101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of chemical composition, anticholinesterase, antioxidant, antihemolytic and antibacterial activities of essential oil and ethanol extract from aerial parts of Algerian Ammoides verticillata (Brot.) Breistr

, &
Pages 185-199 | Received 27 Dec 2022, Accepted 12 Feb 2024, Published online: 05 Mar 2024

References

  • G. Martemucci, C. Costagliola, M. Mariano, L. D’andrea, P. Napolitano and A.G. D’Alessandro, Free radical properties, source and targets. Antioxidant Consumption and Health Oxygen, 2(2), 48–78 (2022). doi: 10.3390/oxygen2020006.
  • G.A. Engwa, F.N. Nweke and B.N. Nkeh-Chungag, Free radicals, oxidative stress-related diseases and antioxidant supplementation. Alternative Therapies in Health and Medicine, 2022, 28(1), 114–128.
  • M. Sharifi-Rad, N.V.A. Kumar, P. Zucca, E.M. Varoni, L. Luciana Dini, E. Panzarini, J. Rajkovic, P.V.T. Fokou, E. Azzini, I. Peluso, A.P. Mishra, M. Nigam, Y. El Rayess, M. El Beyrouthy, L. Polito, M. Iriti, N. Martins, M. Martorell, A.O. Docea, W.N. Setzer, D. Calina, W.C. Cho and J. Sharifi-Rad, Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694 (2020). doi: 10.3389/fphys.2020.00694.
  • H.J. Forman and H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689–709 (2021). doi: 10.1038/s41573-021-00233-1.
  • R. Guan, Q. Van Le, H. Yang, D. Zhang, H. Gu, Y. Yang, C. Sonne, C.S. Lam, J. Zhong, Z. Jianguang, R. Liu and W. Peng, A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere, 271, 129499 (2021). doi: 10.1016/j.chemosphere.2020.129499.
  • B. Akbari, N. Baghaei-Yazdi, M. Bahmaie and F.M. Abhari, The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors, 48(3), 611–633 (2022). doi: 10.1002/biof.1831.
  • P. Dadgostar, Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903–3910 (2019). doi: 10.2147/IDR.S234610.
  • H.M. Al AlSheikh, I. Sultan, V. Kumar, I.A. Rather, H. Al-Sheikh, A.T. Jan and Q.M. Rizwanul Haq, Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics (Basel), 9(8), 480 (2020). doi: 10.3390/antibiotics9080480.
  • M.I. Ionescu, Are herbal products an alternative to antibiotics?. In: Bacterial Pathogenesis and Antibacterial Control. Editor. S. Sahra, p. 154p, IntechOpen, London (2017).
  • T.N. Minh, T.D. Xuan, H.-D. Tran, T.M. Van, Y. Andriana, T.D. Khanh, N.V. Quan and A. Ateeque, Isolation and purification of bioactive compounds from the stem bark of jatropha podagrica. Molecules, 24(5), 889 (2019). doi: 10.3390/molecules24050889.
  • P. Quezel and S. Santa, Nouvelle flore de l’Algérie et des régions désertiques méridionales. Tome, I et II editor, Editions du Centre National de la Recherche Scientifique, Paris, p. 1170 (1963).
  • H. Laouer, M.M. Zerroug, F. Sahli, A.N. Chaker, G. Valentini, G. Ferretti, M. Grande and J. Anaya, Composition and antimicrobial activity of ammoides pusilla (Brot.) Breistr. Essential Oil Journal of Essential Oil Research, 15(2), 135–138 (2003). doi: 10.1080/10412905.2003.9712091.
  • L. Boulos, Medicinal plants of North Africa. Reference Publications, Algonac, 110, 286 (1983).
  • J. Bellakhdar, R. Claisse, J. Fleurentin and C. Younos, Repertory of standard herbal drugs in the Moroccan pharmacopoea. Journal of Ethnopharmacology, 35(2), 123–143 (1991). doi: 10.1016/0378-8741(91)90064-K.
  • M. Bnouham, F.Z. Merhfour, A. Legssyer, H. Mekhfi, S. Maâlem and A. Ziyyat, Antihyperglycemic activity of arbutus unedo, ammoides pusilla and thymelaea hirsute. Pharmazie, 2007, 62(8), 630–632.
  • M. Bnouham, F.Z. Merhfour, A. Ziyyat, M. Aziz, A. Legssyer and H. Mekhfi, Antidiabetic effect of some medicinal plants of Oriental Morocco in neonatal non-insulin-dependent diabetes mellitus rats. Human & Experimental Toxicology, 29(10), 865–871 (2010). doi: 10.1177/0960327110362704.
  • M. Felidj, M. Bouazza and T. Ferouani, Note sur le cortège floristique et l’intérêt de la plante médicinale Ammoides pussila (verticillata) dans le Parc national des Monts de Tlemcen (Algérie occidentale). Revue internationale de géologie, de géographie et d’écologie tropicales, 2010, 34, 147–154.
  • E. El-Ouariachi, P. Tomi, A. Bouyanzer, B. Hammouti, J.-M. Desjobert, J. Costa and J. Paolini, Chemical composition and antioxidant activity of essential oils and solvent extracts of ptychotis verticillata from Morocco. Food & Chemical Toxicology, 49(2), 533–536 (2011). doi: 10.1016/j.fct.2010.11.019.
  • C. Tefiani, A. Riazi, B. Belbachir, H. Lahmar, S.A.C. Aazza, Figueiredo and M.G. Miguel, Ammoides pusilla (Brot.) Breistr. From Algeria: effect of harvesting place and plant part (leaves and flowers) on the essential oils chemical composition and antioxidant activity. Open Chemistry, 14(1), 343–350 (2016). doi: 10.1515/chem-2016-0037.
  • C. Tefiani, A. Riazi, F. Youcefi, S. Aazza, C. Gago, M.L. Faleiro, L.G. Pedro, J.G. Barroso, A.C. Figueiredo, C. Megías, I. Cortés-Giraldo, J. Vioque and M.G. Miguel, Ammoides pusilla (Apiaceae) and thymus munbyanus (Lamiaceae) from Algeria essential oils: chemical composition, antimicrobial, antioxidant and antiproliferative activities. Journal of Essential Oil Research, 27(2), 131–139 (2015). doi: 10.1080/10412905.2015.1006739.
  • A. Attou, D. Davenne, A. Benmansour and H.A. Lazouni, Chemical composition and biological activities of ammoides verticillata essential oil from West Algeria. Phytothérapie, (2017). 10.1007/s10298-017-1108-1
  • N. Souhaiel, I. Sifaoui, D. Ben Hassine, J. Bleton, M. Bonose, F. Moussa, J.E. Pinero, J. Lorenzo-Morales and M. Abderrabba, Ammoides pusilla (Apiaceae) essential oil: Activity against Acanthamoeba castellanii Neff. Experimental Parasitology, 183, 99–103 (2017). doi: 10.1016/j.exppara.2017.10.011.
  • European Pharmacopeia, European, Directorate for Quality of Medicines, Council of Europe, 6th edn ed. Council of Europe, Strasbourg (2007).
  • S. Bendjabeur, O. Benchabane, C. Bensouici, M. Hazzit, A. Baaliouamer and A. Bitam, Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. Journal of Food Measurement and Characterization, 12(4), 2278–2288 (2018). doi: 10.1007/s11694-018-9845-x.
  • V.I. Babushok, P.J. Linstrom and I.G. Zenkevich, Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data, 40(4), 43101–43147 (2011). doi: 10.1063/1.3653552.
  • R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th edn. Carol Stream, Allured Publ. Corp., p. 804p (2007).
  • K. Tzima, N.P. Brunton and D.K. Rai, Qualitative and quantitative Analysis of Polyphenols in Lamiaceae plants—A review. Plants, 7(2), 25 (2018). doi: 10.3390/plants7020025.
  • V.L. Singleton, R. Orthofer and R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology, 1999, 299, 152–178.
  • J.L.C. Lamaison and A. Carnet, Teneurs en Principaux Flavonoides des Fleurs de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret D.C) en Fonction de la Vegetation. Pharmaceutica Acta Helvetia, 65, 315–320 (1990).
  • G.L. Ellman, D. Courtney, V. Andres Jr and R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95 (1961). doi: 10.1016/0006-2952(61)90145-9.
  • K. Rhee, M. Van de Meent, K. Ingkaninan and R. Verpoorte, Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. Journal of Chromatography A, 915(1–2), 217–223 (2001). doi: 10.1016/S0021-9673(01)00624-0.
  • M. Hazzit, A. Baaliouamer, A.R. Verissimo, M.L. Faleiro and M.G. Miguel, Chemical composition and biological activities of Algerian thymus oils. Food Chemistry, 116(3), 714–721 (2009). doi: 10.1016/j.foodchem.2009.03.018.
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237 (1999). doi: 10.1016/S0891-5849(98)00315-3.
  • M. Oyaizu, Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition, 44(6), 307–315 (1986). doi: 10.5264/eiyogakuzashi.44.307.
  • R. Apak, K. Guclu, M. Ozyurek and S.E.J. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agriculture and Food Chemistry, 52(26), 7970–7981 (2004). doi: 10.1021/jf048741x.
  • B. Tepe, D. Daferera, A. Sokmen, M. Sokmen and M. Polissiou, Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90(3), 333 (2005). doi: 10.1016/j.foodchem.2003.09.013.
  • A.S. Magalhães, B.M. Silva, J.A. Pereira, P.B. Andrade, P. Valentao and M. Carvalho, Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food and Chemical Toxicology, 47(6), 1372–1377 (2009). doi: 10.1016/j.fct.2009.03.017.
  • Q.Y. Zhu, R.R. Holt, S.A. Lazarus, T.J. Orozco and C.L. Keen, Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysis. Experimental Biology and Medicine, 227(5), 321–329 (2002). doi: 10.1177/153537020222700504.
  • F. Dai, Q. Miao, B. Zhou, L. Yang and Z. Liu, Protective effects of flavonols and their glycosides against free radical-induced oxidative hemolysis of red blood cells. Life Sciences, 78(21), 2488–2493 (2006). doi: 10.1016/j.lfs.2005.10.009.
  • F.N. Ko, G. Hsiao and Y.H. Kuo, Protection of oxidative hemolysis by demethyldiisoeugenol in normal and β-thalassemic red blood cells. Free Radical Biology and Medicine, 22(1–2), 215–222 (1997). doi: 10.1016/S0891-5849(96)00295-X.
  • CLSI (Clinical and Laboratory Standards Institute), Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed. ed. CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA (2012).
  • NCCLS (National Committee for Clinical Laboratory Standards), Performance standards for antimicrobial disc susceptibility tests. Approved Standard-7th Edition, M2–A7, Wayne, Pennsylvania, USA (2000).
  • A. Bousetla, S. Akkal, K. Medjroubi, S. Louaar, S. Azouzi, L. Djarri, N. Zaabat, H. Laouer, E. Chosson and E. Seguin, Flavonoid Glycosides from Ammoides pusilla. Chemistry of Natural Compounds, 41(1), 95 (2005). doi: 10.1007/s10600-005-0085-z.
  • S. Louaar, S. Akkal, C. Bayet, H. Laouer and D. Guilet, Flavonoids of aerial parts of an endemic species of the Apiaceae of Algeria, ammoides atlantica. Chemistry of Natural Compounds, 44(4), 516–517 (2008). doi: 10.1007/s10600-008-9110-3.
  • S. Salomone, F. Caraci, G.M. Leggio, J. Fedotova and F. Drago, Pharmacological strategies for treatment of Alzheimer’s disease: focus on disease-modifying drugs. British Journal of Clinical Pharmacology, 73(4), 504–517 (2012). doi: 10.1111/j.1365-2125.2011.04134.x.
  • M. Jukic, O. Politeo, M. Maksimovic, M. Milos and M. Milos, In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research, 21(3), 259–261 (2007). doi: 10.1002/ptr.2063.
  • M.I. Picollo, A.C. Toloza, G. Mougabure Cueto, J. Zygadlo and E. Zerba, Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia, 79(2008), 271–278 (2008). doi: 10.1016/j.fitote.2008.01.005.
  • M. Miyazawa, H. Watanabe and H. Kameoka, Inhibition of acetylcholinesterase activity by monoterpenoids with a p-Menthane Skeleton. Journal of Agriculture and Food Chemistry, 45(3), 677–679 (1997). doi: 10.1021/jf960398b.
  • M. Miyazawa and C. Yamafuji, Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. Journal of Agriculture and Food Chemistry, 53(5), 1765–1768 (2005). doi: 10.1021/jf040019b.
  • N.S.L. Perry, P.J. Houghton, A. Theobald, P. Jenner and E.K. Perry, In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. Journal of Pharmacy and Pharmacology, 52(7), 895–902 (2000). doi: 10.1211/0022357001774598.
  • S. Aazza, B. Lyoussi and M.G. Miguel, Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 16(9), 7672–7690 (2011). doi: 10.3390/molecules16097672.
  • I. Orhan, M. Kartal, Y. Kanc and B. Sener, Activity of essential oils and individual components against Acetyland Butyrylcholinesterase. Zeitschrift für Naturforschung C, 63c(7–8), 547–553 (2008). doi: 10.1515/znc-2008-7-813.
  • Z.W. Yu, B.C. Wang, F.M. Yang, Q.Y. Sun, Z.N. Yang and L.C. Zhu, Chemical composition and antiacetylcholinesterase activity of flower essential oils of Artemisia annua at different flowering stage. Iranian Journal of Pharmaceutical Research, 2011, 10(2), 265–271.
  • S. Uribe, T. Ramirez and A. Pena, Effects of β-pinene on yeast membrane functions. Journal of Bacteriology, 161(3), 1195–1200 (1985). doi: 10.1128/jb.161.3.1195-1200.1985.
  • E. Gioti, Y. Fiamegos, D. Skalkos and C. Stalikas, Antioxidant activity and bioactive components of the aerial parts of hypericum perforatum L. from Epirus, Greece. Food Chemistry, 117(3), 398–404 (2009). doi: 10.1016/j.foodchem.2009.04.016.
  • M. Özgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens and A.R. Miller, Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to Ferric Reducing antioxidant Power (FRAP) and 2,2‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agriculture and Food Chemistry, 54(4), 1151–1157 (2006). doi: 10.1021/jf051960d.
  • M. Ozturk, Anticholinesterase and antioxidant activities of savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134(1), 48–54 (2012). doi: 10.1016/j.foodchem.2012.02.054.
  • B.M. Guchu, A.K. Machocho, S.K. Mwihia and M.P. Ngugi, In vitro antioxidant activities of methanolic extracts of Caesalpinia volkensii Harms., Vernonia lasiopus O. Hoffm., and Acacia hockii De Wild. Evidence Based Complementary and Alternative Medicine, 3586268, 1–10 (2020). doi: 10.1155/2020/3586268.
  • N. Hadjadj and M. Hazzit, Analysis and antioxidant activity of essential oils and methanol extracts of Origanum floribundum munby. Journal of Essential Oil-Bearing Plants, 23(1), 85–96 (2020). doi: 10.1080/0972060X.2020.1729867.
  • L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson and M. Qian, Free radical scavenging properties of wheat extracts. Journal of Agriculture and Food Chemistry, 50(6), 1619–1624 (2002). doi: 10.1021/jf010964p.
  • S. Mathew and T.E. Abraham, Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94(4), 520–528 (2006). doi: 10.1016/j.foodchem.2004.11.043.
  • S. Salomone, F. Caraci, G.M. Leggio, J. Fedotova and F. Drago, New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease-modifying drugs. British Journal of Clinical Pharmacology, 73(4), 504–517 (2012). doi: 10.1111/j.1365-2125.2011.04134.x.
  • D. Aebisher, J. Cichonski, E. Szpyrka, S. Masjonis and G. Chrzanowski, Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules, 26(13), 3793 (2021). doi: 10.3390/molecules26133793.
  • C. Sarikurkcu, G. Zengin, M. Oskayc, S. Uysal, R. Ceylan and A. Aktumsek, Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Industrial Crops and Products, 70, 178–184 (2015). doi: 10.1016/j.indcrop.2015.03.030.
  • H. Amiri, Essential oils composition and antioxidant properties of three thymus species. evidence-based complementary and alternative medicine. Evidence-Based Complementary and Alternative Medicine, 2012, 1–8 (2012). doi: 10.1155/2012/728065.
  • G. Kavoosi and F. Rabiei, Zataria multiflora: chemical and biological diversity in the essential oil. Journal of Essential Oil Research, 27(5), 428–436 (2015). doi: 10.1080/10412905.2015.1031917.
  • M. Ferrali, C. Signorini, B. Caciotti, L. Sugherini, L. Ciccoli, D. Giachetti and M. Comporti, Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416(2), 123–129 (1997). doi: 10.1016/S0014-5793(97)01182-4.
  • K.A. Youdim, B. Shukitt-Hale, S. MacKinnon, W. Kalt and J.A. Joseph, Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo. Biochimica and Biophysica Acta, 1523(1), 117–122 (2000). doi: 10.1016/S0304-4165(00)00109-4.
  • H.D. Sesso, J.M. Gaziano, S. Liu and J.E. Buring, Flavonoid intake and the risk of cardiovascular disease in women. The American Journal of Clinical Nutrition, 77(6), 1400–1408 (2003). doi: 10.1093/ajcn/77.6.1400.
  • S. Chaudhuri, A. Banerjee, K. Basu, B. Sengupta and P.K. Sengupta, Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. International Journal of Biological Macromolecules, 41(1), 42–48 (2007). doi: 10.1016/j.ijbiomac.2006.12.003.
  • M.V. de Freitas, M.N. Rita de Càssia, J.C. da Costa Huss, T.M.T. de Souza, J.O. Costa, C.B. Firmino and N. Penha-Silva, Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicology in vitro, 22(1), 219–224 (2008). doi: 10.1016/j.tiv.2007.07.010.
  • M. Ramchoun, K. Sellam, H. Harnafi, C. Alem, M. Benlyas, F. Khallouki and S. Amrani, Investigation of antioxidant and antihemolytic properties of thymus satureioides collected from Tafilalet Region, south-east of Morocco. Asian Pacific Journal of Tropical Biomedicine, 5(2), 93–100 (2015). doi: 10.1016/S2221-1691(15)30151-9.
  • E.T. Bouhlali, M. Bammou, K. Sellam, M. Benlyas, C. Alem and Y. Filali-Zegzouti, Evaluation of antioxidant, antihemolytic and antibacterial potential of six Moroccan date fruit (Phoenix dactylifera L.) varieties. Journal of King Saud University–Science, 28(2), 136–142 (2016). doi: 10.1016/j.jksus.2016.01.002.
  • H.J.D. Dorman and S.G. Deans, Antimicrobial agents from plants: antimicrobial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316 (2000). doi: 10.1046/j.1365-2672.2000.00969.x.
  • H.J.D. Dorman and S.G. Deans, Chemical composition, antimicrobial and in vitro antioxidant properties of Monarda citriodora var. citriodora, Myristica fragrans, Origanum vulgare ssp. hirtum, Pelargonium sp. and Thymus zygis Oils. Journal of Essential Oil Research, 16(2), 145–150 (2004). doi: 10.1080/10412905.2004.9698679.
  • A. Ben Arfa, S. Combes, L. Preziosi-Belloy, N. Gontard and P. Chalier, Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology, 43(2), 149–154 (2006). doi: 10.1111/j.1472-765X.2006.01938.x.
  • M. Cristani, M. D’Arrigo, G. Mandalari, F. Castelli, M.G. Sarpietro, D. Micieli, V. Venuti, G. Bisignano, A. Saija and D. Trombetta, Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agriculture and Food Chemistry, 55(15), 6300–6308 (2000). doi: 10.1021/jf070094x.
  • P. Rattanachaikunsopon and P. Phumkhachorn, Assessment of factors influencing antimicrobial activity of carvacrol and cymene against vibrio cholera in food. Journal of Bioscience and Bioengineering, 110(5), 614–619 (2010). doi: 10.1016/j.jbiosc.2010.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.