1016/j.msea.2014.10.045
  • Chang, C. S.; Yeung, A.; Duggan, B. Producing a Random Recrystallization Texture in 6111 Aluminium Alloy. MSF 2005, 495–497, 591–596. doi:10.4028/www.scientific.net/MSF.495-497.591
  • Liu, W.; Morris, J. Evolution of Recrystallization and Recrystallization Texture in Continuous-Cast AA 3015 Aluminum Alloy. Metall. Mater. Trans. A 2005, 36, 2829–2848. doi:10.1007/s11661-005-0279-9
  • Leffers, T.; Ray, R. K. The Brass-Type Texture and Its Deviation from the Copper-Type Texture. Prog. Mater. Sci. 2009, 54, 351–396. doi:10.1016/j.pmatsci.2008.09.002
  • Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K.; Ono, N. Enhancement of Superelasticity in Cu-Al-Mn-Ni Shape-Memory Alloys by Texture Control. Metall. Mater. Trans. A 2002, 33, 2817–2824. doi:10.1007/s11661-002-0267-2
  • Wechsler, M.; Lieberman, D.; Read, T. The Martensite Transformation, Trans. AIME 1953, 197, 1503–1521.
  • Gu, H.; Bumke, L.; Chluba, C.; Quandt, E.; James, R. D. Phase Engineering and Supercompatibility of Shape Memory Alloys. Mater. Today 2018, 21, 265–277. doi:10.1016/j.mattod.2017.10.002
  • Sedmák, P.; Sittner, P.; Pilch, J.; Curfs, C. Instability of Cyclic Superelastic Deformation of NiTi Investigated by Synchrotron X-Ray Diffraction. Acta Mater. 2015, 94, 257–270. doi:10.1016/j.actamat.2015.04.039
  • Bucsek, A. N.; Hudish, G. A.; Bigelow, G. S.; Noebe, R. D.; Stebner, A. P. Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys. Shap. Mem. Superelast. 2016, 2, 62–79. doi:10.1007/s40830-016-0052-5
  • Ni, X.; Greer, J. R.; Bhattacharya, K.; James, R. D.; Chen, X. Exceptional Resilience of Small-Scale Au30Cu25Zn45 under Cyclic Stress-Induced Phase Transformation. Nano Lett. 2016, 16, 7621–7625. doi:10.1021/acs.nanolett.6b03555
  • Thiebaud, F.; Zineb, T. B. Experimental and Finite Element Analysis of Superelastic Behaviour of Shape Memory Alloy for Damping Applications. Mech. Ind. 2014, 15, 371–376. doi:10.1051/meca/2014040
  • Han, Y. L.; Yin, H. Y.; Xiao, E. T.; Sun, Z. L.; Li, A. Q. A Kind of NiTi-Wire Shape Memory Alloy Damper to Simultaneously Damp Tension, Compression and Torsion. Struct. Eng. Mech. 2006, 22, 241–262. doi:10.12989/sem.2006.22.2.241
  • Desroches, R.; Delemont, M. Seismic Retrofit of Simply Supported Bridges Using Shape Memory Alloys. Eng. Struct. 2002, 24, 325–332. doi:10.1016/S0141-0296(01)00098-0
  • Tyber, J.; McCormick, J.; Gall, K.; DesRoches, R.; Maier, H. J.; Abdel Maksoud, A. E. Structural Engineering with NiTi. I: Basic Materials Characterization. J. Eng. Mech. 2007, 133, 1009–1018. doi:10.1061/(ASCE)0733-9399(2007)133:9(1009)
  • Turabi, A. S.; Karaca, H. E.; Tobe, H.; Basaran, B.; Aydogdu, Y.; Chumlyakov, Y. I. Shape Memory Effect and Superelasticity of NiMnCoIn Metamagnetic Shape Memory Alloys under High Magnetic Field. Scr. Mater. 2016, 111, 110–113. doi:10.1016/j.scriptamat.2015.08.027
  • Zener, C. Internal Friction in Solids. I. Theory of Internal Friction in Reeds. Phys. Rev. 1937, 52, 230–235. doi:10.1103/PhysRev.52.230
  • Zener, C. M.; Siegel, S. Elasticity and Anelasticity of Metals. J. Phys. Chem. 1949, 53, 1468–1468. doi:10.1021/j150474a017
  • Granato, A. V.; Lucke, K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. J. Appl. Phys. 1956, 27, 789–805. doi:10.1063/1.1722485
  • Mughrabi, H. Dislocations and Properties of Real Materials, The Institute of Metals: London, 1985.
  • Schoeck, G. Internal Friction Due to Precipitation. Phys. Status Solidi B 1969, 32, 651–658. doi:10.1002/pssb.19690320216
  • Ma, J.; Karaman, I. Expanding the Pepertoire of Shape Memory Alloys. Science 2010, 327, 1468–1469. doi:10.1126/science.1186766
  • Duffy, K. P.; Padula, S. A., II; Scheiman, D. A. Damping of High-Temperature Shape Memory Alloys, Proc. SPIE 2008, 6929, C1–C10. doi:10.1117/12.776288
  • Heller, L.; Šittner, P.; Pilch, J.; Landa, M. Factors Controlling Superelastic Damping Capacity of SMAs. J. Mater. Eng. Perform. 2009, 18, 603–611. doi:10.1007/s11665-009-9358-1
  • Yasuda, H. Y.; Fukushima, K.; Kouzai, K.; Edahiro, T. Effect of Ni Doping on Strength and Damping Capacity of Fe–Al Alloys. ISIJ Int. 2013, 53, 704–708. doi:10.2355/isijinternational.53.704
  • Pérez-Sáez, R.; Recarte, V.; Nó, M.; Juan, J. S. Anelastic Contributions and Transformed Volume Fraction during Thermoelastic Martensitic Transformations. Phys. Rev. B 1998, 57, 5684–5692. doi:10.1103/PhysRevB.57.5684
  • Takagi, T.; Sutou, Y.; Kainuma, R.; Yamauchi, K.; Ishida, K. Effect of Prestrain on Martensitic Transformation in a Ti46.4Ni47.6Nb6.0 Superelastic Alloy and Its Application to Medical Stents. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76, 179–183. doi:10.1002/jbm.b.30415
  • Umemoto, M.; Wayman, C. M. The Effect of Austenite Ordering on the Mode of Reverse Transformation in Fe-Pt Alloys. Metallography 1979, 12, 23–32. doi:10.1016/0026-0800(79)90016-8
  • Ueland, S. M.; Chen, Y.; Schuh, C. A. Oligocrystalline Shape Memory Alloys. Adv. Funct. Mater. 2012, 22, 2094–2099. doi:10.1002/adfm.201103019
  • Ueland, S. M.; Schuh, C. A. Superelasticity and Fatigue in Oligocrystalline Shape Memory Alloy Microwires. Acta Mater. 2012, 60, 282–292. doi:10.1016/j.actamat.2011.09.054
  • Cissé, C.; Zaki, W.; Gu, X.; Ben Zineb, T. A Nonlinear 3D Model for Iron-Based Shape Memory Alloys considering Different Thermomechanical Properties for Austenite and Martensite and Coupling between Transformation and Plasticity. Mech. Mater. 2017, 107, 1–21. doi:10.1016/j.mechmat.2017.01.008
  • Adarsh, S.; Sampath, V. Prediction of High Temperature Deformation Characteristics of an Fe-Based Shape Memory Alloy Using Constitutive and Artificial Neural Network Modelling. Mater. Today Commun. 2020, 22, 100841. doi:10.1016/j.mtcomm.2019.100841
  • Adarsh, S.; Sampath, V. Hot Deformation Behavior of Fe–28Ni–17Co-11.5 Al-2.5 Ta-0.05 B (at.%) Shape Memory Alloy by Isothermal Compression. Intermetallics 2019, 115, 106632. doi:10.1016/j.intermet.2019.106632
  • Adarsh, S. H.; Sampath, V. Effect of Temperature, Strain and Strain Rate on Efficiency of Power Dissipation during Hot Deformation of Fe-28Ni-17Co-11.5Al-2.5Ta-0.05B (at. %) Shape Memory Alloy Using Taguchi Method. AMR 2019, 1156, 1–9. doi:10.4028/www.scientific.net/AMR.1156.1
  • Xu, Y. C.; Hu, C.; Liu, L.; Wang, J.; Rao, W.-F.; Morris, J. W.; Khachaturyan, A. G. A Nano-Embryonic Mechanism for Superelasticity, Elastic Softening, Invar and Elinvar Effects in Defected Pre-Transitional Materials. Acta Mater. 2019, 171, 240–252. doi:10.1016/j.actamat.2019.04.027
  • Kusama, T.; Omori, T.; Saito, T.; Kise, S.; Tanaka, T.; Araki, Y.; Kainuma, R. Ultra-Large Single Crystals by Abnormal Grain Growth. Nat. Commun. 2017, 8, 1–9. doi:10.1038/s41467-017-00383-0
  • Sutou, Y.; Omori, T.; Yamauchi, K.; Ono, N.; Kainuma, R.; Ishida, K. Effect of Grain Size and Texture on Pseudoelasticity in Cu–Al–Mn-Based Shape Memory Wire. Acta Mater. 2005, 53, 4121–4133. doi:10.1016/j.actamat.2005.05.013
  • Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K. Grain Size Dependence of Pseudoelasticity in Polycrystalline Cu–Al–Mn-Based Shape Memory Sheets. Acta Mater. 2013, 61, 3842–3850. doi:10.1016/j.actamat.2013.03.022
  • Yang, C.; Baker, I. Effect of Soluble Particles on Microstructural Evolution during Directional Recrystallization. Acta Mater. 2020, 188, 288–301. doi:10.1016/j.actamat.2020.02.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.